
Synthèse pour les circuits FPGA
Principes et exemples

Tarik Graba
Année scolaire 2019/2020

Plan

Flot de développement FPGA

La synthèse

L’inférence

Modélisation et inférence des mémoires

Logique synchrone et FPGA

Annexes : Le CycloneII

2/43 SE204 Tarik Graba 2019/2020

Synthèse FPGA
Flot simplifié

LUTa

s

b
o

1
0

Projection
technologique

technologique
Bibliothq̀ue

Contraintes

Placement
Routage

GeneriqueRTL

o = s ?a:b ;

Synthèse

always_comb

Cellules
FPGA

Programmation
binaire

3/43 SE204 Tarik Graba 2019/2020

Flot FPGA
Flot simplifié

1. Une synthèse générique
• A partir d’une description RTL (votre code)
• Générer une structure de primitives génériques (Netlist)

2. Projection technologique (mapping)
• Générer une structure de primitives spécifique à la cible

3. Placement et routage (P&R)
• Placer les cellules dans la matrice
• Choisir les canaux de routage
• Générer un fichier binaire pour programmer le FPGA

4/43 SE204 Tarik Graba 2019/2020

Flot FPGA
En entrée

Le RTL
• Ce que vous fournissez
• Utilise un sous-ensemble synthètisable du langage HDL (SystemVerilog)
• Peut être comportemental ou structurel

Les bibliothèques technologiques
• Décrivent les cibles FPGA
• La nature et nombre de cellules disponibles

Les contraintes
• La position des entrées et sorties
• La fréquence de fonctionnement
• Modèle et taille du FPGA, cellules particulières, …
• Un standard (sdc : Synopsys Design Constraints File)

5/43 SE204 Tarik Graba 2019/2020

Flot FPGA
En sortie

Les « netlists »
• Forcement structurel (ensemble de primitives)
• En HDL (verilog, vhdl) pour permettent la simulation
• Des langages spécifiques par exemple edif

• Des formats propriétaires (chacun a le sien)
• Des informations sur les timings (sdf Standard Delay Format)

– On parle de netlists rétro-annotées (back annotated)
Le fichier de programmation

• Fichier binaire
• Format propriétaire (généralement non documenté)
• Diffèrent d’un modèle de FPGA à l’autre

6/43 SE204 Tarik Graba 2019/2020

Plan

Flot de développement FPGA

La synthèse

L’inférence

Modélisation et inférence des mémoires

Logique synchrone et FPGA

Annexes : Le CycloneII

7/43 SE204 Tarik Graba 2019/2020

La synthèse
Les principes

Comment passer d’une description RTL à une liste de primitives (pour
l’instant indépendantes de la technologie cible).

8/43 SE204 Tarik Graba 2019/2020

La synthèse
Les principes

Élaboration

Séparation combinatoire/séquentiel

optimisation logique

Regroupement

RTL

Netlist

9/43 SE204 Tarik Graba 2019/2020

La synthèse
Les principes

Élaboration
• Instancier tous les sous-modules
• Remplacer les constantes/paramètres, dérouler les boucles
• …

Séparer les éléments séquentiels de la logique combinatoire
• Détection de patterns
• …

Optimisation de la logique
• Technique d’optimisations
• Arbres binaires…

Regroupement (Clustering)
• Dégrouper en blocs de base
• Dépend de la cible

10/43 SE204 Tarik Graba 2019/2020

Exemple de synthèse

Que donnerait ceci pour A ∈ [0 : 16[
always_ff@(posedge clk)

if(A/2) B <= 0;

else B <= 1;

11/43 SE204 Tarik Graba 2019/2020

Exemple de synthèse

Séparation logique séquentielle/combinatoire
always_ff@(posedge clk)

B <= B_c;

always_comb

if(A[3:1]!= 0) B_c = 0;

else B_c = 1;

12/43 SE204 Tarik Graba 2019/2020

Exemple de synthèse

Optimisation de la partie combinatoire

A A_3 A_2 A_1 A_0 B_r

0 0 0 0 0 0

1 0 0 0 1 0

2 0 0 1 0 1

3 0 0 1 1 1

4 0 1 0 0 1

5 0 1 0 1 1

6 0 1 1 0 1

7 0 1 1 1 1

8 1 0 0 0 1

9 1 0 0 1 1

11 1 0 1 0 1

11 1 0 1 1 1

12 1 1 0 0 1

13 1 1 0 1 1

14 1 1 1 0 1

15 1 1 1 1 1

B_c = A_3 | A_2 | A_1;

13/43 SE204 Tarik Graba 2019/2020

Exemple de synthèse

Regroupement

A_1

B_c

A_2

A_3

Dépendra de la technologie cible

14/43 SE204 Tarik Graba 2019/2020

Exemple de synthèse

Regroupement

A_1

A_2
A_3

B_c

Dépendra de la technologie cible

14/43 SE204 Tarik Graba 2019/2020

Exemple de synthèse

Regroupement

LUT3
A_1

A_2
A_3

B_c

0xFE

Pour les FPGA il faut regrouper en Luts

14/43 SE204 Tarik Graba 2019/2020

Exemple de synthèse

Netlist

LUT3
A_1

A_2
A_3

0xFE

B_c

B

clk

15/43 SE204 Tarik Graba 2019/2020

Exemple de synthèse

Netlist

module foo(input clk, input[3:0]A, output B);

wire A_1 = A[1];

wire A_2 = A[2];

wire A_3 = A[3];

wire B_c;

LUT3 #(.conf(8'hFE)) lut3_i (.i0(A_1),.i1(A_1),.i2(A_2), .o(B_c))

REG1 reg_i (.clk(clk), .d(B_c), .Q(B));

endmodule

15/43 SE204 Tarik Graba 2019/2020

Plan

Flot de développement FPGA

La synthèse

L’inférence

Modélisation et inférence des mémoires

Logique synchrone et FPGA

Annexes : Le CycloneII

16/43 SE204 Tarik Graba 2019/2020

Problème

Cette méthode n’est pas forcément la plus efficace.
Il y a des structures connues qui sont efficaces pour implémenter certains
opérateurs arithmétiques.
Dans les FPGAs, il existe de blocs en « dur »qui ne sont pas un assemblage
de LUTs

Deux possibilités :
Instancier explicitement des primitives (faire du structurel).

• le code n’est plus générique !
L’outil détecte ces opérateurs et blocs spéciaux dans le code et les remplace
automatiquement.

Cette 2nd option est appelée l’inférerence.

17/43 SE204 Tarik Graba 2019/2020

Inférence/Instanciation
Exemple

L’addition

assign {Co,S} = A + B + Ci

18/43 SE204 Tarik Graba 2019/2020

Inférence/Instanciation
Exemple

Cellule logique du Cyclone II

19/43 SE204 Tarik Graba 2019/2020

Inférence/Instanciation
Exemple

Cellule logique du Cyclone II en mode arithmétique

20/43 SE204 Tarik Graba 2019/2020

Inférence/Instanciation
Que peut-on inférer?

les opérateurs arithmétiques

L’addition : en utilisant les chaines de retenue.

21/43 SE204 Tarik Graba 2019/2020

Inférence/Instanciation
Que peut-on inférer?

les opérateurs arithmétiques

La multiplication : en utilisant les DSPs.

CLRN

D Q

ENA

Data A

Data B

aclr

clock

ena

signa (1)
signb (1)

CLRN

D Q

ENA

CLRN

D Q

ENA
Data Out

Embedded Multiplier Block

Output
RegisterInput

Register

multiplieur 18× 18 du CycloneII

21/43 SE204 Tarik Graba 2019/2020

Inférence/Instanciation
Que peut-on inférer?

les opérateurs arithmétiques

La division?

En utilisant beaucoup de LUTs.

21/43 SE204 Tarik Graba 2019/2020

Inférence/Instanciation
Que peut-on inférer?

les mémoires
Généralement les FPGA ont des blocs de mémoires synchrones.

6

D

ENA

Q

D

ENA

Q

D

ENA

Q

data_a[]

 address_a[]

Memory Block
256 × 16 (2)

512 × 8
1,024 × 4
2,048 × 2
4,096 × 1

Data In

Address A

Write/Read
Enable

Data Out

Data In

Address B

Write/Read
Enable

Data Out

enable_a

clock_a

D

ENA

Q

wren_a

6 LAB Row Clocks

q_a[]

6

data_b[]

address_b[]

q_b[]

ENA

A B

ENA

DQ

ENA

DQ

ENA
DQ

DQ

D

ENA

Qbyteena_a[] Byte Enable A Byte Enable B byteena_b[]

ENA

DQ

Write
Pulse

Generator

Write
Pulse

Generator

wren_b

enable_b

clock_b

addressstall_a Address Clock
Enable A

Address Clock
addressstall_b

Enable B

Bram 4Kbit du CycloneII

22/43 SE204 Tarik Graba 2019/2020

Inférence/Instanciation
Contrainte

Il faut que le comportement RTL corresponde au comportement du bloc que
l’on veut inférer.
Il faut que l’outil de synthèse sache le faire
Il faut que le style de codage corresponde à celui attendu par l’outil !

23/43 SE204 Tarik Graba 2019/2020

Inférence/Instanciation
Que ne peut-on pas inférer?

Tous ce qu’on ne sait pas exprimer en RTL

Par exemple les PLLs

PFD
Loop
Filter

Lock Detect
& Filter

VCO
Charge
Pump

÷c0

÷c1

÷c2

÷m

÷n

Global
Clock

Global
Clock

Global
Clock

To I/O or
general routing

PLL<#>_OUT

Post-Scale
Counters

VCO Phase Selection
Selectable at Each
PLL Output Port

CLK1

CLK3

CLK2 (1)

CLK0 (1)

inclk0

inclk1

up

down

8

8

8

fVCO

fFB

fIN

Reference
Input Clock
fREF= fIN /n

(2)

Manual Clock
Switchover

Select Signal

÷k

(3)

24/43 SE204 Tarik Graba 2019/2020

Plan

Flot de développement FPGA

La synthèse

L’inférence

Modélisation et inférence des mémoires

Logique synchrone et FPGA

Annexes : Le CycloneII

25/43 SE204 Tarik Graba 2019/2020

Mémoire synchrone
mémoire simple port

un bus d’adresse
2 bus pour les données :

• écriture
• lecture

des signaux de contôle
une horloge
PAS DE RESET
On ne peut accéder qu’à un seul
élément dans le même cycle !

8

8

sram
8

Do

Addr

Di

wr

clk

26/43 SE204 Tarik Graba 2019/2020

Mémoire synchrone
mémoire simple port

un bus d’adresse
2 bus pour les données :

• écriture
• lecture

des signaux de contôle
une horloge
PAS DE RESET
On ne peut accéder qu’à un seul
élément dans le même cycle !

module sram(input clk, wr,

input [7:0] Addr,

input [7:0] Di,

output logic [7:0] Do);

logic[7:0] mem [0:255];

always_ff @(posedge clk)

begin

if (wr)

mem[Addr] <= Di;

Do <= mem[Addr];

end

endmodule

26/43 SE204 Tarik Graba 2019/2020

Mémoire synchrone
mémoire simple port

un bus d’adresse
2 bus pour les données :

• écriture
• lecture

des signaux de contôle
une horloge
PAS DE RESET
On ne peut accéder qu’à un seul
élément dans le même cycle !

module sram(input clk, wr,

input [7:0] Addr,

input [7:0] Di,

output [7:0] Do);

logic[7:0] mem [0:255];

logic[7:0] Addr_r;

always_ff @(posedge clk)

begin

if (wr)

mem[Addr] <= Di;

Addr_r <= Addr;

end

assign Do = mem[Addr_r];

endmodule

26/43 SE204 Tarik Graba 2019/2020

Mémoire synchrone
mémoire double ports

permet un accès double
l’écriture et la lecture à la même
adresse dans le même cycle
n’est pas prédictible
pourrait avoir deux horloges

sram_dp

8

8

8

8 8

8

Addr1

Di1

Do1

wr1

clk

wr2

Do2

Di2

Addr2

27/43 SE204 Tarik Graba 2019/2020

Mémoire synchrone
mémoire double ports

permet un accès double
l’écriture et la lecture à la même
adresse dans le même cycle
n’est pas prédictible
pourrait avoir deux horloges

module sram_dp(input clk, wr1, wr2,

input [7:0] Addr1, Addr2,

input [7:0] Di1, Di2,

output logic [7:0] Do1, Do2);

logic[7:0] mem [0:255];

always_ff @(posedge clk)

begin

if (wr1)

mem[Addr1] <= Di1;

Do1 <= mem[Addr1];

end

always_ff @(posedge clk)

begin

if (wr2)

mem[Addr2] <= Di2;

Do2 <= mem[Addr2];

end

endmodule

27/43 SE204 Tarik Graba 2019/2020

Mémoire synchrone
Initialisation du contenu

Possible seulement pour les FPGA
initial est normalement
exclusivement réservé à la
simulation
$readmemh (ou $readmemb) permet
d’initialiser une table à partir d’un
fichier

module sram(input clk, wr,

input [7:0] Addr,

input [7:0] Di,

output logic [7:0] Do);

logic[7:0] mem [0:255];

initial

$readmemh("init.txt", mem);

always_ff @(posedge clk)

begin

if (wr)

mem[Addr] <= Di;

Do <= mem[Addr];

end

endmodule

28/43 SE204 Tarik Graba 2019/2020

Mémoire synchrone
ROM synchrone

Possible seulement pour les FPGA
il suffit d’enlever la possibilité
d’écrire

module rom (input clk,

input [7:0] Addr,

output logic [7:0] Do);

logic[7:0] mem [0:255];

initial

$readmemh("init.txt", mem);

always_ff @(posedge clk)

Do <= mem[Addr];

endmodule

29/43 SE204 Tarik Graba 2019/2020

Plan

Flot de développement FPGA

La synthèse

L’inférence

Modélisation et inférence des mémoires

Logique synchrone et FPGA

Annexes : Le CycloneII

30/43 SE204 Tarik Graba 2019/2020

Particularité des FPGA
La logique synchrone

LUT

dff

LUT

dff

Cellule Combinatoire Cellule Séquentielle

Les bascules sont une ressource ”gratuite” dans les FPGA.
On doit essayer de les utiliser au maximum.

• Faire du pipeline.
• Encodage des états OneHot

31/43 SE204 Tarik Graba 2019/2020

Exemple : Le retiming
Pipeline automatique

Le pipeline c’est quoi?

gF

32/43 SE204 Tarik Graba 2019/2020

Exemple : Le retiming
Pipeline automatique

Le pipeline c’est quoi?

f1

f2

f3 g

32/43 SE204 Tarik Graba 2019/2020

Exemple : Le retiming
Pipeline automatique

Le pipeline c’est quoi?

f1

f2

f3 g

32/43 SE204 Tarik Graba 2019/2020

Exemple : Le retiming
Pipeline automatique

Le pipeline c’est quoi?

f1

f2

f3 g

32/43 SE204 Tarik Graba 2019/2020

Exemple : Le retiming
Pipeline automatique

always_ff @(posedge clk)

begin

// Les registres d'entrées

R0 <= In0;

R1 <= In1;

// La fonction combinatoire

S0 <= f(R0,R1);

// registres de sortie

S1 <= S0;

S <= S1;

end

33/43 SE204 Tarik Graba 2019/2020

Exemple : Le retiming
Pipeline automatique

always_ff @(posedge clk)

begin

// Les registres d'entrées

R0 <= In0;

R1 <= In1;

// La fonction combinatoire

S0 <= f(R0,R1);

// registres de sortie

S1 <= S0;

S <= S1;

end

33/43 SE204 Tarik Graba 2019/2020

Plan

Flot de développement FPGA

La synthèse

L’inférence

Modélisation et inférence des mémoires

Logique synchrone et FPGA

Annexes : Le CycloneII

34/43 SE204 Tarik Graba 2019/2020

Ressources Disponnibles Dans un FPGA

La principale ressource disponible dans un FPGA est la
• Cellule Logique.
• Une Cellule logique contient une au moins 1 LUT + 1 DFF

Des blocs embarqués :
• des mémoires
• des multiplieurs/DSP
• des PLLs/ circuits d’horloges
• des I/O

35/43 SE204 Tarik Graba 2019/2020

Structure du Cyclone II

PLL PLLIOEs

PLL PLLIOEs

IOEs
Logic
Array

Logic
Array

Logic
Array

Logic
Array

IOEs

M4K BlockM4K Blocks

Embedded
Multipliers

36/43 SE204 Tarik Graba 2019/2020

Logic Area Block (LAB)
Organisation hiérarchique des cellules logiques

Direct link
interconnect
from adjacen
block

Direct link
interconnect
to adjacent
block

Row Interconnect

Column
Interconnect

Local InterconnectLAB

Direct link
interconnect
from adjacent
block

Direct link
interconnect
to adjacent
block

37/43 SE204 Tarik Graba 2019/2020

Logic Element

Une LUT à 4 entrées + Une bascule

38/43 SE204 Tarik Graba 2019/2020

Logic Element en mode arithmétique

Spécialement pour faire des additions/soustractions

39/43 SE204 Tarik Graba 2019/2020

Les Entrées/Sorties (IO)

Configurables
Contiennent des registres
Bidirectionnelles (3 états)

Output Register

Output

Input (1)

OE Register

OE

Input Register

Logic Array

40/43 SE204 Tarik Graba 2019/2020

Multiplieur
Multiplieur 18× 18
2 ultiplieurs 9× 9

CLRN

D Q

ENA

Data A

Data B

aclr

clock

ena

signa (1)
signb (1)

CLRN

D Q

ENA

CLRN

D Q

ENA
Data Out

Embedded Multiplier Block

Output
RegisterInput

Register

41/43 SE204 Tarik Graba 2019/2020

Mémoire embarquée

6

D

ENA

Q

D

ENA

Q

D

ENA

Q

data_a[]

 address_a[]

Memory Block
256 × 16 (2)

512 × 8
1,024 × 4
2,048 × 2
4,096 × 1

Data In

Address A

Write/Read
Enable

Data Out

Data In

Address B

Write/Read
Enable

Data Out

enable_a

clock_a

D

ENA

Q

wren_a

6 LAB Row Clocks

q_a[]

6

data_b[]

address_b[]

q_b[]

ENA

A B

ENA

DQ

ENA

DQ

ENA
DQ

DQ

D

ENA

Qbyteena_a[] Byte Enable A Byte Enable B byteena_b[]

ENA

DQ

Write
Pulse

Generator

Write
Pulse

Generator

wren_b

enable_b

clock_b

addressstall_a Address Clock
Enable A

Address Clock
addressstall_b

Enable B

42/43 SE204 Tarik Graba 2019/2020

PLL

PFD
Loop
Filter

Lock Detect
& Filter

VCO
Charge
Pump

÷c0

÷c1

÷c2

÷m

÷n

Global
Clock

Global
Clock

Global
Clock

To I/O or
general routing

PLL<#>_OUT

Post-Scale
Counters

VCO Phase Selection
Selectable at Each
PLL Output Port

CLK1

CLK3

CLK2 (1)

CLK0 (1)

inclk0

inclk1

up

down

8

8

8

fVCO

fFB

fIN

Reference
Input Clock
fREF= fIN /n

(2)

Manual Clock
Switchover

Select Signal

÷k

(3)

43/43 SE204 Tarik Graba 2019/2020

	Flot de développement FPGA
	La synthèse
	L'inférence
	Modélisation et inférence des mémoires
	Logique synchrone et FPGA
	Annexes: Le CycloneII

