
ABI / Convention d'appel

ou comment interfacer C et assembleur

Alexis Polti

27 septembre 2018 © Alexis Polti SE203page 2

Licence de droits d'usage

Par le téléchargement ou la consultation de ce document, l’utilisateur accepte la licence d’utilisation qui y est
attachée, telle que détaillée dans les dispositions suivantes, et s’engage à la respecter intégralement.

La licence confère à l'utilisateur un droit d'usage sur le document consulté ou téléchargé, totalement ou en partie, dans
les conditions définies ci-après, et à l’exclusion de toute utilisation commerciale.

Le droit d’usage défini par la licence autorise un usage dans un cadre académique, par un utilisateur donnant des cours
dans un établissement d’enseignement secondaire ou supérieur et à l’exclusion expresse des formations commerciales
et notamment de formation continue. Ce droit comprend :

● le droit de reproduire tout ou partie du document sur support informatique ou papier,
● le droit de diffuser tout ou partie du document à destination des élèves ou étudiants.

Aucune modification du document dans son contenu, sa forme ou sa présentation n’est autorisé.

Les mentions relatives à la source du document et/ou à son auteur doivent être conservées dans leur intégralité.

Le droit d’usage défini par la licence est personnel, non exclusif et non transmissible.

Tout autre usage que ceux prévus par la licence est soumis à autorisation préalable et expresse de l’auteur :

alexis.polti@telecom-paristech.fr

Contexte académique } sans modification

27 septembre 2018 © Alexis Polti SE203page 3

tl;dr

Ce qu'on va apprendre :
la gestion des fonctions en C

le passage d'argument
le passage de la valeur de retour
à quoi sert une pile
ce qu'est un activation record

les conventions d'appel ARM

27 septembre 2018 © Alexis Polti SE203page 4

ABI

ABI : application binary interface
Convention regroupant :

les types de données, leur tailles et alignements
les formats des exécutables, objets et bibliothèques
les conventions d'usage de registres
les conventions d'appel de fonctions
les appels système
le format des informations de débug
le format et traitement des exceptions
etc.

Pour ARM :
OABI (APCS) : obsolète
EABI (AAPCS) : actuelle et plus performante
EABIHF : la même, le coprocesseur flottant en plus

27 septembre 2018 © Alexis Polti SE203page 5

Structure d'une fonction

Architecture d'une fonction C
une fonction se compose :

d'un prologue : met en place un environnement d'exécution
adéquat
du corps de la fonction
d'un épilogue :

fait le ménage,
place l'éventuelle valeur de retour au bon endroit,
et transfère le contrôle à la fonction appelante.

On peut demander la suppression des prologues /
épilogues par l'attribut naked

exemple : __attribute__ ((naked)) void f(void);

27 septembre 2018 © Alexis Polti SE203page 6

Structure d'une fonction

Environnement d'exécution
Une fonction a souvent besoin d'utiliser des registres,
mais elle ne sait pas si ces registres sont déjà utilisés
ou non par les fonctions appelantes.
→ Elle doit les remettre dans leur état original avant de
retourner

En clair : Merci de laisser cet endroit aussi propre en
sortant que vous l'avez trouvé en entrant…

27 septembre 2018 © Alexis Polti SE203page 7

Mécanisme d'appel de fonction
La procédure appelante (caller) :

évalue les arguments et les place à des endroits appropriés,
sauve l'adresse de retour,
sauvegarde les registres qu'elle utilise (caller saved registers) et qui doivent être préservés,
passe le contrôle à la procédure appelée.

La procédure appelante (caller) :

évalue les arguments et les place à des endroits appropriés,
sauve l'adresse de retour,
sauvegarde les registres qu'elle utilise (caller saved registers) et qui doivent être préservés,
passe le contrôle à la procédure appelée.

27 septembre 2018 © Alexis Polti SE203page 8

Mécanisme d'appel de fonction
La procédure appelante (caller) :

évalue les arguments et les place à des endroits appropriés
sauve l'adresse de retour
sauvegarde les registres qu'elle utilise (caller saved registers) et qui doivent être préservés
passe le contrôle à la procédure appelée

La procédure appelante (caller) :

évalue les arguments et les place à des endroits appropriés
sauve l'adresse de retour
sauvegarde les registres qu'elle utilise (caller saved registers) et qui doivent être préservés
passe le contrôle à la procédure appelée

La procédure appelée (callee)

initialise les autres registres critiques (FP, …),
sauvegarde les registres qui seront utilisés et qui doivent être maintenus (callee saved registers),
alloue de la place en mémoire pour ses variables locales et temporaires (modifie SP),

Le corps de la fonction est exécuté

stocke l'éventuelle valeur de retour à un endroit approprié,
restaure les registres callee saved,
libère l'espace mémoire alloué (remet SP à son ancienne valeur),
redonne le contrôle à la fonction appelante.

La procédure appelée (callee)

initialise les autres registres critiques (FP, …),
sauvegarde les registres qui seront utilisés et qui doivent être maintenus (callee saved registers),
alloue de la place en mémoire pour ses variables locales et temporaires (modifie SP),

Le corps de la fonction est exécuté

stocke l'éventuelle valeur de retour à un endroit approprié,
restaure les registres callee saved,
libère l'espace mémoire alloué (remet SP à son ancienne valeur),
redonne le contrôle à la fonction appelante.

prologue

épilogue

27 septembre 2018 © Alexis Polti SE203page 9

Mécanisme d'appel de fonction
La procédure appelante (caller) :

évalue les arguments et les place à des endroits appropriés
sauve l'adresse de retour
sauvegarde les registres qu'elle utilise (caller saved registers) et qui doivent être préservés
passe le contrôle à la procédure appelée

La procédure appelante (caller) :

évalue les arguments et les place à des endroits appropriés
sauve l'adresse de retour
sauvegarde les registres qu'elle utilise (caller saved registers) et qui doivent être préservés
passe le contrôle à la procédure appelée

La procédure appelée (callee)

initialise les autres registres critiques (FP, …)
sauvegarde les registres qui seront utilisés et qui doivent être maintenus (callee saved registers)
alloue de la place en mémoire pour ses variables locales et temporaires

Le corps de la fonction est exécuté

stocke l'éventuelle valeur de retour à un endroit approprié
restaure les registres callee saved
libère l'espace mémoire alloué
redonne le contrôle à la fonction appelante

La procédure appelée (callee)

initialise les autres registres critiques (FP, …)
sauvegarde les registres qui seront utilisés et qui doivent être maintenus (callee saved registers)
alloue de la place en mémoire pour ses variables locales et temporaires

Le corps de la fonction est exécuté

stocke l'éventuelle valeur de retour à un endroit approprié
restaure les registres callee saved
libère l'espace mémoire alloué
redonne le contrôle à la fonction appelante

La procédure appelante :

restaure ses registres sauvegardés,
désalloue les éventuels arguments,
et continue son exécution.

La procédure appelante :

restaure ses registres sauvegardés,
désalloue les éventuels arguments,
et continue son exécution.

prologue

épilogue

27 septembre 2018 © Alexis Polti SE203page 10

Où en est-on ?

À venir :
Que sauvegarder exactement ?
Où ?
Et par qui ?

Comment transmettre les arguments ?
Comment transmettre la valeur de
retour ?

27 septembre 2018 © Alexis Polti SE203page 11

Pile / activation record

Pile et activation record:
En C, les fonctions peuvent être récursives ou ré-entrantes.
Chaque instance d'appel de fonction doit donc pouvoir disposer
de son propre espace de stockage pour ses objets.

Les garder dans des endroits statiques est très difficile.
Il faut donc pouvoir allouer dynamiquement de la mémoire pour
stocker ces objets.

La plupart du temps, cela est fait avec :
une ou plusieurs pile(s) : C, C++, Java, Ada, C#, Pascal, …
le tas : LISP, Scheme, …

L'espace contenant les objets propres à un appel de fonction est
appelé « activation record » ou « activation frame ».

27 septembre 2018 © Alexis Polti SE203page 12

Pile / activation record

Rôle de "la" pile :
Originellement, stocker l'adresse de retour d'une fonction : « call
stack ».

Implémentation :
matérielle
logicielle
mixte

On en profite généralement pour y stocker aussi :
certains paramètres lors d'un appel de fonction,
les sauvegardes de registres / état du processeur,
des informations diverses…

Selon les langages et architectures, une ou plusieurs piles (Forth,
Stackless Python).

27 septembre 2018 © Alexis Polti SE203page 13

Pile / activation record

Contenu de l'activation record en C / C++
adresse de retour (si nécessaire)
arguments
sauvegardes de registres et de l'état du processeur
dynamic link : lien vers l'AR de la fonction appelante
données locales

variables locales
valeurs intermédiaires dans certaines expressions
données dynamiques

informations diverses (pas en C)
this en C++
static link : lien vers l'AR de la définition de la fonction englobante
liens vers handlers d'exception
…

27 septembre 2018 © Alexis Polti SE203page 14

Pile / activation record

void g(int a,
 int b,
 int c)
{
 ...
}

int f(int x)
{
 ...
 g(a, b, c);
 ...
}

int main()
{
 ...
 res = f(x);
 ...
}

direction de la pile
(ici, full-descending)

argument 3 de g : c

 SP (R13)

argument 2 de g : b
argument 1 de g : a

données temporaires de f

variables automatiques de f

variables automatiques de g

données temporaires de g

argument 1 de f : x
ancien LR (R14)

 activation record de g(a, b, c)

 activation record de f(x)

ATTENTION
sera modifié plus tard !données temporaires de main

27 septembre 2018 © Alexis Polti SE203page 15

Sauvegarde des registres

Stratégies
Caller saved registers : la procédure appelante sait
quels sont les registres qui ne doivent pas être modifiés
par l'appel et les sauvegarde.

Inconvénient : on en sauvegarde généralement beaucoup trop.

Callee saved registers : la procédure appelée sait quels
sont les registres qu'elle va modifier et les sauvegarde.

Inconvénient : on en sauvegarde généralement beaucoup trop.

Une stratégie optimale consiste en une approche
intermédiaire.

27 septembre 2018 © Alexis Polti SE203page 16

Sauvegarde des registres

Stratégie intermédiaire (ARM)
Les registres sont partagés en deux groupes :
n registres caller saved
m registres callee saved

27 septembre 2018 © Alexis Polti SE203page 17

Sauvegarde des registres

Quelle répartition ?
Le code de sauvegarde / restauration est généré :
caller saved register : 1 fois par appel de procédure.
callee saved register : 1 fois par procédure.
→ Si on cherche à optimiser la taille du code, on a intérêt à avoir un maximum
de callee-saved registers.

Une procédure terminale a tout intérêt à utiliser des registres caller
saved.

Une procédure non terminale a tout intérêt à utiliser :
Pour les registres devant survivre à un appel de fonction, des registres callee
saved.
Pour le reste, des registres caller saved.

EABI ARM :
R0 à R3 : caller saved
R4 à R11 : callee saved

27 septembre 2018 © Alexis Polti SE203page 18

Activation frame / Frame pointer

Adressage des données
Si nous sommes actuellement
dans f(x), et si toutes ses
données sont de taille connue
à la compilation :

comment fait-on référence aux
arguments de f ?
comment fait-on référence aux
variables locales de f ?
comment fait-on référence aux
données temporaires de f ?

Réponse : ?

 SP (R13)

 activation record
 de f(x)

données temporaires de f

variables automatiques de f

argument 1 de f : x
ancien LR (R14)

données temporaires de main

27 septembre 2018 © Alexis Polti SE203page 19

Activation frame / Frame pointer

Problème
En C, comme dans beaucoup de langages, les données
locales peuvent être de taille non connue à la compilation :

exemples ?

Conséquence :
La taille des activation record n'est donc pas connue à la
compilation.
La position du SP n'est donc pas connue à la compilation.
Il est impossible de calculer les adresses des variables locales /
arguments en se basant sur SP.

Il faut un pointeur stable : Frame Pointer (FP, R11 sur
ARM)

27 septembre 2018 © Alexis Polti SE203page 20

Activation frame / Frame pointer

Frame Pointer
permet de calculer les adresses des
données d'une fonction, même en
cas de SP variable

les arguments sont en FP + 4, FP + 8,
FP + c, …
les variables locales et temporaires
sont en FP – 4n.

Sur ARM, traditionnellement le
Frame Pointer est R11.

Si on sait qu'il n'y aura pas
d'allocation dynamique sur la pile,
on peut supprimer le frame pointer
grâce à l'option de compilation
-fomit-frame-pointer.

argument 3 de g : c

 SP de g

argument 2 de g : b
argument 1 de g : a

données temporaires de f

variables automatiques de f

ancien FP de f

variables automatiques de g

données temporaires de g

argument 1 de f : x
ancien FP de main

 AR de
g(a, b, c)

AR de f(x)

données temporaires de main

ancien LR de main

 FP de g

27 septembre 2018 © Alexis Polti SE203page 21

Activation frame / Frame pointer

Retour de fonction
SP <= FP+4
FP <= Ancien FP
L'appelant désalloue ensuite les
arguments.

Quizz
Où se trouve le dynamic link ?

argument 3 de g : c

 SP de g

argument 2 de g : b
argument 1 de g : a

données temporaires de f

variables automatiques de f

ancien FP de f

variables automatiques de g

données temporaires de g

argument 1 de f : x
ancien FP de main

 AR de
g(a, b, c)

AR de f(x)

données temporaires de main

ancien LR de main

 FP de g

27 septembre 2018 © Alexis Polti SE203page 22

Où en est-on ?

On a vu :
rôle de la pile
structure des activation frames / records
rôle du SP / FP
stratégies de sauvegarde des registres

À venir :
Comment transmettre les arguments ?
Comment transmettre la valeur de
retour ?

27 septembre 2018 © Alexis Polti SE203page 23

Passage d'arguments

Plusieurs scénarios possibles
L'appelant peut créer une structure, y stocker les
arguments et passer l'adresse de cette structure (par un
registre, qui deviendra important et qu'il faudra sauver en
cas de sous-appel).

L'appelant connaît l'emplacement du stack frame de
l'appelé, et peut stocker les argument juste à côté de cette
frame, de façon à ce que l'appelé les trouve (cf. schémas
précédents).

L'appelant peut stocker certains arguments dans des
registres, et d'autres sur la pile (scénario maintenant le
plus fréquent).

27 septembre 2018 © Alexis Polti SE203page 24

Passage d'arguments

Sur ARM
Les 4 premiers arguments sont passés dans R0 à R3.
Les arguments suivants sont passés sur la pile.
Les types de 64 bits sont passés sur deux registres
consécutifs.
Les grosses structures sont passées

soit sur la pile,
soit un bout par les registres et le reste sur la pile.

Pour les tableaux, on passe l'adresse du premier
élément.

27 septembre 2018 © Alexis Polti SE203page 25

Passage de la valeur de retour

En général
Dans un registre, pour les petites données.
Sur ARM :

Donnée sur 32 bits : R0
Donnée sur 64 bits : R0+R1
Autre : cf. prochain slide.

27 septembre 2018 © Alexis Polti SE203page 26

Passage de la valeur de retour

En général
Pour les structures / grosses données, il est tentant de
les allouer sur la pile et de retourner un pointeur
dessus.

Pourquoi est-ce une très mauvaise idée ?
Comment le faire correctement ?

27 septembre 2018 © Alexis Polti SE203page 28

En résumé

argument 3 de g : c

 SP de g (R13)

argument 2 de g : b
argument 1 de g : a

données temporaires de f

variables automatiques de f

ancien FP de f

variables automatiques de g

données temporaires de g

argument 1 de f : x
ancien FP de main

 activation record de g(a, b, c)

activation record de f(x)

données temporaires de main

ancien LR de main

 FP de g (R11)

direction de la pile
(ici, full-descending)

alloué par f

alloué par main

27 septembre 2018 © Alexis Polti SE203page 29

Résumé convention ARM

En général sur ARM
PC = R15, LR = 14, SP = R13, IP = R12, FP = R11 (pour gcc).
R4 à R11 : utilisés pour les variables locales, callee saved.
R0 à R3 : utilisés pour passer les arguments, caller saved.

Évidemment :
FP et SP sont callee saved.
LR et IP sont caller saved.

La valeur de retour est transmise dans R0 (ou R0 + R1).

Les procédures ne sauvegardent leur LR que si elles appellent d'autres
routines.

Le pointeur de pile doit être aligné sur 8 octets aux frontières d'unités de
compilation et pour une table de handlers d'IRQ.

27 septembre 2018 © Alexis Polti SE203page 30

Licence de droits d'usage

Par le téléchargement ou la consultation de ce document, l’utilisateur accepte la licence d’utilisation qui y est
attachée, telle que détaillée dans les dispositions suivantes, et s’engage à la respecter intégralement.

La licence confère à l'utilisateur un droit d'usage sur le document consulté ou téléchargé, totalement ou en partie, dans
les conditions définies ci-après, et à l’exclusion de toute utilisation commerciale.

Le droit d’usage défini par la licence autorise un usage dans un cadre académique, par un utilisateur donnant des cours
dans un établissement d’enseignement secondaire ou supérieur et à l’exclusion expresse des formations commerciales
et notamment de formation continue. Ce droit comprend :

● le droit de reproduire tout ou partie du document sur support informatique ou papier,
● le droit de diffuser tout ou partie du document à destination des élèves ou étudiants.

Aucune modification du document dans son contenu, sa forme ou sa présentation n’est autorisé.

Les mentions relatives à la source du document et/ou à son auteur doivent être conservées dans leur intégralité.

Le droit d’usage défini par la licence est personnel, non exclusif et non transmissible.

Tout autre usage que ceux prévus par la licence est soumis à autorisation préalable et expresse de l’auteur :

alexis.polti@telecom-paristech.fr

Contexte académique } sans modification

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 28
	Diapo 29
	Diapo 30

