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1
Introduction

Ce support comprend des exemples de problemes accompagnés d'une correction et de commentaires. Attention, dans
la plupart des situations, il n’y pas une solution unique au probléme, ainsi il peut exister des solutions plus élégantes,
plus lourdes ou plus légeres a celles proposées mais toutes exactes... Enfin, pour améliorer la compréhension, les
chapitres du cours concernés par la résolution du probleme sont référencés.






2
Analyse et mise au gotit du jour d"un vieux vieux schéma

2.1 Enoncé du probleme

Votre chef a retrouvé un vieux schéma montré en figure 2.1. Il désire en réaliser une nouvelle version.
Pour cela vous devez utiliser le langage SystemVerilog. Les bascules du schéma sont supposées étre mises
a 0 au moment de la réinitialisation.

A1 AO FIGURE 2.1: Vieux schéma
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Question 1 : Ecrivez (sans astuces...) le code SystemVerilog correspondant au schéma. Le code doit étre
complet de I'entéte de module, a la fin de module.

Question 2 : Montrez que le couple de signaux C;Cy ne peut jamais atteindre la valeur 11.

Vous montrez votre code a votre chef, il n’est pas content, il n'y comprend rien. Il vous propose alors
la méthode suivante :

— Considérer les entrées A; et Ag comme le codage binaire sur 2 bits d’'un nombre nommé A

— Considérer que les signaux C; et Cy comme le codage binaire d'un état C dont les valeurs symboliques
seront nommées So pour le code 00, St pour 01, S2 pour 16.

Question 3 : Quand C est dans I'état So, pour quelle(s) valeur(s) de A peut on changer d’état, et pour
aller vers quel(s) état(s) futur(s)?

Question 4 : Quand C est dans I'état S1, pour quelle(s) valeur(s) de A peut on changer d’état, et pour
aller vers quel(s) état(s) futur(s)?
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Question 5 : Quand C est dans I'état Sz, pour quelles(s) valeur(s) de A peut on changer d’état, et pour
aller vers quel(s) état(s) futur(s)?

Question 6 : En déduire un graphe d’états correspondant au circuit (sans oublier d’indiquer la valeur du
signal OK dans chacun des états).

Question 7 : En déduire un code SystemVerilog équivalent au schéma, plus "compréhensible” pour un
étre humain et ne faisant pas usage d’équations booléennes.

2.2 Proposition de correction

Question 1 :
L'analyse du schéma est la suivante :

— Les entrées du schéma sont les signaux A9, AL, clk et rst_n." 1. Voir SystemVerilog A.2 (page 87)
— Le schéma contient deux portes ET. 2 2. Voir les portes élémentaires 1.2.2
. . . . (page 7)
— Certaines entrées des portes ET sont inversées. 3 4 .
3. Dans un schéma, le petit cercle sert
— Le schéma contient deux bascules D avec réinitialisation asyn- ?indiqu)er Yinversion d'un signal 1.2.1
- s 14 . . p age
chrone active a 1’état bas connectées au signal d’horloge clk et au bage 7
signal de réinitialisation rst_n 4 4. Voir l'initialisation des bascules 2.3.4
(page 31)

— Le schéma contient les signaux internes F0, F1, Co, C1

— Le signal de sortie OK est simplement connecté a C1
Cela conduit a une traduction directe dans le code 2.1.

Question 2 :

Raisonnons par 1’absurde. Supposons qu’au cycle courant le couple (€1,C0) ait la valeur (1,1). Cela
implique qu’au cycle précédent le couple (F1,F@) était égal a (1,1). Ce n’est pas possible car les deux
portes AND admettent respectivement Al et !Al comme entrées.

Question 3 :
Dans l'état S0 le signal €0 vaut 0 ce qui force le signal F1 & 0. Les deux seuls état futurs ne peuvent
dont étre que S0 ou S1. Le choix est déterminé par la valeur de A. En résumé :

— Sil’état courant est SO et A est différent de 2'b11 alors 1’état est conservé.
— Si I'état courant est S0 et A est égal a 2'b11 alors 1’état futur est S1.
Question 4 :

Dans 1’état S1 le signal €@ vaut 1 ce qui force le signal F@ a 0. Les deux seuls état futurs ne peuvent
dont étre que S0 ou S2. Le choix est déterminé par la valeur de A. En résumé :

— Si I’état courant est S1 et A est différent de 2'b01 alors I'état est conservé.
— Si I'état courant est S1 et A est égal a 2'b01 alors 1’état futur est S2.
Question 5 :

Dans 1’état S2 le signal €0 vaut @ ce qui force le signal F1 a 8. De méme, le signal €1 vaut 1 ce qui force
le signal F@ a .

— Si I'état courant est S2 le seul état futur possible est S0

Question 6 :

0K=0
Le graphe demandé pourrait étre réalisé de la facon suivante : A= 2”’

— On ne représente dans ce graphe que les changements d’état et

les conditions associées.

FIGURE 2.2: Proposition de graphe

A =2'b01
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— On entoure d'un double cercle I'état a I'initialisation (sous 1’action
du signal rst_n

Remarquez la transition sans condition entre 1'état S2 et 1’état S0 :
L’automate étant synchrone, il reste dans 1’état S2 pendant exacte-
ment un cycle d’horloge.

Question 7 :
— Nous pouvons utiliser un vecteur de bits pour représenter A.>

— Nous pouvons utiliser un type énuméré pour représenter 1'état
c.b

Cela conduit au code 2.2. Dans ce code, nous n’avons pas pris la
peine de coder explicitement un état futur (qui correspond aux si-
gnaux FO et F1. Cela permet de réduire le codage de 1’enchainement
d’états a un seul processus synchrone.

Commentaires :

Nous pouvons maintenant interpréter ce que fait ce bloc de trai-
tement : Apres initialisation, il est en attente de l’arrivée d'un code
2'bll sur I'entrée A, suivie immédiatement (au cycle suivant) par un
code 2'b01. Si cette séquence est détectée, il génére une impulsion
d’une durée de 1 cycle sur la sortie OK.

5. Voir SystemVerilog A.g (page 92)

6. Voir Unités de Controle 3.2.1 (page 43)
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module vieux_module( // L'entéte de module
input logic clk,
input logic rst_n,
input logic A0,
input logic Al,
output logic OK
)

logic FO, F1, CO, C1 ; // Les signaux internes du module
always @(*) F1 <= A@ & !'Al & CO ; // La porte AND générant le signal F1
always @(*) FO <= A®@ & A1 & !CO & !C1 ; // La porte AND générant le signal FO
always @(posedge clk or negedge rst_n) // La bascule D générant le signal F1
if(!rst_n) C1 <= 1'b0O ;
else Cl1 <= F1 ;
always @(posedge clk or negedge rst_n) // La bascule D générant le signal FO
if(!rst_n) CO <= 1'b0O ;
else CO <= FO ;

always @(*) OK <= C1 ; // La connection de OK au signal C1

endmodule

CoDE 2.1: Réponse a la question 1
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// L'entéte de module avec les déclarations d'entrées/sorties
module nouveau_module(

input logic clk,

input logic rst_n,

input logic [1:0] A,

output logic OK

)
// Le registre d'états est décrit sous forme de type énuméré.
enum logic [1:0] {S0,S1,S2} C ;

//
always @(posedge clk or negedge rst_n)
if(!rst_n)
C <= 50 ;
else
case (C)
SO: if (A==2'bll) C <= S1 else C <= SO ;
S1: if (A==2'b0Ol) C <= S2 else C <= SO ;
S2: C <= S0 ;
default :; // ce cas n'est jamais atteint.
endcase

// Le calcul de OK en fonction de l'état des registres
always @(x*)

0K <= (C == S2) ;
endmodule

CoDE 2.2: Réponse a la question 7






3
Vitesse d’une balle de tennis

3.1 Enoncé du probleme

Nous voulons concevoir un systéme qui permet de mesurer la vitesse d’une balle de tennis lors de son
passage entre deux portiques. Les portiques contiennent un systeme optique composé d'un émetteur et
d’un récepteur de lumiére infrarouge (non visible). A son passage, la balle coupe le faisceau lumineux et
une impulsion électrique est générée au niveau de chaque portique (un signal passe a 1 puis redescend a
0).

Pour mesurer la vitesse de la balle, nous devons mesurer le temps entre les impulsions générées au
niveau de chaque portique. La distance entre les portiques étant connue, il suffira par la suite de faire une
simple division (non demandée ici).

Dimensionnement du systeme

Les deux portiques sont situés a 10 meétres 1'un de l'autre. Les balles de tennis ont un diametre de 1ocm
et se déplacent a une vitesse qui varie entre 3,6km/h et 360km/h. Le systeme de traitement réalisé en
logique synchrone dispose d'une horloge clk.

Pour étre stir de détecter le passage de la balle, I'impulsion générée par le récepteur du portique doit
durer au moins deux périodes de I'horloge clk.
Question 1 : A laquelle des fréquences suivantes doit-on faire fonctionner notre systéme ?
— 10 Hz
— 1 KHz
— 100 KHz

Le temps de vol de la balle entre les deux portiques sera mesuré comme un multiple de la période de
I'horloge clk.

Question 2 : Sur combien de bits faut—il compter pour mesurer le temps de vol pour toutes les vitesses
prévues?
Mise en forme des impulsions

La durée des impulsions (pulse) au niveau des portiques dépend de la taille de la balle et de la vitesse a
laquelle elle passe. Pour simplifier la suite nous voulons générer a chaque passage de balle une impulsion
(top) dont la durée est d'une seule période de 1'horloge.

clk

pulse
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Question 3 : Proposez le schéma ou le code SystemVerilog d'un systeme générant un top d’un cycle
d’horloge a chaque passage de balle.

Calcul du temps de vol

Considérant que nous avons maintenant des tops d’un cycle d’horloge, nous voulons mesurer le temps
de vol entre les deux portiques.

Question 4 : Proposez le schéma d’un systéeme permettant de compter le nombre de cycles d’horloge entre
les deux impulsions générées au niveau de chaque portique.

Question 5 : Donnez le code SystemVerilog correspondant.

3.2 Proposition de correction

Question 1 :

La durée de I'impulsion générée par le récepteur du portique correspond au temps pendant lequel la
balle coupe le faisceau lumineux. Elle dépend donc de la vitesse de la balle V et de son diametre Dy,;,.
La durée t,,;, minimale correspond a la vitesse maximale de la balle V};5y. On obtient :

¢ _ Deatte
min Vmgx
L'impulsion devant durer au minimum 2 périodes de 1'horloge clk du systéme, nous en déduisons la
contrainte sur la période d’horloge Tclk :

Dpan
Tclk < ——vatle
¢ T 2 X Vipax

D’ott une fréquence d’horloge minimale Fclky,;, :

2 X Viax

FClkmin = Db I
alle

L'application numérique donne Fclk,,;, = 2kHz.
Compte tenu du choix proposé, la seule solution possible est Fclk = 100kHz.

Question 2 :

L’énoncé nous invite a utiliser un compteur synchrone (voir 2.5.2 page 36) pour mesurer le temps (c’est
a dire un nomvre de périodes d’horloge). La taille (nombre de bits) du compteur doit étre suffisante pour
mesurer le temps de vol de la balle la plus lente. Si on appelle V,,;,, la vitesse minimale de la balle et
Dportiques 1a distance entre les deux portiques. Alors le temps de vol maximum Tv0lyx est :

D portique

Tvolmax — V -
min

Le nombre de cycles d’horloge minimum Nbcycles,,;, nécessaires a la mesure de ce temps de vol est :

D .
Nbeyeles iy = Felk x —£ome

min
L’application numérique donne Nbcycles,,;, = 10°. Il faut donc réaliser un compteur pouvant compter

au moins 1 million de cycles.

— Un compteur binaire de largeur N bits permet de compter de la valeur 0 a la valeur 2N — 1.

— Il nous faut donc N > logy (Nbcycles,,,,) (log, étant le logarithme en base 2).
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— L’application numérique donne N > 19.93, soit N = 20.
— Pour éviter de calculer explicitement un logy on aurait pu se souvenir de 2!° = 1024 ce qui induit
naturellement le résultat N = 20...
Question 3 :
Il s’agit d"un probléme classique de détection du passage de 0 a 1 d'un signal qui n’est pas une horloge.
La réponse se trouve dans le cours, annexe C.8, page 117.
Question 4 :
On peut résoudre le probleme de la fagon suivante :

1. Un détecteur de passage de 0 a 1 placé au niveau du premier portique géneére un signal start durant
exactement un cycle d’horloge.

2. Un détecteur de passage de 0 a 1 placé au niveau du deuxiéme portique génére un signal stop durant
exactement un cycle d’horloge.

3. Un compteur 20 bits est mis a zéro et autorisé a compter lorsque start vaut 1.
4. Le compteur 20 bits est arrété lorsque stop vaut 1.

Nous pouvons créer un signal intermédiaire enable permettant d’autoriser I'incrémentation du comp-
teur. Le comportement du signal enable est le suivant :

1. Enable est initialisé a 0.
2. Enable passe a 1 lorsque start vaut 1.
3. Enable repasse a 0 lorsque stop vaut 1.

Le schéma suivant permet d’obtenir ce comportement. La méthode d’initialisation de la bascule D n’est
pas indiquée, mais le 8 en haut a droite signifie qu’elle devra étre initialisée a 0 :

start T:E::>}__i:::}— 0 enable

stop

JA

FIGURE 3.1: Génération d'un signal
d’autorisation de comptage
Le schéma suivant propose une implémentation du compteur proprement dit. Il est réinitialisé de

maniére synchrone par le signal start. Le comptage s’effectue lorsque enable est actif. Les traits en gras
représentent le signal de 20 bits correspondant au signal compteur et au calcul de sa valeur future. Le
schéma mélange arithmétique booléenne et arithmétique : additionner 1 a compteur lorsque le signal
enable vaut 1 revient a additionner enable...

20 5 20
enable :::}— compteur
start F:

Question 5 :

FIGURE 3.2: Le compteur proprement
dit

Le schéma étant déja réalisé, le code SystemVerilog en est une simple traduction. Nous n’avons pas
précisé dans les schémas précédents les méthodes d’initialisation des registre, nous choisissons arbitrai-
rement une initialisation asynchrone sur un signal reset_n actif a 1’état bas.

Notez, dans le code proposé, la déclaration du registre compteur de 20 bits.
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module nouveau_module(
input logic clk,
input logic reset_n,
input logic start,
input logic stop,
output logic [19:0] compteur ;
)

logic enable ;

// Code pour la génération du signal enable
always @(posedge clk or negedge reset_n)
if(!reset_n)
enable <= 1'b0 ;
else
if(stop)
enable <= 1'b0;
else
if(start)
enable <= 1'bl ;

// Code du compteur
always @(posedge clk or negedge reset_n)
if(!reset_n)
compteur <= 20'd0 ;
else
if(start)
compteur <= 20'd0 ;
else if (enable)
compteur <= compteur + 1'bl ;
endmodule

CoDE 3.1: Réponse a la question 5



1
Oit le lecteur découvre la Rétroconception

4.1 Enoncé du probleme

La rétroconception (ou reverse-engineering) n’est pas la conception a la mode antique, mais I’analyse de
la conception d’autres ingénieurs ou scientifiques de maniere & comprendre, copier et éventuellement
améliorer un dispositif existant.

Vous disposez du code SystemVerilog de 'opérateur F1 suivant, qui est manifestement en logique
synchrone...

module F1( input Tlogic clk,debut,valide,
input Tlogic [3:0] A,B,
output logic [7:0] S
)i
always @(posedge clk)
if(debut) S <= 8'b0 ;
else if(valide)
S<=Ax*xB+S ;
endmodule

CODE 4.1: code du module F1

Question 1 : Complétez le chronogramme correspondant au test de la fonction F1. Vous indiquerez pré-
cisément, a chaque cycle, la valeur de la sortie S. Expliquez le traitement effectué par la fonction.

CLK | | | | | | | |

A 4 X 10

Question 2 : Vous disposez d'une variante F2 du code SystemVerilog de l'opérateur. L'opérateur F2
réalise—t—il le méme calcul que l'opérateur F1? Justifiez votre réponse qu’elle soit positive ou négative.

Question 3 : Vous disposez d'une variante F3 du code SystemVerilog de 1'opérateur. L'opérateur F3
réalise-t—il le méme calcul que 1'un des opérateurs F1 ou F2? Justifiez votre réponse.
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Question 4 : Nous désirons choisir, parmi F1 F2 ou F3, l'opérateur pouvant fonctionner a la fréquence
d’horloge la plus élevée (indépendamment la fonction réalisée). Quel opérateur choisissez vous ? Justifiez
votre réponse.

module F2( input logic clk, debut, valide,
input Tlogic [3:0] A,B,
output logic [7:0] S
)i
logic [7:0] P ;
always @(posedge clk)
if(debut) S <= 8'b0 ;
else if(valide) begin

P <=A=x*xB;
S<=P+5S5;
end
endmodule

CODE 4.2: code du module F2

module F3( input logic clk, debut, valide,
input logic [3:0] A,B,
output logic [7:0] S
)i
logic [7:0] P,X;

always @( = ) P <= A x B ;

always @( = ) begin

if(debut) X <= 8'b0 ;

else if(valide) X <= P + S ;

else X <=5 ;
end

always @(posedge clk) S <= X ;

endmodule

CODE 4.3: code du module F3

4.2 Proposition de correction

Question 1 :

Le signal S est affecté dans un processus (always) synchrone du front montant (posedge) de 'horloge
clk. Il faut examiner I'état des entrées A, B, debut et valide au moment du front montant de clk pour
déterminer la nouvelle valeur de S apres le front montant. La nouvelle valeur de S est simplement la
somme de la valeur courante de S avec le produit de A et de B si le signal valide est actif. Enfin, ne pas
oublier que dans un processus synchrone, la conservation de la valeur est implicite : il n’est pas nécessaire
d’indiquer ce qui se passe lorsque debut et valide sont nuls.
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Attention :

— Le dispositif n’étant pas initialisé, au début du chronogramme nous ne connaissons pas la la valeur
de S, c’est la raison pour laquelle la valeur indiquée est X jusqu’au moment ou le signal debut devient
actif.

— Le signal S étant codé sur 8 bits, le calcul se fait modulo 255.

CLK | | | | | | | |
A 4 X 10
B 12 X 1

X
X
—
_/

debut | /
valide _\_ \_J \__
S X 0 16 80 49 104
Question 2 :

Pour comprendre les éventuelles différences entre F1 et Fz il faut se souvenir que tout signal affecté
par 'opérateur "<=" dans un processus synchrone est implanté matériellement sous forme de registres. Le
signal P nouvellement introduit a donc un retard d’un cycle par rapport aux signaux d’entrée A et B. Le
signal S aura, en conséquence un retard de 2 cycles par rapport aux entrées A et B.

Le code F2 ne donne donc pas le méme résultat que le code Fi.

Pour mieux comprendre, nous pouvons reprendre le chronogramme en introduisant le signal P. Pour
la création d"un tel chronogramme, la bonne méthode consiste a d’abord construire le signal P sur toute
sa durée, puis construire le signal S.

CLK | | | | | | | |
A 4 X 10
B 12 X 1

X
X
—
_/

debut | /
valide _\_ ] (.
P X 16 64 225 0 55
S X 0 48 80 144 113
Question 3 :

Le code F3 est totalement équivalent au code Fi.

Le calcul combinatoire "A*B + S" a simplement été extrait du processus synchrone et encodé sous la
forme de 2 processus combinatoires explicites, le premier calculant le produit et le second 'accumulation
I'accumulation.

Le signal X représente la valeur future (au prochain cycle d’horloge de S.

Remarquez que l'on est obligé dans ce style d’écriture de coder la totalité des situations possibles
(dont le maintien de la valeur courante par le bloc "else X <= §") pour garantir que processus est bien
combinatoire.

Question 4 :
Les implémentations F1 et F3 sont équivalentes.
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L'implémentation F2 décompose le calcul en deux étapes (2 cycles), le premier cycle étant consacré au
calcul du produit et le deuxiéme cycle étant consacré a I’accumulation.

Ainsi les chemins combinatoires de I'implémentation F2 seront temporellement plus courts que ceux
des deux autres implémentations.

La fréquence d’horloge de I'implémentation F2 pourra donc étre plus élevée.

Ce type de structure, ainsi que I'amélioration de performance obtenue est décrite dans le chapitre 2.5.3

du polycopié (page 38).



5
Amélioration du nanoprocesseur

Pour résoudre ce probleme, il faut maitriser l'ensemble du cours sur la logique combinatoire, la logique séquentielle
et évidemment le cours sur le nanoprocesseur (Voir poly chapitre 4, page 47), ainsi que le TP associé.

5.1 Enoncé du probleme

Tel que proposé en cours et en TP, le nanoprocesseur manque de fonctionnalités essentielles. Il est, par
exemple, difficile de structurer le code en fonctions et sous-programmes.

Nous désirons ajouter deux instructions au nanoprocesseur :

— JSR: pour "Jump to SubRoutine". Son argument est I’adresse en mémoire du début du sous-programme
appelé.
— RTS : pour "ReTurn from Subroutine". Son argument est ignoré

— Ces instructions sont des instructions de saut au méme titre que les instructions JMP, JNZ et JNC.

Nous rappelons que le microprocesseur est piloté par un automate en 3 cycles nommés IF, AF et EX
pour "Instruction Fetch", "Address Fetch" et "Execute".

Vous trouverez, figure 5.1, un schéma du nanoprocesseur. Enfin les codes du compteur de programme
et du contrdleur de base sont rappelés en codes 5.1 et code 5.2.

Cope 5.1: Code de base du PC. Seul le
code utile est indiqué

always @(posedge clk or negedge reset_n)
if(!reset_n)
PC <= 0 ;
else
if(Load_PC)
PC <= Q ;
else
PC <= PC + Inc_PC ;
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CopE 5.2: Code de base du contrdleur.

always @(*)
begin

Seul le code utile est indiqué

Inc_PC <= (Etat == IF) || (Etat == AF) ;

Load_PC <= (Etat == AF) && ((I == JMP || (I==INC && 'C) || (I==INZ && 'Z)) ;
Load_Add <= (Etat == AF) ;

Sel_Add <= (Etat == EX) ;

Load_I <= (Etat == IF) ;

> Sel_Add
= Load_1I
— Load_AZC

Load_AZC <= ...
WRITE <= (Etat == EX) && (I == STA) ;
end
}» 77777777777777777777777777777777777777777 ‘: FIGURE 5.1: Schéma du nanoprocesseur
1 Inc_PC Sel_Add
! — :
i Load_PC PC |
| o " ADDR[7:0]
| Load_Add }
! — -
3 Load_I . |
. ! —] |

Q[7:0] : -~ I :
| I |
| Load_AZC |
3 i . D[7:0]
3 Acc | >
| z
3 C :
| = Inc_PC 3
| |~ load PC
| - > Load_Add !
i CTRL }
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5.1.1  Une approche simpliste

Nous limitons 1’appel de sous-programme a un seul niveau (seul le programme principal peut appeler
un sous-programme).

L'exécution de JSR doit réaliser les actions suivantes :

— Sauvegarder dans le nanoprocesseur 'adresse de retour, c’est a dire 1’adresse de l'instruction suivant
I'instruction courante.

— Forcer le nanoprocesseur a se brancher a 1’adresse du sous-programme comme dans le cas d'un JMP.

L’exécution de RTS doit réaliser les actions suivantes :

— Forcer le nanoprocesseur a se brancher a I'adresse d’instruction précédemment sauvegardée par l'ins-
truction JSR.

Question 1 : Proposez une modification du schéma, et une modification des codes permettant d’implé-
menter les instructions JSR et RTS.

5.1.2  Une approche plus générale (BONUS)

Pour pouvoir généraliser les appels de sous-programmes (appels imbriqués), la méthode précédente
nécessite de multiplier les registres dans le micro-processeur. Une méthode plus générique consiste a
sauver I'adresse de retour de sous-programme dans la mémoire externe, et de ne conserver en interne
que la position dans la mémoire de cette adresse de retour.

Pour cela nous ajoutons au nanoprocesseur un registre spécifique appelé "pointeur de pile" ou SP pour
"stack pointer". Nous utiliserons les adresses "hautes" de la mémoire pour stocker les adresses de retour.

La gestion de SP en relation avec JSR et RTS est la suivante :

— A l'initialisation SP est forcé a la valeur maximale des adresses en mémoire : 255.

— A chaque exécution de JSR :

— L’adresse de retour de sous programme est stockée en mémoire a 1’adresse pointée par SP

— SP est décrémenté de 1 (pour anticiper le stockage d'une éventuelle nouvelle adresse de retour...)
— A chaque exécution de RTS,

— SP est incrémenté de 1 (pour revenir dans 1’état avant ’appel du sous-programme)

— Le nanoprocesseur récupere la donnée pointée par SP : I'adresse de retour.

Nous ne chercherons pas a gérer les cas limites (trop d’appels imbriqués pour la taille de la mémoire,
RTS sans JSR préalable...).

Question 2 : Proposez une modification du schéma, et une modification du code permettant d’implémen-
ter les instructions JSR et RTS.
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5.2 Proposition de correction

Question 1 :
L’éxécution du saut proprement dit par l'instruction JSR est similaire aux autres sauts : il suffit donc
de modifier le calcul du signal Load_PC dans le controleur. La nouvelle équation devient :

Load_PC <= (Etat == AF) && (I == JMP)||(i==INC && !C)||(I==INZ && 'Z)||(I=JSR)) ;

Il faut sauvegarder l’adresse de retour (’adresse de l'instruction suivant l'instruction courante). Pour
cela nous ajoutons un nouveau signal de controle nommé Push_PC a la sortie du controleur. Ce signal sera
utilisé en entrée du bloc en charge de calcul du PC et sera calculé pendant le cycle AF comme Load_PC.

Push_PC <= (Etat == AF) && (I=JSR) ;
Le code 5.3 est une proposition de modification du PC. Nous ajoutons un registre de sauvegarde RPC

qui est chargé si Push_PC est actif. Ainsi RPC prend la valeur qu’aurait du prendre le PC si le programme
avait continué en séquence.

output logic [7:0] RPC ;

always @(posedge clk or negedge reset_n)

if(!reset_n) begin

PC <= 0 ;

RPC <= 0 ;
end else begin

if (Push_PC) RPC <= PC + Inc_PC ;

if(Load_PC) PC <= Q else PC <= PC + Inc_PC ;
end

CopE 5.3: Introduction du registre RPC

L'instruction RTS, est encore dans un cas similaire a une instruction de type JMP, mais il faut cette fois

utiliser la valeur courante du registre RPC pour effectuer le saut. Cela signifie une nouvelle modification
du signal Load_PC :

Load_PC <= (Etat == AF) && ((I == JMP)||(i==INC && !C)||(I==INZ && !Z)||(I==JSR)||(I==RTS));

Enfin, il faut forcer le bloc PC a récupérer 1’adresse de retour. Pour cela nous introduisons un signal
Pop_PC dans le contrdleur :

Pop_PC <= (Etat == AF) && (I=RTS) ;

Le code 5.4 est une proposition de modification du PC. En fonction de la valeur du signal Pop_PC un
choix est fait entre Q (cas des instructions de type JMP ou JSR) et RPC (cas de l'instruction RTS).
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logic [7:0] RPC ;
always @(posedge clk or negedge reset_n)
if(!reset_n) begin
PC <= 0 ;
RPC <= 0 ;
end
else begin
if(Push_PC) RPC <= PC + Inc_PC ;
if(Load_PC) begin
if(Pop_PC) PC <= RPC ;

else PC <= Q ;
end
else PC <= PC + Inc_PC ;
end

CoDE 5.4: Code du PC avec JSR et RTS
implémentés
Question 2 :
Pour établir le code, il est utile de bien associer les actions a réaliser a chaque état de ’automate du
nanoprocesseur.

Cas de JSR :
— IF : Exécution classique. (récupération de l'instruction)

— AF : Exécution classique pour un saut : Load_pc=1 en méme temps nous sauvegardons la valeur
incrémentée de PC dans RPC

— EX: Nous sauvons en mémoire (write=1) la valeur de RPC (capturée au cycle AF) a I’adresse SP, et nous
décrémentons SP (Push_PC=1).

Cas de RTS :
— IF : exécution classique. (récupération de l'instruction)
— AF : Nous incrémentons SP (Pop_PC=1)

— EX : Nous lisons (write=0) la valeur en mémoire a l’adresse SP et nous la placons dans le PC
(Load_pc=1) pour exécuter le saut.

Les nouvelles équations pour les signaux de contrdle sont :

Load_PC <= ((Etat == AF) && ((I == JMP)||(i==INC && !C)||(I==INZ && !'Z)||(I==3SR)) ||
((Etat == EX) && (I==RTS));

Push_PC <= (Etat == EX) && (I=JSR) ;

Pop_PC <= (Etat == AF) && (I=RTS) ;
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Nous supposons que nous disposons d’un nouveau bloc SP chargé de gérer le pointeur de pile. Ce bloc
est un bloc synchrone qui utilise les signaux Push_PC et Pop_PC.

logic [7:0] SP ;
always @(posedge clk or negedge reset_n)
if(!reset_n) begin

SP <= 255 ;
end
else begin

if (Push_PC) SP <= SP - 1;
if(Pop_PC) SP <= SP + 1;
end

CopE 5.5: Code du bloc SP

Le code de gestion du PC est a nouveau amendé : Le registre RPC ne sert qu’a préparer la future
sauvegarde du PC dans la mémoire.

logic [7:0] RPC ;
always @(posedge clk or negedge reset_n)
if(!reset_n) begin
PC <= 0 ;
RPC <= 0 ;
end
else begin
if(Load_PC) begin
PC <= Q ;
RPC <= PC + Inc_PC
end
else PC <= PC + Inc_PC ;
end

CopE 5.6: Code du PC ajusté pour sau-
vegarder le PC dans RPC.

Enfin il faut mettre en place les multiplexeurs commandés par un nouveau signal de contréle Sel_SP
permettant de :

— gérer la sauvegarde de RPC en mémoire dans l'instruction JSR,
— relire I'adresse de retour en mémoire pour l'instruction RTS.
Sel_SP <= (Etat == EX) && (I==JSR || I==RTS) ;

Cela abouti au schéma de la figure 5.2.
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ADDR[7:0]

FIGURE 5.2: Schéma du nanoprocesseur
modifié






6
Techniques basse consommation

La résolution de ce probleme, nécessite la compréhension des chapitres sur la logique syncrhone, le pipeline, ainsi que
le chapitre 5 consacré a la logique CMOS.

6.1  Enoncé du probleme

L’objectif de cet exercice est d’explorer des techniques architecturales permettant de réduire la consom-
mation des circuits intégrés. Nous disposons d"une fonction de calcul combinatoire F pour laquelle nous
connaissons :

— Le temps de calcul T, en fonction de la tension d’alimentation Vj; (voir figure 6.3)
— L’énergie consommeée par calcul E ;. en fonction de la tension d’alimentation Vj; (voir figure 6.4)

Puissance consommeée par un opérateur de calcul est égale au produit de sa fréquence de fonctionne-
ment F.;;. par I’énergie consommeée a chaque calcul :

- Pculc = Legle * Eculc

6.1.1 Analyse d’une structure synchrone utilisant la fonction F

La figure 6.1 présente une utilisation de la fonction F dans un environnement synchrone. La structure
recoit une suite de valeurs Ag,Aj,... et doit générer une suite de valeurs F(Ap), F(A1),...

FIGURE 6.1: Architecture synchrone

AR Y YR

A— D Q

clk — clk —

Question 1 : Complétez le chronogramme de la figure 6.7.

Question 2 : En négligeant le temps de propagation des bascules, déterminez la tension d’alimentation
minimale V¢ permettant de faire fonctionner cette structure avec une horloge CLK de fréquence F,r =
1GHz.

Question 3 : En négligeant la consommation des bascules, déterminez la puissance consommeée par cette
structure pour la tension V. et la fréquence F,.r. N'oubliez pas de préciser les unités...

6.1.2  Analyse d'une structure synchrone parallélisée

La figure 6.2 présente une version parallélisée de I’architecture précédente, dans laquelle nous dédou-
blons la fonction F.
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FIGURE 6.2: Architecture synchrone pa-

(:)< rallele

clk —

YO

ARO

+ EN YR
clk —

AR1 Y1

EN

Question 4 : Complétez le chronogramme de la figure 6.6. N'oubliez pas la génération du signal EN.

Question 5 : Expliquez le fonctionnement de cette structure.

Question 6 : Pendant combien de périodes de I'horloge CLK chacune des données A; est elle maintenue
en entrée de 1'une ou l'autre des fonctions F? De combien de temps dispose-t-on pour le calcul de chaque
F(A;) sachant que l'horloge a une fréquence F,r = 1GHz? (on négligera le temps de propagation dans
les multiplexeurs).

Question 7 : Compte tenu du nouveau temps de calcul disponible, montrez qu'il est possible de diminuer
la tension d’alimentation du montage tout en fixant la fréquence F,r a 1GHz. Déterminez la tension
d’alimentation minimale V,,,;,, permettant de conserver cet fréquence de 1GHz.

Question 8 : En déduire I'énergie E,,;;, consommée par la fonction F & la tension V,;,,. Puis la puissance
totale consommée par la structure paralléle. N'oubliez pas la encore de préciser les unités.

Question 9 : Nous avons utilisé une technique de parallélisme pour diminuer la consommation d’une
structure de calcul synchrone. Pensez vous qu’une technique de pipeline (pipeline de la fonction F en deux
sous-fonctions F1 et F2 de temps de calcul T,;./2) permettrait d’obtenir un résultat similaire ? Expliquez.



Tealc(s)

Ecalc(J)

9e-09
8e-09
7e-09
6e-09

5e-09

4e-09
3.6e-09
3.2e-09

2.8e-09
2.4e-09

2e-09
1.8e-09
1.6e-09

1.4e-09
1.2e-09

le-09
9e-10
8e-10
7e-10

1.8e-10

1.6e-10

1.4e-10

1.2e-10

le-10

8e-11

6e-11

4e-11

2e-11

TECHNIQUES BASSE CONSOMMATION 31

F1GURE 6.3: Temps de calcul de la fonc-
tion F

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
Vdd(V0|tS)

1 105 11 1.15 1.2 1.25 1.3

FIGURE 6.4: Energie consommée par cal-
cul de la fonction F
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Vgqg(volts)
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Ficure 6.5: Chronogramme de fonc-
tionnement de la structure synchrone
(Question 1)

FiGURe 6.6: Chronogramme de fonc-
tionnement de la structure parallele
synchrone (Question 4)

CLK

[




TECHNIQUES BASSE CONSOMMATION 33

6.2 Proposition de correction

Question 1 :

Le signal AR est la sortie d"une bascule D, il prend donc la valeur de A apres chaque front montant
de I'horloge. Le signal Y est la sortie d'un calcul combinatoire fonction de AR, il changera a chaque
changement de AR avec un retard du au temps de calcul de F. Pendant ce temps de calcul, sa valeur n’est
pas stable. Enfin le signal YR est la sortie d’une bascule D, il prend donc la valeur de Y apres chaque
front montant de I’horloge. Evidemment cela ne foncionne que si le temps de calcul de F est inférieur a la
période de 'horloge.

Ficure 6.7: Chronogramme de fonc-
tionnement de la structure synchrone
(Question 1)

CLK | | | | | LT | |
A DX Xw X XCm X w X 7w X X X
AR A0 Al A2 A3 A 4

v F(AD) FAN) FA?) F(AD) FAl) F(A@.( X
YR F(A0) FAT) FA2) FA3) oo X Fe
Question 2 :

Pour que la structure fonctionne a au moins 1GHz, il faut que le temps de calcul de la fonction F soit
inférieure a 1ns. En examinant la figure 6.3, nous en déduisons une tension d’alimentation minimale de
Vier = 12V

Question 3 :

En examinant la figure 6.4, nous pouvons déterminer I'énergie utilisée par la fonction F & chaque calcul
pour la tension Vyer : Ejop = 1.5 X 107197

I suffit de multiplier par la fréquence de fonctionnement pour obtenir la puissance consommée :
Pref = Fref % Erer = 0.15W
Question 4 :

Avant de construire le chronogramme, on peut observer que le schéma repose sur 'utilisation du signal
EN. La structure de génération du signal EN est assez facile a comprendre : La valeur de EN au prochain
cycle d’horloge est 'opposé de sa valeur au cycle courant.

On peut enfin observer que les signaux ARo et AR1 sont générés par des bascules D avec Enable telles
que décrites dans ’annexe C.1.1 page 111. La seule différence d"une bascule a 'autre est que leurs signaux
de validation sont opposés.

Pour créer convenablement le chronogramme, le plus simple est de traiter d’abord le signal EN, puis le
signal ARo puis le signal Yo qui s’en déduit directement. On traitera ensuite AR1, et Y1. On traitera enfin
Y puis YR. Cela aboutit au chronogramme de la figure 6.8.

Question 5 :

Le calcul des échantillons pairs est réalisé par la branche supérieure de la structure (signaux ARo et
Yo). Le calcul des échantillons impairs est réalisé par la branche inférieure de la structure (signaux ARz
et Y1). Le multiplexeur de sortie est chargé de choisir le bon résultat pour le stockage dans le registre YR.

Question 6 :
Les données sont maintenues en entrée de chaque fonction F pendant 2 cycles d’horloge. On dispose
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Ficure 6.8: Chronogramme de fonc-
tionnement de la structure parallele
synchrone (Question 4)

CLK | | | | | LT | |

A .( A0 X Al X A2 X A3 X A4 >< A5 >< >< ><

A2 A4 X

ARO
AR1 A3 A5
Y F(AT) X F(A2) X F(A3) X F(A4) >< F(A5) ><
YR F(AO) F(A1) F(A2) F(A3) X F(A4) F(AS5)

donc de deux cycles d’horloge pour réaliser le calcul de la fonction F, soit 2ns.
Question 7 :

En reprenant 'abaque du temps de calcul de F, on voit que ’on peut diminuer la tension d’alimentation
tout en conservant un temps de calcul inférieur ou égal a 2ns. La valeur minimale de la tension est donc
Vinin = 0.9V.

Question 8 :

En reprenant 'abaque de consommation de F, on obtient une énergie E,;, = 8.24 x 107'1] pour la
fonction F. La puissance consommeée par la structure de calcul sera :

Pypin = (2% Epin) * (Fref /2) = 0.084W

En effet, la structure contient 2 fonctions F, mais chacune de ces fonctions travaille a fréquence moitié.
Question 9 :

En mettant en place le pipeline, on obtient deux fonctions F1 et F2 dont le temps de calcul est de 0.5us
a la tension d’alimentation 1.2V. On peut donc diminuer la tension d’alimentation jusqu’au point au le
temps de calcul de ces fonctions devient égal a 1ns. La conséquence sera la encore une diminution de
I'énergie consommée, puis de la puissance consommée.



7
Réalisation d’un Digicode

7.1 Enoncé du probleme

On désire réaliser un digicode. L’objectif de 1'exercice est de concevoir un systeme permettant de détecter
I'entrée du bon code (246A) sur un clavier et qui, dans ce cas, passse une sortie S a 1 pendant un cycle
d’horloge permettant ainsi d’ouvrir la serrure.

Le systeme dispose d’une horloge clk a 10MHz et d'un signal d’initialisation reset_n, actif a 1’état bas.
Ces deux signaux seront implicites sur les schémas, donc non représentés. On se contentera d’indiquer
la valeur d’initialisation des éventuelles bascules D. Enfin I'appui d’une touche est sensée durer plusieur
cycles d’horloge.

Vous disposez d'un clavier tel que décrit en figure 7.1. Ce clavier dispose en sortie d'un bus synchrone
sur 4 bits, C[3:0], indiquant la touche appuyée :

— Si on appuie sur touche, C prend comme valeur le numéro de la touche : o pour la touche o, 1 pour la
touche 1, ..., 9 pour la touche 9, 10 (0xA) pour la touche A, 11 (oxB) pour la touche B.

— Si on n’appuie sur aucune touche, ou si on appuie sur deux touches en méme temps, C prend comme
valeur 15 (oxF en hexadécimal).

FIGURE 7.1: Digicode

reset_n clk l lreset_n

Q

-~
-«
——

C[3:0
[3:0] > Votre systeme i»

ONCORORC
©@®E
@ © @ ©

Question 1 Détection de I’appui sur une touche
Faites le schéma d’un dispositif qui produit un signal enable passant & 1 pendant un seul cycle d’hor-
loge lorsqu’une touche est pressée, quelle que soit la durée de I’appui sur la touche.
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Question 2 Détection du code

Faites le schéma d’'un dispositif qui produit un signal 0K qui passe a 1 uniquement lorsque 1'utilisateur
a entré le bon code (246A). Ce signal peut rester a 1 aussi longtemps qu’on le souhaite. Si 1'utilisateur a
entré une séquence de touches ne correspondant pas au bon code, ce signal doit passer a o.

Question 3 Ouverture de la porte
Faites le schéma d’un dispositif prenant en entrée le signal 0K produit a la question 2 et produisant,
lorsque cette entrée passe a 1, un signal de sortie S qui ne vaudra 1 que pendant un seul cycle d’horloge.

7.2 Proposition de correction

Question 1 Détection de I’appui sur une touche
Il s’agit de détecter, d'un cycle d’horloge a 'autre, le changement de la valeur de C de la valeur OxF a
une valeur différente de OxF. On peut réaliser cela en deux étapes :

1. Créer un nouveau sighal combinatoire TA pour "Touche Appuyée" a partir du signal C.

2. Mettre en place un détecteur de changement d’état (Il s’agit d’un probleme classique de détection du
passage de 0 a 1 d’un signal qui n’est pas une horloge. La réponse se trouve dans le cours, annexe C.8,
page 117).

Nous aboutissons au schéma de la figure 7.2.

FIGURE 7.2: Détection de 1'appui d’'une
enable  touche sur le clavier

TA

C[3:0]

~—

(=3 N [N] (%)

—P Lk

Question 2 Détection du code

La détection de la séquence fait appel a de la logique synchrone. Plusieurs solutions sont possibles
faisant appel, ou non, a l'utilisation d’automates. Dans tous les cas notre structure passe par des états
successifs correspondants a I'appui d’une touche du digicode. La solution la plus simple est (mais pas
forcément la plus compacte) de placer les codes successifs dans un registre a décalage et de comparer
chacune des sorties du registre avec le code désiré.

Nous proposons le schéma de la figure 7.3.

Nous utilisons des bascules avec enable (voir C.1.1, page 111), utilisant le signal enable créé précédem-
ment. Ainsi elles ne sont mises a jour qu’a 'appui d’une touche du digicode. Le code courant, ainsi que
les 3 sorties du registre a décalage sont comparés aux différents codes attendus pour former les signaux
Ba, Bs, By et By. Si ces quatre signaux sont a 1 alors l'utilisateur a bien tapé les codes successifs.

Question 3 Ouverture de la porte
Il s’agit une fois de plus d'un détecteur de passage de o a 1, tel que nous 1'avons déja utilisé dans la
question 1.
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FIGURE 7.3: Détection de la séquence

OK

o
Q

EN
D cLK

Hl\)w

o
Q







8
Détection des touches d'un digicode

8.1 Enoncé du probleme

L'objectif de I'exercice est de concevoir un systeme permettant de détecter quelle touche du clavier d'un
digicode est appuyée.

Le systeme dispose d'une horloge clk a 10MHz et d'un signal d’initialisation reset_n, actif a 1’état bas.
Vous disposez d"un clavier, dit “a balayage” comme décrit en figure 8.1. Le clavier dispose de deux sorties,

data et scanning chacune sur un bit. Le clavier balaye en permanence les lignes et colonnes du clavier

suivant la séquence suivante :

— Il balaye les 3 colonnes une par une, de la gauche vers la droite, et passe data a 1 quand il détecte une
touche appuyée sur la colonne courante.

— Puis balaye les 4 lignes une par une en commengcant par le haut, et passe data a 1 quand il détecte une
touche appuyée sur la ligne courante.

— Le signal scanning passe a 1 pendant toute la durée du balayage.

— Entre deux balayages, scanning repasse a o pendant exactement un cycle d’horloge.

F1Gure 8.1: Digicode
clk lreset_n Clkl lreset_n

-«

scanning

keyboard_decoder —ki»

data

@ ® 0O
ONONC
© @ ©

® © ®

Les figures suivantes montrent quelques cas de figure d'utilisation du clavier. Dans ces chronogrammes,
la ligne “Etape” indique ce que le clavier est en train de balayer.

— Si on n‘appuie sur aucune touche, on obtiendra le chronogramme de la figure 8.2.
— Si on appuie sur la touche 2 (colonne 1, ligne 0), on obtiendra le chronogramme de la figure 8.3.

— Si on appuie sur la touche B (colonne 2, ligne 3), on obtiendra le chronogramme de la figure 8.4.

Question 1 Interprétation des chronogrammes
Examinez le chronogramme de la figure 8.5. Qu’a fait l'utilisateur du clavier?
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FIGURE 8.2: Aucune touche

Etape %{ col0 X col1 X col2 line0Xline1 line2)line3%”/X col0 ) col1 X col2

FiGure 8.3: Touche 2

Etape %( col0 X col1 X col2 Xline0Xline1 Xline2)line3%”/X col0 X colt X col2

FIGURE 8.4: Touche B

scanning J \_/
data [\ [\

Etape %( col0 X col1 X col2 Xline0Xline1 line2)line3%”/X col0 X col1 X col2

FIGURE 8.5: Que fait 1utilisateur ?

Etape %( col0 X col1 X col2 Xline0Xline1 Xline2)line3%”/X col0 X colt X col2
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L’objectif de la suite est d’écrire le code SystemVerilog d’un systéme faisant en sorte que ce clavier ait le
comportement suivant :

— Quand une touche est pressée, on sort son numéro sur le signal key.

— Quand aucun touche n’est pressée, ou quand plusieurs touches sont pressées a la fois, on sort 0xF.

Dans la suite vous allez construire le code bloc par bloc. Chaque bloc est simple, sans piége, et fait
moins de 8 lignes.
On partira du squelette de code 8.1.

module keyboard_decoder(input logic clk,
input logic reset_n,
input logic scanning,
input logic data,
output logic[3:0] key
)i

// Votre code ici !

endmodule

CopE 8.1: Squelette du module

Question 2 Génération des étapes
On veut un “compteur d’étape” cpt qui vaut 0 par défaut, est incrémenté a la fin de chaque cycle ou
scanning vaut 1, et remis a zéro a la fin d’un cycle ot scanning vaut 0.

— Jusqu’a combien doit pouvoir compter ce compteur ?

— Fcrivez le code SystemVerilog d"un bloc séquentiel qui géneére cpt.

Question 3 Stockage de la colonne
On veut stocker dans un signal col le numéro de la colonne de la touche pressée. Si aucune touche n’est
appuyée, ou si plusieurs touches sont appuyées, on y stockera n'importe quoi.

— Sur combien de bits doit étre codé col?

— En remarquant que pour générer col il suffit de regarder data pendant que cpt est compris entre @ et
2, donnez le code SystemVerilog d'un bloc séquentiel qui génere col.

Question 4 Stockage de la ligne
On veut stocker dans un signal 1ine le numéro de la ligne touche pressée. Si aucune touche n’est appuyée,
ou si plusieurs touches sont appuyées, on y stockera n'importe quoi.

— Sur combien de bits doit étre codé line?

— En remarquant que pour générer line il suffit de regarder data pendant que cpt est compris entre 3
et 6, donnez le code SystemVerilog d"un bloc séquentiel qui génere line.
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Question 5 Détection d’un appui valide
Pendant que scanning est haut, combien de fois data est-il a 1 pendant le balayage si :

— l'utilisateur n’appuie sur aucune touche,
— l'utilisateur appuie sur une seule touche,

— l'utilisateur appuie sur plusieurs touches?

Donnez le code SystemVerilog d"un bloc séquentiel qui géneére un n_data indiquant le nombre de fois
ol data est passé a 1 pendant que scanning était haut.

Question 6 Génération de la sortie key
A partir des signaux générés prédécemment, on propose le code 8.2 pour générer la sortie key.

// Lorsque qu'on a finit le scan, on sort le numéro de la touche appuyée.
// Pour cela, il faut que n\_data ==... Sinon, ca veut dire qu'on n'a
// appuyé sur aucune touche ou qu'on a commencé a appuyer pendant que
// clavier scannait ou qu'on a appuyé sur deux touches en méme temps.
always @(posedge clk or negedge reset_n)
if(!reset_n)
// Au reset, on sort le code "aucune touche" : OxF.
key <= OxF;
// Lorsque le compteur indique qu'on a finit le scan,
else if (cpt==8)
// si on a bien eu l'appui d'une seule touche, on génére son code sur key.
if (n_data == ...)
// Pour les touches de 1 a A compris, c'est simple.
key <= col + (3xline);
// Pour 0 et B, c'est un cas particulier.
if ((line == 3) & (col == 1))

key <= 0;
if ((line == 3) & (col == 2))
key <= 0xB;

else
// sinon (n_data est invalide), on sort le code 0OxF.
key <= 4'hF;

CopE 8.2: Squelette du module

Corrigez ce code.
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8.2 Proposition de correction

Question 1 Interprétation des chronogrammes
L'utilisateur appuie simultanément sur les touches 4 et A. De plus, il appuie suffisamment longtemps
pour que le balayage suivant détecte une touche appuyée.

Question 2 Génération des étapes
Le compteur doit pouvoir compter jusqu’a 7. Le code 8.3 correspond a ce compteur. Notez, la limitation
du compteur a 3 bits, ce qui le raméne automatiquement a 0 a la fin de la séquence de scanning a 1.

Copk 8.3: Code du compteur

logic [2:0] cpt ;
always @(posedge clk)
if(!scanning)

cpt <= '0 ;
else
if(scanning)

cpt <= cpt + 1'b1 ;

Question 3 Stockage de la colonne

Le signal col est compris entre 0 et 2. Il suffit de deux bits pour le coder. Comme indiqué dans le code
8.4, il suffit d’examiner les deux bits de poids faible de cpt pour obtenir col. On ne met a jour le signal
col que si data vaut 1.

CopE 8.4: Code pour la génération de
col

logic [1:0] col ;
always @(posedge clk or negedge reset_n)
if(!reset_n)
col <= '0 ;
else if(data && (cpt < 3))
col <= cpt[l:0] ;

Question 4 Stockage de la ligne

Le signal line est compris entre 0 et 3. Il suffit de deux bits pour le coder. Comme indiqué dans le code
8.5, il faut de soustraire 3 au compteur cpt pour obtenir la valeur de line. On ne met a jour le signal line
que si data vaut 1.

CopE 8.5: Code pour la génération de
line

logic [1:0] line ;
always @(posedge clk or negedge reset_n)
if(!reset_n)
line <= '0 ;
else
if(data && (cpt >= 3))
line <= cpt - 2'd3 ;
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Question 5 Détection d’un appui valide

1. Sil'utilisateur n’appuie sur aucune touche, data n’est jamais a 1.
2. Sil'utilisateur appuie sur une seule touche, data passe a 1 deux fois

3. Sil’utilisateur appuie sur plus d'une touche, data passe a 1 au moins 3 fois.

N

I suffit d'un compteur qui est remis a zero lorsque scanning vaut 0 et qui s'incrémente a chaque
passage de data a 1. Dans le pire des cas, si toutes les touches sont appuyées, data est a 1 durant 7 cycles
consécutifs. Le compteur n_data peut donc étre codé sur 3 bits.

CopE 8.6: Code pour la génération du
n_data

logic [2:0] n_data ;
always @(posedge clk)
if(!scanning)
n_data <= '0 ;
else if(data)
n_data <= n_data+l'bl ;

Question 6 Génération de la sortie key

Nous suggérons les modifications suivantes :

— remplacer if (n_data == ...) par if (n_data == 2'd2) 1, 1. valeur attendue quand une seule

1 . . 5 touche est appuyée
— remplacer else if (cpt==8) par else if (cpt==7) 2. Le compteur va de 0 4 7. Le 8e cycle
— remplacer la formule dur calcul de la clef par est donc le numéro 7

key <= col + (3xline) + 1'bl

Nous obtenons le code suivant :

always @(posedge clk or negedge reset_n)
if(!reset_n)
// Au reset, on sort le code "aucune touche" : OxF.
key <= OxF;
// Lorsque le compteur indique qu'on a finit le scan,
else if (cpt==7)
// si on a bien eu l'appui d'une seule touche, on génére son code sur key.
if (n_data == 2)
// Pour les touches de 1 a A compris, c'est simple.
key <= col + (3%line)+1;
// Pour 0 et B, c'est un cas particulier.
if ((line == 3) & (col == 1))

key <= 0;
if ((line == 3) & (col == 2))
key <= 0xB;

else
// sinon (n_data est invalide), on sort le code 0OxF.
key <= 4'hF;

CopE 8.7: Module corrigé



9
Compteur de Gray

9.1 Enoncé du probleme

Question 1 : Codez en SystemVerilog un compteur binaire sur 3 bits avec remise a zéro (reset) asynchrone.

On désire changer la séquence binaire 0 = 1 = 2 = 3 = 4 = 5 = 6 = 7 en séquence de Gray
0=1=3=2=6=7=5=4
Question 2 : Ajoutez (toujours en SystemVerilog) un bloc de logique combinatoire aux sorties du compteur
binaire de fagon a ce que les nouvelles sorties suivent cette séquence.

On veut maintenant générer directement la séquence de Gray . On nommera C5,C{, C les valeurs
courantes des 3 bits du compteur de gray, et on nommera Cg , Cf , Cg les valeurs futures

Question 3 : Calculez les équations booléennes de Cf , C{ et Cg en fonction de C{, C{ et Cf. Conseil : créez
une table de vérité.

Question 4 : En déduire un code SystemVerilog du compteur de gray. Ce code ne doit comporter ni
construction if/then/else ni construction case.

9.2 Proposition de correction

Question 1 : C’est un compteur synchrone classique, qui utilise exactement 3 bits. En dehors de toute
autre indication on suppose qu’il compte modulo 8.

logic [2:0] binCpt ;
always @(posedge clk or posedge reset)
if(reset)
binCpt <= '0 ;
else
binCpt <= binCpt + 1 ;

CoDE 9.1: Le compteur binaire

Question 2 :
On nous demande de générer les codes de gray de maniére combinatoire, il suffit d’une construction
de type case dans un process always@(*) tel qu'indiqué dans le code 9.2.
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logic [2:0] grayCpt ;
always @(x*)
case(binCpt)
3'd0 : grayCpt <= 3'do ;
3'dl : grayCpt <= 3'dl ;
3'd2 : grayCpt <= 3'd3 ;
3'd3 : grayCpt <= 3'd2 ;
3'd4 : grayCpt <= 3'd6 ;
3'd5 : grayCpt <= 3'd7 ;
3'd6 : grayCpt <= 3'd5 ;
3'd7 : grayCpt <= 3'd4 ;
endcase

CoDE 9.2: Le compteur de gray

Question 3 :
Dans la table 9.1, nous trions les entrées dans ’ordre des codes, et non pas dans 1'ordre des transitions
successives.

‘ CE C; C(C] C é’ C { C (])( Transition ;I:ZLS eg; r a]i]volution des états du comp-
(0] (6] (6] (6] (0] 1 overs 1
o o 1|0 1 1 1 vers 3
o] 1 0 1 1 0 2 vers 6
(0] 1 1 (0] 1 (0] 3 vers 2
1 (0] (0] (6] (6] (0] 4 vers o
1 o 1|1 o o 5 Vers 4
1 1 0 1 1 1 6 vers 7
1 1 1 1 o0 1 7 Vers 5

Les situations ot le bit Cg vaut 1 sont résumées dans la table suivante :

c Cf G Cét C{ Cg Transition

o o o o} o 1 o vers 1
o o 1 0 1 1 1 vers 3
1 1 0 1 1 1 6 vers 7
1 1 1 1 o 1 7 Vers 5

Cela aboutit a ’équation booléenne :

Cj=C5-C-Co+C5- - €5 + G5 Cf - Gy + G5 - Cf - C
Nous remarquons que Cg vaut 1 si et seulement si C{ et C5 sont identiques. L'expression peut étre
simplifiée en :
f _ Fc o c
G =CGad

Notez qu’il n’était pas demandé de simplifier les équations, les deux réponses étaient donc valables.
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Les situations ou le bit C{ vaut 1 sont résumées dans la table suivante :

cg ¢ cs|cf cf c| Transition

o o 1 o 1 1 1 Vers 3
0 1 0 1 1 0 2 vers 6
o 1 1 o 1 0 3 vers 2
1 1 0 1 1 1 6 vers 7

Cela aboutit a ’équation booléenne :

Cf =G Cf-Cy+ G5 Cf-Go+ G5 Cf - G5+ G5 G- G

Qui peut étre simplifiée en :

] = CL.C§ + C§.C5 + C5.C§

Enfin Les situations ot le bit Cg vaut 1 sont résumées dans la table suivante :

c Cf G Cg C{ Cg Transition

0 1 o) 1 1 0 2 vers 6
1 0 1 1 o} 0 5 Vers 4
1 1 0 1 1 1 6 vers 7
1 1 1 1 o 1 7 vers 5

Cela aboutit a I'équation booléenne :

Cf =C5-C§-Cg+C5-C-C5+C5 - C5 - TG+ C5 - C5 - C§

Qui peut étre simplifiée en :

Cf = C5.C5 + C5.C5 + C5.CF

Question 4 :
Les codes sont directement générés par un processus synchrone a partir des équations précédentes :

logic [2:0] grayCpt ;
always @(posedge clk or posedge reset)
if(reset)
grayCpt <= '0 ;

else begin

grayCpt[0] <= ~( grayCpt[2] ~ grayCpt[l]) ;

grayCpt[1l] <= (~grayCpt[2] & grayCpt[1l]) |
( grayCpt[1] & ~grayCpt[@]) |
(~grayCpt[2] & grayCpt[0]) ;

grayCpt[2] <= (~grayCpt[2] & grayCpt[1]) |
( grayCpt[1] & grayCpt[0]) |
( grayCpt[1] & ~grayCpt[0]) ;

end

CoDE 9.3: Le compteur de gray directe-
ment généré






10
Arithmétique avec représentations redondantes

10.1  Enoncé du probleme

L’étude de la représentation des nombres dans les machines a fait 'objet de nombreux travaux de re-
cherche. Nous allons étudier une notation dite de type Avizienis en base 2. Dans cette représentation,
nous appellerons les chiffres des Rbits. Un nombre A de N Rbits se code sous la forme suivante :

N-1
A= Z a;2" avec a; € {—1,0,1}
i=0

Enfin, pour faciliter I'écriture de constantes on écrira les valeurs {—1,0,1} sous la forme {1,0,1}.
Question 1 Quelle est la valeur décimale du nombre 1100101 ?

Question 2 Expliquez pourquoi cette représentation est qualifiée de redondante, proposez quelques
exemples.

Question 3 Quelles sont les valeurs minimales et maximales pouvant étre atteintes par un mot de N Rbits.

Dans la pratique, réaliser du matériel utilisant cette représentation est complexe (un transistor est soit
passant, soit bloqué...). On va donc devoir coder un Rbit sur 2 bits. Pour cela on utilise la convention

suivante :
a; =a —a; aveca; € {0,1} eta; € {0,1}

La figure 10.1 représente une structure d’addition pour deux nombres A et B de 4 Rbits. Elle est
composée d'un assemblage de cellules de type PMP et MMP qui sont dérivées de 1’additionneur 1 bit de
base. Les sorties R et S étant des bits de retenue et de somme. Nous ne chercherons pas a démontrer son
fonctionnement.

Question 4 En supposant que le temps de calcul d’une cellule PMP ou MMP soit de 1 dans une unité
arbitraire, déterminez le temps de calcul de I'additionneur.

Question 5 Quel serait le temps de calcul d’un additionneur de mots de N Rbits ? Comparez ce résultat a
celui de I’additionneur a propagation de retenue N bits. Qu’en pensez-vous ?

Supposons maintenant que 'on construise un Nanoprocesseur utilisant la notation redondante pour
I'arithmétique. Seule L’ALU du Nanoprocesseur est modifiée. Le nombre de bits des données et le reste
de l'architecture reste inchangé.

Question 6 Quel est le nombre de Rbit des données traitées ?

L’ALU du nanoprocesseur doit fournir un drapeau Z indiquant si le résultat du calcul est nul.

Question 7 Faites le schéma de la logique nécessaire a la génération du drapeau Z a partir d'un calcul en
codage redondant.
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FIGURE 10.1: Additionneur en codage

redondant
+ A- Bt + A- Bt + 24— B+ + a4— pt
Ay Ag By Ay Ay By A AL B Ag Ay By
| | | | | | | | | | |
+ -+ + -+ + -+ + -+
PMP PMP PMP PMP
RT S~ RT S~ RT S~ RT S~
B; BE Bf Ba 0
| [ [ | |
- -+ - -+ - -+ - -+
MMP MMP MMP MMP
R~ st R~ st R~ st R~ st
[
+ - + — + — + - + oy
Yy o Y3y Y, Vo Yo Yy

Le nanoprocesseur peut exécuter une instruction ADD ou une instruction SUB.

Question 8 Quel matériel faut-il ajouter a la figure 10.1 pour que 'additionneur puisse arbitrairement
calculer une addition ou une soustraction.

Pour comparer deux nombres, on utilise classiquement l'instruction SUB du Nanoprocesseur et on
examine la retenue sortante en utilisant le drapeau C.

Question 9 Est-ce toujours possible avec notre nouvelle notation? Faut-il rajouter du matériel a ’'ALU
pour obtenir cette information? Si votre réponse est positive, détaillez ce matériel et dans ce cas que
pensez-vous de l'intéret de la représentation redondante (dans le cas du Nanoprocesseur) ?

10.2  Proposition de correction

Question 1 :
En tenant compte du poids de chaque Rbit le nombre vaut: 64 —32 —4 41 = 29.

Question 2 :
Un méme nombre peut avoir plusieurs représentations. Par exemple le nombre 15 peut étre codé sous
la forme 110001 ou 001111 ou encore sous la forme 010001.

Question 3 :

La valeur minimale est atteinte lorsque tous les Rbits valent 1, ce qui correspond au nombre — (2" —1).
La valeur maximale est atteinte lorsque tous les Rbits valent 1, ce qui correspond au nombre 2" — 1.
Question 4 :

Le nombre maximal de cellules traversées entre une entrée quelconque du dispositif, et une sortie
quelconque est de 2. Le temps de calcul de I'additionneur est de 2.

Question 5 :

On voit quil n'y a pas de propagation de retenue latérale dans la structure, le temps de calcul est
indépendant du nombre de Rbits des données. Le temps de calcul d'une addition a propagation de
retenue est en O(N). On remarque donc que cette structure d’addition semble plus intéressante que la
classique propagation de retenue.

Question 6 :
Nous devons utiliser 2 bits pour représenter un Rbit, le chemin de données du Nanoprocesseur est de
8bits. En conséquence nous ne pouvons manipuler que des mots de 4 Rbits.
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Question 7 :

Pour détecter si le résultat est nul, il faut détecter que chaque Rbit du résultat est nul. Compte tenu de
la redondance, 2 cas sont possibles pour chaque Y; :
1. P =0etY =0
2. Y =1letY =1

Cela correspond a la fonction logique XNOR, sauf pour le bit Y pour lequel le calcul se réduit a un
simple inverseur. Nous en déduisons le schéma de la figure 10.2

FIGURE 10.2: Calcul du bit Z a partir du
résultat en notation redondante

Y, 4 VA Y Yo+ Yo— Yi+ Yi— Y

aE=d

Question 8 :

Nous voulons calculer A — B. En notation redondante, pour obtenir —B il suffit d’échanger les bits B;"
et les bits B;". Pour chaque Rbit de B nous utiliserons donc 2 multiplexeurs commandés par le signal
demandant la soustraction.

Question g :

En notation redondante, il n’est pas possible de détecter si le résultat d'un calcul est positif ou négatif
sans examiner tous les Rbifs un a un. Une solution est de calculer en arithmétique standard la différence
entre les deux mots binaires Z* et Z~. On obtient ainsi un nombre dont on peut déterminer le signe.
Mais cela revient a ajouter un soustracteur derriére 1’additionneur standard ce qui fait perdre l'intéret du
temps de calcul constant...






11
Fibonacci ?

La résolution de ce probleme, nécessite la compréhension des chapitres sur la logique synchrone, ainsi que des tech-
niques de codage de base SystemVerilog associées.

11.1  Enoncé du probleme

Un concepteur prétend que le code SystemVerilog suivant génere la suite de Fibonnacci en calculant sur
8 bits les nombres U,;. On rappelle que la suite de Fibonacci est donnée par : U, = U,_1 + U,_», avec
Uy =1etlUy=0.

CopE 11.1: Code Fibonacci proposé

module fibonacci(input logic clk,
input logic reset_n,
output logic [7:0] U);

// Un-1 (= Un au cycle precedent)
logic [7:0] u_1;

// Un-2 (= Un-1 au cycle precedent)
logic [7:0] u_2;

always @(posedge clk or negedge reset_n)
if(!reset_n) begin

u <= 1;
U_1l <= 1;
U_2 <= 0;
end
else begin

// Un = Un-1 + Un-2
U <= U_1 + U_2;
// Un-1 = Un retarde d'un cycle

U_1 <= U;
// Un-2 = Un-1 retarde d'un cycle
U_2 <= U_1;

end
endmodule
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1. Réalisez un tableau des valeurs de U, U_1 et U_2 pendant les 10 premiers cycles d’horloge (apres rela-
chement du reset_n).

2. Tracez le schéma du circuit modélisé par ce code (I'horloge et le signal d’initialisation ne seront pas
représentés).

3. Quelle est I’équation de la suite U, générée?

4. Proposez une version corrigée du code SystemVerilog de fagon a générer la suite de Fibonacci.

11.2  Proposition de correction

Question 1 :
Pour interpréter correctement un code SystemVerilog, il faut examiner chaque signal faisant ’objet
d’une affectation. En général la forme d’écriture est de type : signal <= équation.

— Si signal est affecté dans un processus combinatoire always@(*), alors il prend la valeur équation via
un calcul combinatoire.

— Si signal est affecté dans un processus synchrone always@(posedge...), alors il correspond a un re-
gistre et prend, apres le front d’horloge, la valeur qu’avait équation avant le front de I'horloge.

En conséquence, du point de vue d'un chronogramme, le signal généré aura les caractéristiques sui-
vantes :

— Si le signal est combinatoire on indiquera ses évolutions temporelles comme une simple conséquence
des signaux qui ont servi a la calculer, en ajoutant éventuellement un petit délai pour montrer claire-
ment cette conséquence.

— Si le signal est synchrone on indiquera ses évolutions temporelles comme une simple conséquence du
front de I'horloge, en ajoutant éventuellement un petit délai pour montrer clairement cette conséquence.

Dans notre cas, les signaux U_1, U_2 et U sont tous calculés dans un processus synchrone, d’ofi le

chronogramme :

FiGure 11.1: Chronogramme de fonc-
tionnement (Question 1)

clk I I I LT 1
resetn [
U 1 1 2 2 3 4 5 7 9 12 16
U_l 1 1 1 2 2 3 4 5 7 9 12
U_2 0 1 1 1 2 2 3 4 5 7 9
Question 2 :

Comme indiqué dans la question, nous ne représentons ni '’horloge, ni le signal de remise a zéro,
dans le schéma. Cependant, nous indiquons clairement que les signaux U, U_1 et U_2 sont générés par
des registres synchrones (le triangle en bas & gauche correspond & connection d’horloge). De plus nous
indiquons en bas a droite de chaque registre la valeur forcée a I'initialisation. Nous indiquons de plus le
nombre de bits des signaux (trait barrant le signal accompagné d’un nombre).
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FIGURE 11.2: Schéma équivalent ( Ques-
tion 2)

Question 3 :

Le signal U est retardé d'un cycle excédentaire.

La véritable suite générée est : U, = U,,_o + U,_3,avec Uy =1, U; =1et Uy = 0.
Question 4 :

Pour créer le schéma, il suffit de 2 registres au lieu de 3. Si nous ne conservons que les registres U_1
et U_2 et nous transformons le signal U en signal combinatoire. Nous aurons le comportement suivant a
chaque front d’horloge :

— Juste avant le front d’horloge :
— U_1 et U_2 contiennent respectivement les valeurs U,_; et U, _»
— U est établit combinatoirement a la valeur U, = U,,_1 + U,,_»
— Juste apres le front d’horloge :
— U_1 et U_2 contiennent respectivement les valeurs U, et U, _1
— Le signal U commence le calcul combinatoire de U471 = U, + U1

Le nouveau code peut étre le suivant :

CopE 11.2: Code Fibonacci premiere
solution (Question 4)

module fibonacci(input logic clk,
input logic reset_n,
output logic [7:0] U);

logic [7:0] u_1;
logic [7:0] u_2;

always @(*)
U <= U_1 + U_2;

always @(posedge clk or negedge reset_n)
if(!reset_n) begin
U_1l <= 1;
U_2 <= 0;
end
else begin
U_1 <= U;
U_2 <= U_1;
end
endmodule
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Une écriture plus compacte consiste a intégrer le calcul combinatoire dans le processus synchrone.
Il suffit de renommer les signaux, et de supprimer le signal U_2. (Les deux solutions sont exactement
équivalentes du point de vue "matériel").

CopE 11.3: Code Fibonacci deuxieme
solution (Question 4)

module fibonacci(input logic clk,
input logic reset_n,
output logic [7:0] U);

logic [7:0] u_1;

always @(posedge clk or negedge reset_n)
if(!reset_n) begin
U <= 1;
U_1l <= 0;
end
else begin
1] <= U + U_1;
U_1l <= U;
end
endmodule
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Etude d’une fonction de rendez-vous

La résolution de ce probleme nécessite la compréhension des notions de temps de propagation dans la logique combina-
toire (premier chapitre) ainsi que la mattrise de techniques de constructions de portes logiques (chapitre technologie).
12.1  Enoncé du probléme

Nous désirons réaliser une fonction logique RV a deux entrées A et B et une sortie Y.

12.1.1  Analyse d'un version de RV basée sur I'assemblage de portes logiques de base

Le schéma de la figure 12.1 présente une réalisation RV a partir de portes logiques ET et OU dont les
caractéristiques sont les suivantes :

— Les portes ET et OU ont toutes un temps de propagation de 1ns.

FIGURE 12.1: Schéma de la fonction RV

YA
A——r
A —
B——
e

Question 1 : Complétez, de maniere précise (avec les temps de propagation), le chronogramme de la
figure 12.3.

Question 2 : Démontrez, en utilisant le chronogramme, que la fonction RV est une fonction séquentielle.
Question 3 : Pourquoi appelle-t-on cette fonction, fonction de “rendez-vous” ?

12.1.2  Analyse d’une version de RV basée sur une fonction CMOS spécifique

La figure 12.2 présente une alternative pour la réalisation de la fonction RV. Pour analyser le schéma

on supposera
— Qu’un transistor bloqué a une résistance équivalente infinie
— Qu’un transistor passant a une résistance équivalente nulle

— Que I'entrée d’un inverseur est électriquement équivalente a une capacité connectée entre cette entrée
et la masse.
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12.3: Chronogramme de la

Question 1 (les temps indiqués sont en

FIGURE 12.2: Schéma alternatif pour la
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On utilise maintenant un modele plus réaliste des transistors :

Question 4 : Complétez le chronogramme de la figure 12.4 en indiquant 'état des réseaux de transistors
N et P (Bloqué ou Passant) dans chaque situation. Les temps de propagations seront consid

Question 5 : Que se passe-t-il lorsque le réseau P et le réseau N sont tous les deux bloqués?

— Meéme dans I’état bloqué, la résistance équivalente des transistors n’est pas infinie.

Question 6 : Quelles sont les conséquences sur les conditions limites d’utilisation de cette porte?
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nuls.
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FiGure 12.4: Chronogramme de la
Question 4 (les temps indiqués sont en
ns)
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12.2  proposition de correction

Question 1 :

On demande dans I'énoncé un chronogramme précis, c’est-a-dire qu’il faut reporter les temps avec
précision. Ainsi, par exemple, si un changement du signal A provoque un changement du signal YA il
faut indiquer ce changement 1#ns apres le changement de A. On peut commencer par tracer le signal AB
qui ne dépend que de A et de B.

L’enchainement des situations est le suivant :

— Tant que le signal AB n’est pas égal a 1 le signal Y ne peut pas quitter la valeur 0. Il en est de méme
pour les signaux YA et YB. On peut donc tracer les signaux Y, YA et YB comme constants a zéro
jusqu’a l'instant 7ns.

— Le signal Y passe a 1 a l'instant 8ns a cause du changement de AB. En conséquence les signaux YA et
YB passent a 1 a l'instant 9ns.

— Le signal YB repasse a 0 1ns apres la redesente de B. Mais le signal Y est maintenu car YA ne bouge
pas.

— Le signal YA repasse a 0 1ns apres la redescente de A.
— Le signal Y repasse a 0 1ns aprés la redescente de YA

Question 2 :

Les entrées du schéma sont les signaux A et B, la sortie est le signal Y.

Entre les instants 2ns et 6ns les deux entrées A et B sont stables et égales a 1 et 0 respectivement. La
sortie Y est stable et maintenue a 0.

Entre les instants 11ns et 15ns les deux entrées A et B sont stables et de nouveau égales a 1 et 0
respectivement. La sortie Y est stable et maintenue a 1.

Nous avons donc un dispositif qui génere deux valeurs de sorties différentes pour des valeurs d’entrées
identiques. Cela signifie que la sortie dépend de l'historique du changement des entrées, c’est donc un
dispositif séquentiel.
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FiGure 12.5: Chronogramme de la ré-
ponse a la Question 1

AB

YA

YB

Question 3 :
— Lorsque les deux entrées A et B valent 0 la sortie Y passe a 0.
— Lorsque les deux entrées A et B valent 1 la sortie Y passe a 1.

— Lorsque les deux entrées sont de valeurs complémentaires (01 ou 10) , la sortie conserve son état.

Ainsi la fonction détecte le rendez-vous de deux valeurs identiques de A et B, via le signal Y, et
conserve cette valeur jusqu’au prochain rendez-vous.

Question 4 et Question 5 :

Rappelons que dans le modele logique que nous utilisons :

— Les transistor PMOS sont passants si leur grille est pilotée par un 0 logique

— Les transistors NMOS sont passants si leur grille est pilotée par un 1 logique.

Les transistors se comportent comme des interrupteurs connectés (dans ce montage) en série
— Le réseau NMOS sera passant si les deux transitors du réseau NMOS sont passants.

— Le réseau PMOS sera passant si les deux transitors du réseau PMOS sont passants.
Apres examen des situations nous obtenons 3 cas possibles :

— Le réseau NMOS est passant, le réseau PMOS est bloqué : le signal YB est forcé a 0

— Le réseau PMOS est passant, le réseau NMOS est bloqué : le signal YB est forcé a 1

— Les réseaux NMOS et PMOS sont tous les deux bloqués : le noeud YB n’est plus forcé a une quel-
conque valeur. L'énoncé indique que l'entrée de I'inverseur est équivalente a une capacité : cette capacité
conserve son état (chargé ou déchargé) et maintient donc la valeur du signal YB

La fonction de mémorisation nécessaire a la fonction de rendez-vous est obtenue par un stockage
capacitif de 1’état du signal YB.
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FiGUure 12.6: Chronogramme de la ré-
ponse a la Question 4

Bloqué Passan Bloqué:

ReseauN

Passant Bloqué Passant

ReseauP

YB

Question 6 :

Des courants de fuites peuvent traverser les transistors PMOS et NMOS. Ansi la charge stockée en YA
va évoluer dans le temps et provoquer un changement d’état de l'inverseur de sortie. L'information de
"rendez-vous" ne peut étre conservée indéfiniment, a la différence du premier montage.






13
Comptage de moutons

La résolution de ce probléme nécessite la maitrise de la logique combinatoire, de la logique séquentielle et des tech-
niques de codage SystemVerilog associées.

13.1  Enoncé du probleme

Notes :

— Toutes les bascules de vos circuits seront synchrones sur une horloge clk et uniquement sur celle-ci. Elles seront,
de plus, initialisées par un signal reset_n asynchrone actif a I'état bas (o).

— Tous les signaux utilisés devront étre explicitement déclarés.
— La taille (nombre de bits) de tous les signaux utilisés devra étre explicitement déclarée.

— 1 sera inutile de déclarer les entétes (module xxx(input...), et fin (endmodule) des modules.

On cherche a compter les moutons d"un troupeau (comportant moins de 232 moutons). Pour cela, les
moutons passent 'un apres 'autre dans un couloir ot sont placés deux détecteurs. Chaque détecteur
renvoie un signal sur 1 bit, valant 1 lorsqu’un mouton passe en face de lui et o sinon.

couloir
mouton
‘
capteurs
“'\;-,_“_L_.. - y
w _J
: - i N - ‘I. _ 1
A B

Dispositif de comptage

Les deux détecteurs, A et B, sont éloignés d’environ 10cm : lors du passage d’un mouton, il y a donc
un moment durant lequel les deux détecteurs voient en méme temps le mouton: A = B = 1.

On supposera que les sorties des détecteurs sont synchrones sur I'horloge clk de votre circuit, et que
I'horloge va suffisamment vite pour qu'il s’écoule plusieurs cycles entre deux événements successifs sur
le bus de sortie des capteurs.

13.1.1  Question 1

On suppose pour 'instant que les moutons ne font qu’avancer de la droite vers la gauche.
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En vous aidant éventuellement d'un chronogramme (réalisé par vos soins) des sorties des capteurs lors
du passage d’'un mouton, donnez le code SystemVerilog d'un systeme comptant le nombre de moutons
passés dans le couloir.

13.1.2  Question 2

Les moutons étant des animaux capricieux, une fois arrivés tout au bout du couloir ils peuvent faire
demi-tour et revenir dans l’enclos de départ. Il faut dans ce cas les dé-compter!

Donnez une nouvelle version de votre code de facon a pouvoir maintenir le compte correct des mou-
tons arrivés a destination.

13.1.3 Question 3 (BONUS)

L'imagination des moutons étant sans bornes, ils peuvent avoir envie de faire demi-tour au moment
précis ot ils passent devant les détecteurs.

Si nécessaire, donnez une nouvelle version de votre code, de fagcon a prendre en compte le fait que les
moutons peuvent faire demi-tour n’importe quand.

13.2  proposition de correction
13.2.1  Question 1

Nous construisons un chronogramme représentant 1’évolution de 1’horloge clk et des signaux A et B
pendant le passage d’un mouton. Les signaux A et B restent stables pendant plus d’un cyle (comme indi-
qué dans I'énoncé). Attention, le nombre de cycles pendant lesquels A et B sont stables est dépendant de
la vitesse de déplacement du mouton, cependant ce nombre de cycles n’intervient pas dans la résolution
du probleme. Enfin, le mouton provenant de la droite, le capteur B est actionné avant le capteur A.

F1GURE 13.1: Chronogramme d’un mou-
ton (Question 1)

clk I I I I I

resety, ]
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Pour résoudre ce probleme, on remarque que le passage de 1 a @ du signal A suffit a signaler la sortie
d’un mouton. Donc nous devons simplement implémenter un détecteur de passage de 1 a 0. Le signal
généré servira a valider l'incrémentation d’un compteur synchrone. Le signal reset_n servira a initialiser le

compteur. Enfin, le troupeau étant limité a moins de 232

moutons, nous pouvons implémenter le compteur
sur 32 bits.

D’ou le code suivant :

CopE 13.1: Code proposé pour la ques-
tion 1

// 0n suppose A et B préalablement déclarés

// Le détecteur de changement d'état de A
logic last_A ;
always@(posedge clk) last_A <= A ;

logic un_mouton_de_plus ;
always@(*) un_mouton_de_plus <= last_A && !A ;

// Le compteur lui méme
logic [31:0] cmpt_moutons ;
always @(posedge clk or negedge reset_n)
if(!reset_n)
cmpt_moutons <= '0 ;
else
if (un_mouton_de_plus)
cmpt_moutons <= cmpt_moutons+1'bl ;
// ...

13.2.2  Question 2

Comme le mouton peut revenir en arriére il faut pourvoir détecter le sens de déplacement. Si on
considere le passage de 1 a 0 du capteur A :

— B vaut 0 si le mouton se déplace de droite a gauche et

— B vaut 1 si le mouton se déplace de gauche a droite.

Le code devient :
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CopE 13.2: Evolution du code pour la
question 2

// Le détecteur de changement d'état de A
logic last_A ;
always@(posedge clk) last_A <= A ;

logic un_mouton_de_plus ;
always@(*) un_mouton_de_plus <= !B && (last_A && !'A) ;

logic un_mouton_de_moins ;
always@(*) un_mouton_de_moins <= B && (last_A && !'A) ;

// Le compteur lui méme
logic [31:0] cmpt_moutons ;
always @(posedge clk or negedge reset_n)
if(!reset_n)
cmpt_moutons <= '0 ;
else begin
if (un_mouton_de_plus) cmpt_moutons <= cmpt_moutons+1l'bl ;
if (un_mouton_de_moins) cmpt_moutons <= cmpt_moutons-1'bl ;
end
/] ...

13.2.3 Question 3

Le code précédent ne fonctionne pas pour un mouton capricieux : il ne faut pas décompter un mouton
qui n’a pas été compté, ni recompter un mouton déja compté. Pour résoudre ce probleme, il ne faut
valider le décrément que si on a préalablement réalisé un incrément. Il faut donc mémoriser I'information
de l'incrément, puis la réinitialiser a chaque fois qu’un nouveau mouton rentre dans le couloir

Le code pourrait étre :
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CopEk 13.3: Evolution du code pour la
/) question 3

// Détection de l'arrivée d'un mouton
logic un_nouveau_mouton ;
always @(*)
un_nouveau_mouton <= B && (!last_A && A) ;

// Mémorisation et réinitilisation de l'information indiquant qu'un
// mouton a été compté.
always @(posedge clk or negedge reset_n)
if(!reset_n)
deja_compte <= '0 ;
else begin
if(un_mouton_de_plus) deja_compte <= 1'bl ;
if(un_nouveau_mouton) deja_compte <= 1'b0 ;
end

// 0n ne valide 1'incrément du compteur pour ce mouton que si
// on ne l'a pas déja compté
always@(*)
un_mouton_de_plus <= !B && (last_A && !'A) && !'deja_compte ;

// 0n ne valide le décrément compteur pour ce mouton que si
// on l'a déja compté
always@(*)
un_mouton_de_moins <= B && (last_A && !'A) && deja_compte ;

/] ...
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