TELECOM
ParisTech

m

Une école de 'IMT

SystemVerilog pour la
verification

B rian

Les assertions en SystemVerilog

TELECOM
ParisTech

Tarik Graba P1-2017/2018

I | cs assertions

Les assertions sont des constructions qui permettent :

B de vérifier (ou de prouver) des propriétés (au sens logique)
En SystemVerilog, ces propriétés peuvent étre

B statiques ou

B des séquences temporelles.

Elles permettent de définir un objectif de couverture des
simulations effectuées.

TELECOM
ParisTech

_ Les assertions

Les assertions procédurales

Dans un processus, elles sont évaluées au moment de son

exécution.
initial/always
begin
H;ssert(xx == aa) else $info("au fait");
Héssert(xx == yy) else $error("pas bien!");
”éssert(xx == zz) else $fatal(1,"vraiment pas bien!");

Sans else génére une erreur avec un message générique.

Normalement, ignorées par les outils de synthése.

TELECOM
ParisTech
4/16 SE303 Tarik Graba P1-2017/2018 =F

_ Les assertions

Les assertions concurrentes

Permettent de vérifier en permanence des regles dans un
module, un program ou une interface.

B On définit des propriétés (property)
B | es propriétés sont forcément liées a un événement
déclencheur.
* Les simulateur imposent qu'il soit lié a une horloge
® On définit ensuite une assertion (assert) sur cette
propriéte.

TELECOM
ParisTech
5/16 SE303

Tarik Graba P1-2017/2018

_ Les assertions

Les assertions concurrentes

Exemple

// au front d'horloge
// a ou b doit étre vrai
property PO;

@(posedge clk)

a |l b;
endproperty

assrt_p@: assert property(P9) else $info("Est-ce normal?");

TELECOM
ParisTech

P1-2017/201

N B Les assertions

Les assertions concurrentes

Implication (|->)

// au front d'horloge si a est vrai
// alor b doit étre faux
property P1;
@(posedge clk)
a |-> !b;
endproperty

assrt_pl: assert property(P1) else $error(”pas bien");

Dans la norme, «Overlapped implication»
L'évaluation de b se fait sur 'événement pour lequel a est vrai.

TELECOM
ParisTech

7116 SE303 Tarik G P1-2017/201

N B Les assertions

Les assertions concurrentes

Implication (|=>)

// au front d'horloge si a
// alors au prochain front
// c doit étre faux
property P2;

@(posedge clk)

a |=> Ic;
endproperty

assrt_p2: assert property(P2) else $error(”vraiment pas bien");

Dans la norme, «Nonverlapped implication»
L'évaluation de c se fait I'événement suivant 'événement pour lequel a est vrai.

TELECOM
ParisTech

8/16 SE303 Tarik G P1-2017/201

_ Les assertions

Les assertions concurrentes

Capture

// au front d'horloge si req et !ack
// on capture la donnée
// on vérifie quelle reste stable au coup suivant
property P3;
bit [7:0] s;
@(posedge clk)
(req && lack , s = bus) |=> s == bus;
endproperty

assrt_p3: assert property(P3) else $error(”Ca a changé!");

Dans I'exemple, la variable locale s permet de capturer la valeur de bus si la condition
(req && !ack) est vérifiée. Au cycle suivant on vérifie que bus n’a pas changé de
valeur.

A chaque fois que la propriété est déclenché, une nouvelle capture est faite.

TELECOM
ParisTech

EAL SE303 Tarik Graba P1-2017/201

_ Les assertions

Les assertions concurrentes

Les séquences

// au front d'horloge si stb
// alors ack doit étre vrai au cycle suivant
// ou dans les 5 cycles
property P4;
@(posedge clk)
stb [-> ##[1:5] ack;
endproperty

assrt_p4: assert property(P4) else $error("Trop tard");

Si stb alors ack doit arriver au cycle suivant ou dans les 5 cycles.
Attention ce code n’est pas efficace.

TELECOM
ParisTech

10/16 SE303 Tarik G P1-2017/201

_ Les assertions

Les assertions concurrentes

Les séquences

property P5;
@(posedge clk)
(a ##1 b) |-> (c ##2 d);
endproperty

assrt_p5: assert property(P5) else $error("Trop tard");

a suivi de b au cycle suivant, implique, c suivi de d deux cycles plus tard.
Détecter le changement d’état d’un signal peut alors étre écrit (!stb ##1 stb)

On peut avoir des séquences infinies. Par exemple, ##[1: $1x veut dire x vrai a partir
du cycle suivant.

TELECOM
ParisTech

11/16 SE303 Tarik Graba P1-2017/201 =

_ Les assertions

Les assertions concurrentes

Des raccourcis

$rose le signal est passé de 0 a 1
$fell le signal est passé de 120
$stable la valeur du signal n’a pas changée

$changed la valeur du signal a changée

mEEE

_ Les assertions

Comment les faire intervenir dans un TB

module testbench();
bit clk;

foo I(.%);

tester tester_i(.x);
slave DUT(.%);

monitor monitor_i (.*);

always #10ns clk = !clk;

endmodule

TELECOM
ParisTech

mEEE

_ Les assertions

Comment les faire intervenir dans un TB

module monitor(foo.MONITOR I);

property slave_data_notunknown_when_ready;
@(posedge I.clk)
I.ready |-> $isunknown(I.s) == 0;
endproperty

assert_slave_data_notunknown_when_ready: assert property (slave_data_notunknown_when_ready)
else $error("%m: ready is asserted but data from slave is non valid”);

property slave_ready_until_valid;

@(posedge I.clk)

$rose(I.ready) |-> I.ready throughout I.valid [->1]; //ou I.ready [*@:$] ##1 I.valid;
endproperty

assert_slave_ready_until_valid: assert property(slave_ready_until_valid)
else $error("%m:slave’s ready must be held until valid is set”);

property slave_data_held_when_ready;

bit [7:0] s;

@(posedge I.clk) disable iff (I.nrst == 0)

(I.ready && !I.valid , s = I.s) |[=> s == I.s; //ou $stable(I.s);
endproperty

assert_slave_data_held_when_ready: assert property(slave_data_held_when_ready)
else $error("%m: data must be held stable when slave is ready"”);

endmodule

B rian

Autres langages pour les assertions

TELECOM
ParisTech
14/16 SE303 Tarik Graba P1-2017/2018 =F

B PSL

Property Specification Language

PSL : existe et est standard depuis plus longtemps.
Compatible avec d’autres langages RTL (VHDL, Verilog)
En fonction des outils :

B fichiers indépendants

B commentaires magiques

TELECOM
ParisTech

i P1-2017/2018 =¥
Ml

o

>

DA

	Les assertions en SystemVerilog
	Autres langages pour les assertions

