
SystemVerilog pour la
verification
SVA : langage pour assertions

Tarik Graba
Année 2017/2018

Plan

Les assertions en SystemVerilog

Autres langages pour les assertions

2/16 SE303 Tarik Graba P1-2017/2018

Les assertions

Les assertions sont des constructions qui permettent :
de vérifier (ou de prouver) des propriétés (au sens logique)

En SystemVerilog, ces propriétés peuvent être
statiques ou
des séquences temporelles.

Elles permettent de définir un objectif de couverture des
simulations effectuées.

3/16 SE303 Tarik Graba P1-2017/2018

Les assertions
Les assertions procédurales

Dans un processus, elles sont évaluées au moment de son
exécution.

initial/always

begin

...

assert(xx == aa) else $info("au fait");

...

assert(xx == yy) else $error("pas bien!");

...

assert(xx == zz) else $fatal(1,"vraiment pas bien!");

...

Sans else génère une erreur avec un message générique.

Normalement, ignorées par les outils de synthèse.

4/16 SE303 Tarik Graba P1-2017/2018

Les assertions
Les assertions concurrentes

Permettent de vérifier en permanence des règles dans un
module, un program ou une interface.

On définit des propriétés (property)
Les propriétés sont forcément liées à un évènement
déclencheur.

• Les simulateur imposent qu’il soit lié à une horloge
On définit ensuite une assertion (assert) sur cette
propriété.

5/16 SE303 Tarik Graba P1-2017/2018

Les assertions
Les assertions concurrentes

Exemple

// au front d'horloge

// a ou b doit être vrai

property P0;

@(posedge clk)

a || b;
endproperty

assrt_p0: assert property(P0) else $info("Est-ce normal?");

6/16 SE303 Tarik Graba P1-2017/2018

Les assertions
Les assertions concurrentes

Implication (|->)

// au front d'horloge si a est vrai

// alor b doit être faux

property P1;

@(posedge clk)

a |-> !b;

endproperty

assrt_p1: assert property(P1) else $error("pas bien");

Dans la norme, «Overlapped implication»
L’évaluation de b se fait sur l’évènement pour lequel a est vrai.

7/16 SE303 Tarik Graba P1-2017/2018

Les assertions
Les assertions concurrentes

Implication (|=>)

// au front d'horloge si a

// alors au prochain front

// c doit être faux

property P2;

@(posedge clk)

a |=> !c;

endproperty

assrt_p2: assert property(P2) else $error("vraiment pas bien");

Dans la norme, «Nonverlapped implication»
L’évaluation de c se fait l’évènement suivant l’évènement pour lequel a est vrai.

8/16 SE303 Tarik Graba P1-2017/2018

Les assertions
Les assertions concurrentes

Capture

// au front d'horloge si req et !ack

// on capture la donnée

// on vérifie quelle reste stable au coup suivant

property P3;

bit [7:0] s;

@(posedge clk)

(req && !ack , s = bus) |=> s == bus;

endproperty

assrt_p3: assert property(P3) else $error("Ça a changé!");

Dans l’exemple, la variable locale s permet de capturer la valeur de bus si la condition
(req && !ack) est vérifiée. Au cycle suivant on vérifie que bus n’a pas changé de
valeur.
À chaque fois que la propriété est déclenché, une nouvelle capture est faite.

9/16 SE303 Tarik Graba P1-2017/2018

Les assertions
Les assertions concurrentes

Les séquences

// au front d'horloge si stb

// alors ack doit être vrai au cycle suivant

// ou dans les 5 cycles

property P4;

@(posedge clk)

stb |-> ##[1:5] ack;

endproperty

assrt_p4: assert property(P4) else $error("Trop tard");

Si stb alors ack doit arriver au cycle suivant ou dans les 5 cycles.
Attention ce code n’est pas efficace.

10/16 SE303 Tarik Graba P1-2017/2018

Les assertions
Les assertions concurrentes

Les séquences

property P5;

@(posedge clk)

(a ##1 b) |-> (c ##2 d);

endproperty

assrt_p5: assert property(P5) else $error("Trop tard");

a suivi de b au cycle suivant, implique, c suivi de d deux cycles plus tard.
Détecter le changement d’état d’un signal peut alors être écrit (!stb ##1 stb)
On peut avoir des séquences infinies. Par exemple, ##[1:$]x veut dire x vrai à partir
du cycle suivant.

11/16 SE303 Tarik Graba P1-2017/2018

Les assertions
Les assertions concurrentes

Des raccourcis

$rose le signal est passé de 0 à 1

$fell le signal est passé de 1 à 0

$stable la valeur du signal n’a pas changée
$changed la valeur du signal a changée
…

12/16 SE303 Tarik Graba P1-2017/2018

Les assertions
Comment les faire intervenir dans un TB

module testbench();

bit clk;

foo I(.*);

tester tester_i(.*);

slave DUT(.*);

monitor monitor_i (.*);

always #10ns clk = !clk;

endmodule

13/16 SE303 Tarik Graba P1-2017/2018

Les assertions
Comment les faire intervenir dans un TB

module monitor(foo.MONITOR I);

property slave_data_notunknown_when_ready;

@(posedge I.clk)

I.ready |-> $isunknown(I.s) == 0;

endproperty

assert_slave_data_notunknown_when_ready: assert property (slave_data_notunknown_when_ready)

else $error("%m: ready is asserted but data from slave is non valid");

property slave_ready_until_valid;

@(posedge I.clk)

$rose(I.ready) |-> I.ready throughout I.valid [->1]; //ou I.ready [*0:$] ##1 I.valid;

endproperty

assert_slave_ready_until_valid: assert property(slave_ready_until_valid)

else $error("%m:slave's ready must be held until valid is set");

property slave_data_held_when_ready;

bit [7:0] s;

@(posedge I.clk) disable iff (I.nrst == 0)

(I.ready && !I.valid , s = I.s) |=> s == I.s; //ou $stable(I.s);

endproperty

assert_slave_data_held_when_ready: assert property(slave_data_held_when_ready)

else $error("%m: data must be held stable when slave is ready");

endmodule

13/16 SE303 Tarik Graba P1-2017/2018

Plan

Les assertions en SystemVerilog

Autres langages pour les assertions

14/16 SE303 Tarik Graba P1-2017/2018

PSL
Property Specification Language

PSL : existe et est standard depuis plus longtemps.
Compatible avec d’autres langages RTL (VHDL, Verilog)
En fonction des outils :

fichiers indépendants
commentaires magiques

15/16 SE303 Tarik Graba P1-2017/2018

	Les assertions en SystemVerilog
	Autres langages pour les assertions

