
SystemVerilog
Comment décrire du matériel

Tarik Graba
Année scolaire 2019/2020

Plan

La logique combinatoire
Exemples

La généricité

Logique séquentielle synchrone
Exemples

Machines à états finis
Machines de Moore
Machines de Mealy
Machines de Mealy resynchronisées

Modélisation des mémoires

2/70 SE204 Tarik Graba 2019/2020

Logique combinatoire

Rappel

La sortie d’un bloc combinatoire ne dépend que de la valeur de ses entrées.

Dit autrement, pour les mêmes valeurs des entrées on doit toujours avoir les
mêmes valeurs de sortie.

3/70 SE204 Tarik Graba 2019/2020

Affectations concurrentes assign

Les affectations concurrentes ne permettent que de représenter de la logique
combinatoire.

Elles ne permettent pas d’avoir de structures de contrôle (if , case ...) on la
réservera aux cas simples (connexions, inversions par exemple)

Exemple:

assign o = s? a:b; // un multiplexeur

4/70 SE204 Tarik Graba 2019/2020

always_comb

En SystemVerilog on peut utiliser always_comb .
Équivalent à “always @(*) ”.
Le designer précise qu’il veut décrire de la logique combinatoire et les outils le
vérifient.

5/70 SE204 Tarik Graba 2019/2020

Plan

La logique combinatoire
Exemples

La généricité

Logique séquentielle synchrone
Exemples

Machines à états finis
Machines de Moore
Machines de Mealy
Machines de Mealy resynchronisées

Modélisation des mémoires

6/70 SE204 Tarik Graba 2019/2020

Processus always pour
décrire la logique combinatoire

Exemple: Un multiplexeur 2→ 1

module mux21(s, a, b, o);

input s;

input a, b ;

output reg o ;

always @(a or b or s)

if (s) o = a;

else o = b;

/* Pourrait être

o = b;

if (s) o = a;

* ou

o = s? a : b;

*/

endmodule

s

a

b
o

1

0

7/70 SE204 Tarik Graba 2019/2020

Processus always pour
décrire la logique combinatoire

Exemple: Un multiplexeur 2→ 1

module mux21(s, a, b, o);

input s;

input a, b ;

output reg o ;

always @(*)

if (s) o = a;

else o = b;

/* Pourrait être

o = b;

if (s) o = a;

* ou

o = s? a : b;

*/

endmodule

s

a

b
o

1

0

7/70 SE204 Tarik Graba 2019/2020

Processus always pour
décrire la logique combinatoire

Exemple: Un multiplexeur 2→ 1

module mux21(s, a, b, o);

input s;

input a, b ;

output logic o ;

always_comb

if (s) o = a;

else o = b;

/* Pourrait être

o = b;

if (s) o = a;

* ou

o = s? a : b;

*/

endmodule

s

a

b
o

1

0

7/70 SE204 Tarik Graba 2019/2020

Un mux 4→1

a[0]
a[1]
a[2]
a[3]

o

s
2

0
1
2
3

module mux41(s, a, o);

input [1:0] s;

input [3:0] a;

output reg o ;

always @(*)

case(s)

2'b00: o = a[0];

2'b01: o = a[1];

2'b10: o = a[2];

2'b11: o = a[3];

endcase

/* Pourrait être

o = a[s];

* ou

if (a == 2'd0) o = a[0];

else if (a == 2'd1) o = a[1];

else if (a == 2'd2) o = a[2];

else if (a == 2'd3) o = a[3];

*/

endmodule

8/70 SE204 Tarik Graba 2019/2020

Un mux incomplet

module mux_il(s, a, o);

input [1:0] s;

input [3:0] a;

output reg o ;

always @(*)

case(s)

2'b00: o = a[0];

2'b01: o = a[1];

2'b10: o = a[2];

endcase

endmodule

9/70 SE204 Tarik Graba 2019/2020

Un mux incomplet

Que se passe-t-il si s = 3?

module mux_il(s, a, o);

input [1:0] s;

input [3:0] a;

output reg o ;

always @(*)

case(s)

2'b00: o = a[0];

2'b01: o = a[1];

2'b10: o = a[2];

endcase

endmodule

9/70 SE204 Tarik Graba 2019/2020

Un mux incomplet

On mémorise la valeur précédente!!

a[0]
a[1]

s
2

0
1
2
3

a[2] oQD

en

6= 3

Erreur avec always_comb

module mux_il(s, a, o);

input [1:0] s;

input [3:0] a;

output reg o ;

always @(*)

case(s)

2'b00: o = a[0];

2'b01: o = a[1];

2'b10: o = a[2];

endcase

endmodule

9/70 SE204 Tarik Graba 2019/2020

Un mux incomplet
Valeurs des sorties toujours définies

a[0]
a[1] o

s
2

0
1
2
3

a[2]

module mux_i(s, a, o);

input [1:0] s;

input [3:0] a;

output reg o ;

always @(*)

begin

// la valeur par défaut

o = a[2];

case(s)

2'b00: o = a[0];

2'b01: o = a[1];

endcase

end

/* Pourrait être

case(s)

2'b00: o = a[0];

2'b01: o = a[1];

default: o = a[2];

endcase

*/

endmodule

10/70 SE204 Tarik Graba 2019/2020

Règles pour décrire la logique
combinatoire

La liste de sensibilité doit contenir toutes les entrées.
Les valeurs des sorties doivent être définie pour toutes les valeurs des
entrées.

Recommandations
Liste de sensibilité automatique.
Donner systématiquement une valeur par défaut aux sorties.

11/70 SE204 Tarik Graba 2019/2020

Exercixce

Écrire le code SystemVerilog d’un
décodeur 7 segments
Écrire le code SystemVerilog d’un
décodeur 7 segments qui ne décode
que les nombres de 0 à 9

0

1

2

3

4

5

6

12/70 SE204 Tarik Graba 2019/2020

Un décodeur 7 segments

Dec 7 Seg OI
4 7

module dec7seg (I, O);

input [3:0] I;

output [6:0] O;

logic [6:0] O;

always_comb

case(I)

4'h0: O = 7'b0111111 ;

4'h1: O = 7'b0000110 ;

4'h2: O = 7'b1011011 ;

4'h3: O = 7'b1001111 ;

4'h4: O = 7'b1100110 ;

4'h5: O = 7'b1101101 ;

4'h6: O = 7'b1111101 ;

4'h7: O = 7'b0000111 ;

4'h8: O = 7'b1111111 ;

4'h9: O = 7'b1100111 ;

4'ha: O = 7'b1110111 ;

4'hb: O = 7'b1111100 ;

4'hc: O = 7'b0111001 ;

4'hd: O = 7'b1011110 ;

4'he: O = 7'b1111001 ;

4'hf: O = 7'b1110001 ;

endcase

endmodule

13/70 SE204 Tarik Graba 2019/2020

Un décodeur 7 segments
utilisation d’une table

Dec 7 Seg OI
4 7

LUT: LookUp Table

module dec7segT (I, O);

input [3:0] I;

output [6:0] O;

logic [6:0] O;

logic [6:0] Tab [0:15] = '{

'b0111111 ,

'b0000110 ,

'b1011011 ,

'b1001111 ,

'b1100110 ,

'b1101101 ,

'b1111101 ,

'b0000111 ,

'b1111111 ,

'b1100111 ,

'b1110111 ,

'b1111100 ,

'b0111001 ,

'b1011110 ,

'b1111001 ,

'b1110001 };

always_comb O = Tab[I];

endmodule

14/70 SE204 Tarik Graba 2019/2020

Un décodeur 7 segments incomplet

Dec 7 Seg OI
4 7

module dec7segI (I, O);

input [3:0] I;

output [6:0] O;

logic [6:0] O;

always_comb

case(I)

4'h0 : O = 7'b0111111 ;

4'h1 : O = 7'b0000110 ;

4'h2 : O = 7'b1011011 ;

4'h3 : O = 7'b1001111 ;

4'h4 : O = 7'b1100110 ;

4'h5 : O = 7'b1101101 ;

4'h6 : O = 7'b1111101 ;

4'h7 : O = 7'b0000111 ;

4'h8 : O = 7'b1111111 ;

4'h9 : O = 7'b1100111 ;

4'd10,4'd11,

4'd12,4'd13,

4'd14,4'd15

: O = 7'b0000000 ;

endcase

endmodule

15/70 SE204 Tarik Graba 2019/2020

Un décodeur 7 segments incomplet

Dec 7 Seg OI
4 7

module dec7segI (I, O);

input [3:0] I;

output [6:0] O;

logic [6:0] O;

always_comb

case(I)

4'h0 : O = 7'b0111111 ;

4'h1 : O = 7'b0000110 ;

4'h2 : O = 7'b1011011 ;

4'h3 : O = 7'b1001111 ;

4'h4 : O = 7'b1100110 ;

4'h5 : O = 7'b1101101 ;

4'h6 : O = 7'b1111101 ;

4'h7 : O = 7'b0000111 ;

4'h8 : O = 7'b1111111 ;

4'h9 : O = 7'b1100111 ;

default: O = 7'b0000000 ;

endcase

endmodule

15/70 SE204 Tarik Graba 2019/2020

Un décodeur 7 segments incomplet

Dec 7 Seg OI
4 7

module dec7segI (I, O);

input [3:0] I;

output [6:0] O;

logic [6:0] O;

always_comb

begin

O = 7'b0000000 ; // valeur par défaut

case(I)

4'h0 : O = 7'b0111111 ;

4'h1 : O = 7'b0000110 ;

4'h2 : O = 7'b1011011 ;

4'h3 : O = 7'b1001111 ;

4'h4 : O = 7'b1100110 ;

4'h5 : O = 7'b1101101 ;

4'h6 : O = 7'b1111101 ;

4'h7 : O = 7'b0000111 ;

4'h8 : O = 7'b1111111 ;

4'h9 : O = 7'b1100111 ;

endcase

begin

endmodule

15/70 SE204 Tarik Graba 2019/2020

Un décodeur 7 segments incomplet
Utilisation de casez

Dec 7 Seg OI
4 7

module dec7segI (I, O);

input [3:0] I;

output [6:0] O;

logic [6:0] O;

always_comb

casez(I)

4'h0 : O = 7'b0111111 ;

4'h1 : O = 7'b0000110 ;

4'h2 : O = 7'b1011011 ;

4'h3 : O = 7'b1001111 ;

4'h4 : O = 7'b1100110 ;

4'h5 : O = 7'b1101101 ;

4'h6 : O = 7'b1111101 ;

4'h7 : O = 7'b0000111 ;

4'h8 : O = 7'b1111111 ;

4'h9 : O = 7'b1100111 ;

4'b101?,

4'b11??: O = 7'b0000000 ;

endcase

endmodule

16/70 SE204 Tarik Graba 2019/2020

Utiliser des fonctions

Pour “mutualiser” du code on peut utiliser des modules.

Nb1I1
8

Nb1
8

I2

O

17/70 SE204 Tarik Graba 2019/2020

Utiliser des fonctions
Pour “mutualiser” du code on peut aussi utiliser des fonctions.

module foo(I1,I2, O);

input [7:0] I1,I2;

output logic O;

// Nombre de 1 dans un mot de 8bits

function [3:0] nbr1 (input [7:0] N);

int tmp;

begin

tmp = 0;

for (int i = 0; i<8; i++)

if (N[i]) tmp++;

return tmp;

// On aurait pu écrire

// nbr1 = tmp ;

end

endfunction

always_comb

O = nbr1(I1) > nbr1(I2);

endmodule

Nb1I1
8

Nb1
8

I2

O

17/70 SE204 Tarik Graba 2019/2020

Utiliser des fonctions
différence entre tâches et fonctions

En SystemVerilog il y deux type de sous-programmes:
Les fonctions: Exécution en temps nul

Affectation bloquantes
Pas de synchronisation (#,@,…)

Les tâches: Ne renvoient pas de valeurs
Peuvent avoir des output

Plus d’informations et des exemples Section 13 de la norme.

18/70 SE204 Tarik Graba 2019/2020

Plan

La logique combinatoire
Exemples

La généricité

Logique séquentielle synchrone
Exemples

Machines à états finis
Machines de Moore
Machines de Mealy
Machines de Mealy resynchronisées

Modélisation des mémoires

19/70 SE204 Tarik Graba 2019/2020

Faire un code paramétrable

Les modules peuvent être paramétrables:
Définir leur comportement/structure en fonction de certains paramètres

Le code peut ainsi être réutilisé dans des conditions différentes.

20/70 SE204 Tarik Graba 2019/2020

Faire un code paramétrable
parameter

8

8

8

A

B

C

D

S0

S1

S

8

10

21/70 SE204 Tarik Graba 2019/2020

Faire un code paramétrable
parameter

module adder #(parameter WIDTH = 8)

(input [WIDTH-1:0] A,B,

output [WIDTH :0] S);

assign S = A + B;

endmodule

8

8

8

A

B

C

D

S0

S1

S

8

10

21/70 SE204 Tarik Graba 2019/2020

Faire un code paramétrable
parameter

module truc (input [7:0] A,B,C,D,

output [9:0] S);

wire [8:0] S0,S1;

adder #(.WIDTH(8)) add1 (.A(A),.B(B),.S(S0));

adder #(.WIDTH(8)) add2 (.A(C),.B(D),.S(S1));

adder #(.WIDTH(9)) add3 (.A(S0),.B(S1),.S(S));

endmodule

8

8

8

A

B

C

D

S0

S1

S

8

10

21/70 SE204 Tarik Graba 2019/2020

Faire un code paramétrable
localparam

Parfois on a besoin de paramètres non modifiables à l’instanciation.

module Table (clk, index, valeur_e, valeur_s);

parameter SIZE = 256;

parameter WIDTH = 8;

localparam I_WIDTH = $clog2(SIZE);

input clk;

input [I_WIDTH-1:0] index;

input [WIDTH-1:0] valeur_e;

output [WIDTH-1:0] valeur_s;

logic [WIDTH-1:0] valeur_s;

logic [WIDTH-1:0] Tab [0:SIZE-1];

always_ff @(posedge clk)

begin

Tab[index] <= valeur_e;

valeur_s <= Tab[index];

end

endmodule

Un paramètre local est:
Une constante
Calculé à partir d’autres constantes

Ils ne sont pas modifiables à l’extérieur du
module.

22/70 SE204 Tarik Graba 2019/2020

Faire un code paramétrable

Comment changer le code en fonction de ces paramètres?

23/70 SE204 Tarik Graba 2019/2020

Faire un code paramétrable
generate

De façon conditionnelle:

module adder #(parameter generic = "YES")

(input [7:0] A,B,

output [7:0] S);

generate

if (generic == "YES")

begin

assign S = A + B ;

end

else

begin

optimised_adder o_adder (A,B,S);

end

endgenerate

endmodule

Remplace dans ce cas des directives de préprocesseur (`ifdef)

24/70 SE204 Tarik Graba 2019/2020

Faire un code paramétrable
generate

En répétant le comportement

// Extrait de la norme section 27.4

module gray2bin #(parameter W = 8)

(input [W-1:0] G,

output [W-1:0] B

);

genvar i;

generate

for (i=0; i<W; i++)

begin:position

// Le Xor des bit i à W-1

assign B[i] = ^G[W-1:i];

end

endgenerate

endmodule

25/70 SE204 Tarik Graba 2019/2020

Faire un code paramétrable
generate

En répétant la structure

module struct_adder #(parameter W = 8)

(input [W-1:0] A,B, input Ci,

output [W-1:0] S, output Co,m);

wire [W:0] c;

assign c[0] = Ci;

assign Co = c[W];

genvar i;

generate

for (i=0; i<W; i++)

begin:position

// ces noeuds seront dupliqués

wire s, e0, e1;

xor xor0 (s , A[i], B[i]);

xor xor1 (S[i] , s , c[i]);

and and0 (e0 , A[i], B[i]);

and and1 (e1 , s , c[i]);

or or0 (c[i+1], e0 , e1);

end

endgenerate

assign m = position[W/2].s;

endmodule

25/70 SE204 Tarik Graba 2019/2020

Plan

La logique combinatoire
Exemples

La généricité

Logique séquentielle synchrone
Exemples

Machines à états finis
Machines de Moore
Machines de Mealy
Machines de Mealy resynchronisées

Modélisation des mémoires

26/70 SE204 Tarik Graba 2019/2020

Processus always
pour de la logique séquentielle synchrone

La bascule D

module Dff (input clk,

input D ,

output reg Q);

always @(posedge clk)

Q <= D;

endmodule

QD

clk
A chaque front montant (posedge) de l’horloge on mémorise la valeur de
l’entrée.
Entre les fronts d’horloge la sortie conserve sa valeur.

27/70 SE204 Tarik Graba 2019/2020

always_ff

En SystemVerilog on peut utiliser always_ff .
Équivalent à “always ”.
Le concepteur précise qu’il veut décrire de la logique séquentielle et les outils
le vérifient.

28/70 SE204 Tarik Graba 2019/2020

Avec remise à zéro synchrone:

always_ff @(posedge clk)

if (reset)

begin

// Remise à zéro synchrone des registres

...

end

else

begin

// Que se passe-t-il à chaque front de l'horloge

...

end

Si reset vaut 1 au moment du front d’horloge!

29/70 SE204 Tarik Graba 2019/2020

Avec remise à zéro asynchrone:

always_ff @(posedge clk or posedge reset)

if (reset)

begin

// Remise à zéro asynchrone des registres

...

end

else

begin

// Que se passe-t-il à chaque front de l'horloge

...

end

Si reset vaut 1 (dès qu’il passe à 1) indépendamment du front d’horloge.

Il faut que la condition testée et la liste de sensibilité soient cohérentes.

30/70 SE204 Tarik Graba 2019/2020

Avec remise à zéro asynchrone:

always_ff @(posedge clk or negedge nreset)

if (!nreset)

begin

// Remise à zéro asynchrone des registres

...

end

else

begin

// Que se passe-t-il à chaque front de l'horloge

...

end

Si nreset vaut 0 (dès qu’il passe à 0) indépendamment du front d’horloge.

31/70 SE204 Tarik Graba 2019/2020

Plan

La logique combinatoire
Exemples

La généricité

Logique séquentielle synchrone
Exemples

Machines à états finis
Machines de Moore
Machines de Mealy
Machines de Mealy resynchronisées

Modélisation des mémoires

32/70 SE204 Tarik Graba 2019/2020

Une bascule D avec reset synchrone:

D
reset

Q

module Dff (clk, reset, D, Q);

input clk, reset ;

input D ;

output reg Q ;

always_ff @(posedge clk)

if (reset)

Q <= 1'b0;

else

Q <= D;

endmodule

33/70 SE204 Tarik Graba 2019/2020

Un registre :
Avec reset synchrone et enable

reset

Q
N

D
N 0

1

en

module Reg(input clk, reset, en,

input [7:0] D,

output logic [7:0] Q);

always_ff @(posedge clk)

if (reset)

Q <= 8'd0;

else

if (en) Q <= D;

endmodule

34/70 SE204 Tarik Graba 2019/2020

Un registre à décalage:

1
0

1
0

1
0

Q

en

D
R0RN−1 R1

35/70 SE204 Tarik Graba 2019/2020

Un registre à décalage:

1
0

1
0

1
0

Q

en

D
R0RN−1 R1

module SftReg # (parameter N = 8)

(input clk, en ,

input D ,

output Q);

logic [N-1:0] R;

assign Q = R[0];

always_ff @(posedge clk)

if (en) R <= { D, R[N-1:1] };

endmodule

35/70 SE204 Tarik Graba 2019/2020

Astuce
mettre la même valeur à tous les bits d’un vecteur

Opérateur de duplication

reg [N-1:0] A,B,C;

initial

begin

A = {N{1'b1}}; // tous les bits à 1

B = {N{1'b0}}; // tous les bits à 0

C = {N{1'bz}}; // tous les bits à z

...

36/70 SE204 Tarik Graba 2019/2020

Astuce
mettre la même valeur à tous les bits d’un vecteur

Opérateur de duplication

reg [N-1:0] A,B,C;

initial

begin

A = {N{1'b1}}; // tous les bits à 1

B = {N{1'b0}}; // tous les bits à 0

C = {N{1'bz}}; // tous les bits à z

...

Des raccourcis

logic [N-1:0] A,B,C,D;

initial

begin

A = '1; // tous les bits à 1

B = '0; // tous les bits à 0

C = 'z; // tous les bits à z

...

D = 'd1 // 1 en décimal adapté

// à la taille de D!

36/70 SE204 Tarik Graba 2019/2020

Un compteur :

reset

Q
NN 0

1

en
1

37/70 SE204 Tarik Graba 2019/2020

Un compteur :

reset

Q
NN 0

1

en
1

module Cpt (clk, reset, en, Q);

parameter N = 8;

input clk, reset, en ;

output logic [N-1:0] Q ;

always_ff @(posedge clk)

if (reset)

Q <= '0;

else

if (en)

Q <= Q + 1;

endmodule

37/70 SE204 Tarik Graba 2019/2020

Affectations bloquantes/différées

Quelle est la différence entre ces deux codes:

logic a,b,r,q;

always_ff @(posedge clk)

begin

r = a & b;

q <= r;

end

logic a,b,r,q;

always_ff @(posedge clk)

begin

r <= a & b;

q <= r;

end

38/70 SE204 Tarik Graba 2019/2020

Affectations bloquantes/différées

Quelle est la différence entre ces deux codes:

logic a,b,r,q;

always_ff @(posedge clk)

begin

r = a & b;

q <= r;

end

b
a r q

logic a,b,r,q;

always_ff @(posedge clk)

begin

r <= a & b;

q <= r;

end

b
a r q

38/70 SE204 Tarik Graba 2019/2020

Affectations bloquantes/différées

Et ici ?

logic [N:0] R;

always_ff @(posedge clk)

begin: loop

int i;

for (i=0; i<N; i++)

R[i+1] = R[i];

end

logic [N:0] R;

always_ff @(posedge clk)

begin: loop

int i;

for (i=0; i<N; i++)

R[i+1] <= R[i];

end

39/70 SE204 Tarik Graba 2019/2020

Affectations bloquantes/différées

Et ici ?

logic [N:0] R;

always_ff @(posedge clk)

begin: loop

int i;

for (i=0; i<N; i++)

R[i+1] = R[i];

end

R0 RN

logic [N:0] R;

always_ff @(posedge clk)

begin: loop

int i;

for (i=0; i<N; i++)

R[i+1] <= R[i];

end

R0
R1 R2 RN

39/70 SE204 Tarik Graba 2019/2020

Variables locales

Pour éviter le non-déterminisme en simulation, déclarer des variables locales aux
processus.

logic a,b,r,q;

always_ff @(posedge clk)

begin

r = a & b;

q <= r;

end

logic a,b,q;

always_ff @(posedge clk)

begin:named_process

logic r;

r = a & b;

q <= r;

end

On est sûr que r ne peut être lu dans un autre processus.

40/70 SE204 Tarik Graba 2019/2020

Affectations bloquantes/différées

Que fait ce code?

logic [N-1:0] R;

logic p;

always_ff @(posedge clk)

begin: loop

int i;

logic t;

t = 0;

for (i=0; i<N; i++)

t = t ^ R[i];

p <= t;

end

41/70 SE204 Tarik Graba 2019/2020

Affectations bloquantes/différées
Que fait ce code?

logic [N-1:0] R;

logic p;

always_ff @(posedge clk)

begin: loop

int i;

logic t;

t = 0;

for (i=0; i<N; i++)

t = t ^ R[i];

p <= t;

end

R0 R1 R2 RN−2 RN−1

p

41/70 SE204 Tarik Graba 2019/2020

Plan

La logique combinatoire
Exemples

La généricité

Logique séquentielle synchrone
Exemples

Machines à états finis
Machines de Moore
Machines de Mealy
Machines de Mealy resynchronisées

Modélisation des mémoires

42/70 SE204 Tarik Graba 2019/2020

Machines à états finis

Méthode pour concevoir des
automates.
A partir d’un graphe d’états.
Système synchrone. S0

S1

cond0cond2

cond1

Init

cond0

cond2

cond1

43/70 SE204 Tarik Graba 2019/2020

Déclaration du registre d’état
et des états

En Verilog 95

`define INIT 2'b00

`define S0 2'b01

`define S1 2'b10

reg [1:0] state, n_state;

//...Le code

`undef INIT

`undef S0

`undef S1

44/70 SE204 Tarik Graba 2019/2020

Déclaration du registre d’état
et des états

En Verilog 2001

localparam INIT = 2'b00;

localparam S0 = 2'b01;

localparam S1 = 2'b10;

reg [1:0] state, n_state;

//...Le code

44/70 SE204 Tarik Graba 2019/2020

Déclaration du registre d’état
et des états

En SystemVerilog

enum logic[1:0] { INIT, S0, S1 } state, n_state;

//...Le code

44/70 SE204 Tarik Graba 2019/2020

Modification de l’état

Synchrone

always_ff @(posedge clk)

if (reset)

state <= INIT ;

else

state <= n_state ;

L’état initial au reset doit être explicite.
• Si l’état initial n’est pas connu le comportement n’est pas déterministe.

Le changement d’état se fait de façon synchrone.

45/70 SE204 Tarik Graba 2019/2020

Plan

La logique combinatoire
Exemples

La généricité

Logique séquentielle synchrone
Exemples

Machines à états finis
Machines de Moore
Machines de Mealy
Machines de Mealy resynchronisées

Modélisation des mémoires

46/70 SE204 Tarik Graba 2019/2020

Machine de Moore

Il faut mémoriser l’état (registre).

Le prochain état dépend de l’état actuel et des entrées.

Les sorties dépendent combinatoirement de l’état courant.

stateinputs n_state

outputs

47/70 SE204 Tarik Graba 2019/2020

3 processus
Un processus séquentiel pour sauvegarder l’état.

Deux processus combinatoires:
• Calcul de l’état futur.
• Calcul des sorties.

n_state doit être un signal.

stateinputs n_state

outputs

always_combalways_ffalways_comb

48/70 SE204 Tarik Graba 2019/2020

3 processus

always_comb

begin

// par défaut on reste

// dans l'état courant

n_state = state ;

case (state)

INIT: if (cond0)

n_state = S0;

S0 : if (cond1)

n_state = S1;

S1 : if (cond2)

n_state = INIT;

endcase

end

always_ff @(posedge clk)

if (reset)

state <= INIT ;

else

state <= n_state ;

always_comb

begin

if (state == INIT) begin

output1 = ...

end

else if (state == S0) begin

output1 = ...

end

else if (state == S0) begin

output1 = ...

end

else begin // Par défaut

output1 = ...

end

end

stateinputs n_state

outputs

always_combalways_ffalways_comb

49/70 SE204 Tarik Graba 2019/2020

2 processus

Un processus séquentiel pour modifier l’état.
Un processus combinatoire pour le calcul des sorties en fonction de l’état.
n_state disparaît.

stateinputs n_state

outputs

always_ff always_comb

50/70 SE204 Tarik Graba 2019/2020

2 processus

always_ff @(posedge clk)

if (reset)

state <= INIT ;

else

case (state)

INIT: if (cond0)

state <= S0;

S0 : if (cond1)

state <= S1;

S1 : if (cond2)

state <= INIT;

endcase

// Sinon on reste dans

// l'état courant

always_comb

begin

if (state == INIT) begin

output1 = ...

end

else if (state == S0) begin

output1 = ...

end

else if (state == S0) begin

output1 = ...

end

else begin // Par défaut

output1 = ...

end

end

stateinputs n_state

outputs

always_ff always_comb

51/70 SE204 Tarik Graba 2019/2020

Inconvénient

Un changement de sortie nécessite un changement d’état et donc au moins un
cycle de latence.

clk

state S0 S1

c

o

S0

S1

c

c

o <= 0

o <= 1

52/70 SE204 Tarik Graba 2019/2020

Plan

La logique combinatoire
Exemples

La généricité

Logique séquentielle synchrone
Exemples

Machines à états finis
Machines de Moore
Machines de Mealy
Machines de Mealy resynchronisées

Modélisation des mémoires

53/70 SE204 Tarik Graba 2019/2020

Machines de Mealy

Il faut mémoriser l’état (registre).

Le prochain état dépend de l’état actuel et des entrées.

Les sorties dépendent combinatoirement de l’état courant et des entrées.

staten_state

outputsinputs

54/70 SE204 Tarik Graba 2019/2020

Inconvénient

Un changement d’entrée peut être propagé immédiatement sur une sortie.

clk

state S0 S1

c

o

S0

S1

c

c

o <= c

o <= 1

55/70 SE204 Tarik Graba 2019/2020

2 processus

Un processus séquentiel pour modifier l’état.
Un processus combinatoire pour le calcul des sorties en fonction de l’état et des entrées.

staten_state

outputsinputs

always_ff always_comb

56/70 SE204 Tarik Graba 2019/2020

2 processus
always_ff @(posedge clk)

if (reset)

state <= INIT ;

else

case (state)

INIT: if (cond0)

state <= S0;

S0 : if (cond1)

state <= S1;

S1 : if (cond2)

state <= INIT;

endcase

// Sinon on reste dans

// l'état courant

always_comb

begin

if (state == INIT) begin

output1 = f1(inputs ...)

end

else if (state == S0) begin

output1 = f2(inputs ...)...

end

else if (state == S0) begin

output1 = f3(inputs ...)

end

else begin // Par défaut

output1 = f4(inputs ...)

end

end

staten_state

outputsinputs

always_ff always_comb

57/70 SE204 Tarik Graba 2019/2020

Inconvénient

On relie les entrées et les sorties par un chemin combinatoire:
Le chemin critique n’est pas maitrisé.
La modification de la MAE modifie les performances du reste du circuit.

58/70 SE204 Tarik Graba 2019/2020

Plan

La logique combinatoire
Exemples

La généricité

Logique séquentielle synchrone
Exemples

Machines à états finis
Machines de Moore
Machines de Mealy
Machines de Mealy resynchronisées

Modélisation des mémoires

59/70 SE204 Tarik Graba 2019/2020

Machines de Mealy resynchronisées

C’est une machine de Mealy pour laquelle les sorties sont resynchronisées pour
éviter les chemins combinatoires.

Il faut ajouter des registres sur les sorties

staten_state

inputs outputs

60/70 SE204 Tarik Graba 2019/2020

3 processus

Un processus séquentiel pour modifier l’état.
Un processus combinatoire pour le calcul des sorties en fonction de l’état et des entrées.
Faire apparaitre un signal interne pour les sorties avant resynchronisation.
Un processus séquentiel pour resynchroniser les sorties.

always_ff always_comb

staten_state

inputs outputs

always_ff

outputs_i

61/70 SE204 Tarik Graba 2019/2020

2 processus

Un processus séquentiel pour modifier l’état.
Un séquentiel pour le calcul des sorties

always_ff

staten_state

inputs outputs

always_ff

62/70 SE204 Tarik Graba 2019/2020

2 processus

always_ff @(posedge clk)

if (reset)

state <= INIT ;

else

case (state)

INIT: if (cond0)

state <= S0;

S0 : if (cond1)

state <= S1;

S1 : if (cond2)

state <= INIT;

endcase

// Sinon on reste dans

// l'état courant

always_ff @(posedge clk)

if (reset)

begin

// initialiser les sorties

output1 <= ...

end

else

begin

if (state == INIT) begin

output1 <= f1(inputs ...)

end

else if (state == S0) begin

output1 <= f2(inputs ...)...

end

else if (state == S0) begin

output1 <= f3(inputs ...)

end

end

always_ff

staten_state

inputs outputs

always_ff

63/70 SE204 Tarik Graba 2019/2020

1 processus

Un processus séquentiel pour modifier l’état et les sorties.

staten_state

inputs outputs

always_ff

64/70 SE204 Tarik Graba 2019/2020

1 processus
always_ff @(posedge clk)

if (reset)

begin

// Initialiser l'état

state <= INIT ;

// Initialiser les sorties

output1 <= ...

end

else

begin

// Les transitions

case (state)

INIT: if (cond0)

state <= S0;

S0 : if (cond1)

state <= S1;

...

...

S1 : if (cond2)

state <= INIT;

endcase

// Les sorties

if (state == INIT) begin

output1 <= f1(inputs ...)

end

else if (state == S0) begin

output1 <= f2(inputs ...)...

end

else if (state == S0) begin

output1 <= f3(inputs ...)

end

end

staten_state

inputs outputs

always_ff

65/70 SE204 Tarik Graba 2019/2020

Plan

La logique combinatoire
Exemples

La généricité

Logique séquentielle synchrone
Exemples

Machines à états finis
Machines de Moore
Machines de Mealy
Machines de Mealy resynchronisées

Modélisation des mémoires

66/70 SE204 Tarik Graba 2019/2020

Mémoire synchrone
mémoire simple port

un bus d’adresse
2 bus pour les données:

• écriture
• lecture

des signaux de contôle
une horloge
PAS DE RESET
On ne peut accéder qu’à un seul
élément dans le même cycle!

8

8

sram
8

Do

Addr

Di

wr

clk

67/70 SE204 Tarik Graba 2019/2020

Mémoire synchrone
mémoire simple port

un bus d’adresse
2 bus pour les données:

• écriture
• lecture

des signaux de contôle
une horloge
PAS DE RESET
On ne peut accéder qu’à un seul
élément dans le même cycle!

module sram(input clk, wr,

input [7:0] Addr,

input [7:0] Di,

output logic [7:0] Do);

logic[7:0] mem [0:255];

always_ff @(posedge clk)

begin

if (wr)

mem[Addr] <= Di;

Do <= mem[Addr];

end

endmodule

67/70 SE204 Tarik Graba 2019/2020

Mémoire synchrone
mémoire simple port

un bus d’adresse
2 bus pour les données:

• écriture
• lecture

des signaux de contôle
une horloge
PAS DE RESET
On ne peut accéder qu’à un seul
élément dans le même cycle!

module sram(input clk, wr,

input [7:0] Addr,

input [7:0] Di,

output [7:0] Do);

logic[7:0] mem [0:255];

logic[7:0] Addr_r;

always_ff @(posedge clk)

begin

if (wr)

mem[Addr] <= Di;

Addr_r <= Addr;

end

assign Do = mem[Addr_r];

endmodule

67/70 SE204 Tarik Graba 2019/2020

Mémoire synchrone
mémoire double ports

permet un accès double
l’écriture et la lecture à la même
adresse dans le même cycle
n’est pas prédictible
pourrait avoir deux horloges

sram_dp

8

8

8

8 8

8

Addr1

Di1

Do1

wr1

clk

wr2

Do2

Di2

Addr2

68/70 SE204 Tarik Graba 2019/2020

Mémoire synchrone
mémoire double ports

permet un accès double
l’écriture et la lecture à la même
adresse dans le même cycle
n’est pas prédictible
pourrait avoir deux horloges

module sram_dp(input clk, wr1, wr2,

input [7:0] Addr1, Addr2,

input [7:0] Di1, Di2,

output logic [7:0] Do1, Do2);

logic[7:0] mem [0:255];

always_ff @(posedge clk)

begin

if (wr1)

mem[Addr1] <= Di1;

Do1 <= mem[Addr1];

end

always_ff @(posedge clk)

begin

if (wr2)

mem[Addr2] <= Di2;

Do2 <= mem[Addr2];

end

endmodule

68/70 SE204 Tarik Graba 2019/2020

Mémoire synchrone
Initialisation du contenu

Possible seulement pour les FPGA
initial est normalement
exclusivement réservé à la
simulation
$readmemh (ou $readmemb) permet
d’initialiser une table à partir d’un
fichier

module sram(input clk, wr,

input [7:0] Addr,

input [7:0] Di,

output logic [7:0] Do);

logic[7:0] mem [0:255];

initial

$readmemh("init.txt", mem);

always_ff @(posedge clk)

begin

if (wr)

mem[Addr] <= Di;

Do <= mem[Addr];

end

endmodule

69/70 SE204 Tarik Graba 2019/2020

Mémoire synchrone
ROM synchrone

Possible seulement pour les FPGA
il suffit d’enlever la possibilité
d’écrire

module rom (input clk,

input [7:0] Addr,

output logic [7:0] Do);

logic[7:0] mem [0:255];

initial

$readmemh("init.txt", mem);

always_ff @(posedge clk)

Do <= mem[Addr];

endmodule

70/70 SE204 Tarik Graba 2019/2020

	La logique combinatoire
	Exemples

	La généricité
	Logique séquentielle synchrone
	Exemples

	 Machines à états finis
	 Machines de Moore
	 Machines de Mealy
	 Machines de Mealy resynchronisées

	Modélisation des mémoires

