
SystemVerilog
Comment décrire du matériel

Tarik Graba
Année scolaire 2019/2020



Plan

La logique combinatoire
Exemples

La généricité

Logique séquentielle synchrone
Exemples

Machines à états finis
Machines de Moore
Machines de Mealy
Machines de Mealy resynchronisées

Modélisation des mémoires

2/70 SE204 Tarik Graba 2019/2020



Logique combinatoire

Rappel

La sortie d’un bloc combinatoire ne dépend que de la valeur de ses entrées.

Dit autrement, pour les mêmes valeurs des entrées on doit toujours avoir les
mêmes valeurs de sortie.
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Affectations concurrentes assign

Les affectations concurrentes ne permettent que de représenter de la logique
combinatoire.

Elles ne permettent pas d’avoir de structures de contrôle (if , case ...) on la
réservera aux cas simples (connexions, inversions par exemple)

Exemple:

assign o = s? a:b; // un multiplexeur
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always_comb

En SystemVerilog on peut utiliser always_comb .
Équivalent à “always @(*) ”.
Le designer précise qu’il veut décrire de la logique combinatoire et les outils le
vérifient.
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Processus always pour
décrire la logique combinatoire

Exemple: Un multiplexeur 2→ 1

module mux21( s, a, b, o );

input s;

input a, b ;

output reg o ;

always @(a or b or s)

if (s) o = a;

else o = b;

/* Pourrait être

o = b;

if (s) o = a;

* ou

o = s? a : b;

*/

endmodule

s

a

b
o

1

0
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Processus always pour
décrire la logique combinatoire

Exemple: Un multiplexeur 2→ 1

module mux21( s, a, b, o );

input s;

input a, b ;

output reg o ;

always @(*)

if (s) o = a;

else o = b;

/* Pourrait être

o = b;

if (s) o = a;

* ou

o = s? a : b;

*/

endmodule
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Processus always pour
décrire la logique combinatoire

Exemple: Un multiplexeur 2→ 1

module mux21( s, a, b, o );

input s;

input a, b ;

output logic o ;

always_comb

if (s) o = a;

else o = b;

/* Pourrait être

o = b;

if (s) o = a;

* ou

o = s? a : b;

*/

endmodule

s

a

b
o

1

0
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Un mux 4→1

a[0]
a[1]
a[2]
a[3]

o

s
2

0
1
2
3

module mux41( s, a, o );

input [1:0] s;

input [3:0] a;

output reg o ;

always @(*)

case(s)

2'b00: o = a[0];

2'b01: o = a[1];

2'b10: o = a[2];

2'b11: o = a[3];

endcase

/* Pourrait être

o = a[s];

* ou

if (a == 2'd0) o = a[0];

else if (a == 2'd1) o = a[1];

else if (a == 2'd2) o = a[2];

else if (a == 2'd3) o = a[3];

*/

endmodule
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Un mux incomplet

module mux_il( s, a, o );

input [1:0] s;

input [3:0] a;

output reg o ;

always @( * )

case(s)

2'b00: o = a[0];

2'b01: o = a[1];

2'b10: o = a[2];

endcase

endmodule
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Un mux incomplet

Que se passe-t-il si s = 3?

module mux_il( s, a, o );

input [1:0] s;

input [3:0] a;

output reg o ;

always @( * )

case(s)

2'b00: o = a[0];

2'b01: o = a[1];

2'b10: o = a[2];

endcase

endmodule
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Un mux incomplet

On mémorise la valeur précédente!!

a[0]
a[1]

s
2

0
1
2
3

a[2] oQD

en

6= 3

Erreur avec always_comb

module mux_il( s, a, o );

input [1:0] s;

input [3:0] a;

output reg o ;

always @( * )

case(s)

2'b00: o = a[0];

2'b01: o = a[1];

2'b10: o = a[2];

endcase

endmodule
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Un mux incomplet
Valeurs des sorties toujours définies

a[0]
a[1] o

s
2

0
1
2
3

a[2]

module mux_i( s, a, o );

input [1:0] s;

input [3:0] a;

output reg o ;

always @(*)

begin

// la valeur par défaut

o = a[2];

case(s)

2'b00: o = a[0];

2'b01: o = a[1];

endcase

end

/* Pourrait être

case(s)

2'b00: o = a[0];

2'b01: o = a[1];

default: o = a[2];

endcase

*/

endmodule
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Règles pour décrire la logique
combinatoire

La liste de sensibilité doit contenir toutes les entrées.
Les valeurs des sorties doivent être définie pour toutes les valeurs des
entrées.

Recommandations
Liste de sensibilité automatique.
Donner systématiquement une valeur par défaut aux sorties.
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Exercixce

Écrire le code SystemVerilog d’un
décodeur 7 segments
Écrire le code SystemVerilog d’un
décodeur 7 segments qui ne décode
que les nombres de 0 à 9

0

1

2

3

4

5

6
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Un décodeur 7 segments

Dec 7 Seg OI
4 7

module dec7seg ( I, O );

input [3:0] I;

output [6:0] O;

logic [6:0] O;

always_comb

case(I)

4'h0: O = 7'b0111111 ;

4'h1: O = 7'b0000110 ;

4'h2: O = 7'b1011011 ;

4'h3: O = 7'b1001111 ;

4'h4: O = 7'b1100110 ;

4'h5: O = 7'b1101101 ;

4'h6: O = 7'b1111101 ;

4'h7: O = 7'b0000111 ;

4'h8: O = 7'b1111111 ;

4'h9: O = 7'b1100111 ;

4'ha: O = 7'b1110111 ;

4'hb: O = 7'b1111100 ;

4'hc: O = 7'b0111001 ;

4'hd: O = 7'b1011110 ;

4'he: O = 7'b1111001 ;

4'hf: O = 7'b1110001 ;

endcase

endmodule
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Un décodeur 7 segments
utilisation d’une table

Dec 7 Seg OI
4 7

LUT: LookUp Table

module dec7segT ( I, O );

input [3:0] I;

output [6:0] O;

logic [6:0] O;

logic [6:0] Tab [0:15] = '{

'b0111111 ,

'b0000110 ,

'b1011011 ,

'b1001111 ,

'b1100110 ,

'b1101101 ,

'b1111101 ,

'b0000111 ,

'b1111111 ,

'b1100111 ,

'b1110111 ,

'b1111100 ,

'b0111001 ,

'b1011110 ,

'b1111001 ,

'b1110001 };

always_comb O = Tab[I];

endmodule
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Un décodeur 7 segments incomplet

Dec 7 Seg OI
4 7

module dec7segI ( I, O );

input [3:0] I;

output [6:0] O;

logic [6:0] O;

always_comb

case(I)

4'h0 : O = 7'b0111111 ;

4'h1 : O = 7'b0000110 ;

4'h2 : O = 7'b1011011 ;

4'h3 : O = 7'b1001111 ;

4'h4 : O = 7'b1100110 ;

4'h5 : O = 7'b1101101 ;

4'h6 : O = 7'b1111101 ;

4'h7 : O = 7'b0000111 ;

4'h8 : O = 7'b1111111 ;

4'h9 : O = 7'b1100111 ;

4'd10,4'd11,

4'd12,4'd13,

4'd14,4'd15

: O = 7'b0000000 ;

endcase

endmodule
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Un décodeur 7 segments incomplet

Dec 7 Seg OI
4 7

module dec7segI ( I, O );

input [3:0] I;

output [6:0] O;

logic [6:0] O;

always_comb

case(I)

4'h0 : O = 7'b0111111 ;

4'h1 : O = 7'b0000110 ;

4'h2 : O = 7'b1011011 ;

4'h3 : O = 7'b1001111 ;

4'h4 : O = 7'b1100110 ;

4'h5 : O = 7'b1101101 ;

4'h6 : O = 7'b1111101 ;

4'h7 : O = 7'b0000111 ;

4'h8 : O = 7'b1111111 ;

4'h9 : O = 7'b1100111 ;

default: O = 7'b0000000 ;

endcase

endmodule
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Un décodeur 7 segments incomplet

Dec 7 Seg OI
4 7

module dec7segI ( I, O );

input [3:0] I;

output [6:0] O;

logic [6:0] O;

always_comb

begin

O = 7'b0000000 ; // valeur par défaut

case(I)

4'h0 : O = 7'b0111111 ;

4'h1 : O = 7'b0000110 ;

4'h2 : O = 7'b1011011 ;

4'h3 : O = 7'b1001111 ;

4'h4 : O = 7'b1100110 ;

4'h5 : O = 7'b1101101 ;

4'h6 : O = 7'b1111101 ;

4'h7 : O = 7'b0000111 ;

4'h8 : O = 7'b1111111 ;

4'h9 : O = 7'b1100111 ;

endcase

begin

endmodule
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Un décodeur 7 segments incomplet
Utilisation de casez

Dec 7 Seg OI
4 7

module dec7segI ( I, O );

input [3:0] I;

output [6:0] O;

logic [6:0] O;

always_comb

casez(I)

4'h0 : O = 7'b0111111 ;

4'h1 : O = 7'b0000110 ;

4'h2 : O = 7'b1011011 ;

4'h3 : O = 7'b1001111 ;

4'h4 : O = 7'b1100110 ;

4'h5 : O = 7'b1101101 ;

4'h6 : O = 7'b1111101 ;

4'h7 : O = 7'b0000111 ;

4'h8 : O = 7'b1111111 ;

4'h9 : O = 7'b1100111 ;

4'b101?,

4'b11??: O = 7'b0000000 ;

endcase

endmodule
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Utiliser des fonctions

Pour “mutualiser” du code on peut utiliser des modules.

Nb1I1
8

Nb1
8

I2

O
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Utiliser des fonctions
Pour “mutualiser” du code on peut aussi utiliser des fonctions.

module foo( I1,I2, O );

input [7:0] I1,I2;

output logic O;

// Nombre de 1 dans un mot de 8bits

function [3:0] nbr1 (input [7:0] N);

int tmp;

begin

tmp = 0;

for (int i = 0; i<8; i++)

if (N[i]) tmp++;

return tmp;

// On aurait pu écrire

// nbr1 = tmp ;

end

endfunction

always_comb

O = nbr1(I1) > nbr1(I2);

endmodule

Nb1I1
8

Nb1
8

I2

O

17/70 SE204 Tarik Graba 2019/2020



Utiliser des fonctions
différence entre tâches et fonctions

En SystemVerilog il y deux type de sous-programmes:
Les fonctions: Exécution en temps nul

Affectation bloquantes
Pas de synchronisation (#,@,…)

Les tâches: Ne renvoient pas de valeurs
Peuvent avoir des output

Plus d’informations et des exemples Section 13 de la norme.
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Faire un code paramétrable

Les modules peuvent être paramétrables:
Définir leur comportement/structure en fonction de certains paramètres

Le code peut ainsi être réutilisé dans des conditions différentes.
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Faire un code paramétrable
parameter

8

8

8

A

B

C

D

S0

S1

S

8

10
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Faire un code paramétrable
parameter

module adder #(parameter WIDTH = 8)

(input [WIDTH-1:0] A,B,

output [WIDTH :0] S );

assign S = A + B;

endmodule

8

8

8

A

B

C

D

S0

S1

S

8

10
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Faire un code paramétrable
parameter

module truc ( input [7:0] A,B,C,D,

output [9:0] S );

wire [8:0] S0,S1;

adder #(.WIDTH(8)) add1 (.A(A),.B(B),.S(S0));

adder #(.WIDTH(8)) add2 (.A(C),.B(D),.S(S1));

adder #(.WIDTH(9)) add3 (.A(S0),.B(S1),.S(S));

endmodule

8

8

8

A

B

C

D

S0

S1

S

8

10
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Faire un code paramétrable
localparam

Parfois on a besoin de paramètres non modifiables à l’instanciation.

module Table (clk, index, valeur_e, valeur_s);

parameter SIZE = 256;

parameter WIDTH = 8;

localparam I_WIDTH = $clog2(SIZE);

input clk;

input [I_WIDTH-1:0] index;

input [WIDTH-1:0] valeur_e;

output [WIDTH-1:0] valeur_s;

logic [WIDTH-1:0] valeur_s;

logic [WIDTH-1:0] Tab [0:SIZE-1];

always_ff @(posedge clk)

begin

Tab[index] <= valeur_e;

valeur_s <= Tab[index];

end

endmodule

Un paramètre local est:
Une constante
Calculé à partir d’autres constantes

Ils ne sont pas modifiables à l’extérieur du
module.
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Faire un code paramétrable

Comment changer le code en fonction de ces paramètres?
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Faire un code paramétrable
generate

De façon conditionnelle:

module adder #( parameter generic = "YES" )

( input [7:0] A,B,

output [7:0] S);

generate

if ( generic == "YES")

begin

assign S = A + B ;

end

else

begin

optimised_adder o_adder (A,B,S);

end

endgenerate

endmodule

Remplace dans ce cas des directives de préprocesseur (`ifdef )
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Faire un code paramétrable
generate

En répétant le comportement

// Extrait de la norme section 27.4

module gray2bin #(parameter W = 8)

( input [W-1:0] G,

output [W-1:0] B

);

genvar i;

generate

for ( i=0; i<W; i++ )

begin:position

// Le Xor des bit i à W-1

assign B[i] = ^G[W-1:i];

end

endgenerate

endmodule
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Faire un code paramétrable
generate

En répétant la structure

module struct_adder #( parameter W = 8 )

( input [W-1:0] A,B, input Ci,

output [W-1:0] S, output Co,m );

wire [W:0] c;

assign c[0] = Ci;

assign Co = c[W];

genvar i;

generate

for ( i=0; i<W; i++ )

begin:position

// ces noeuds seront dupliqués

wire s, e0, e1;

xor xor0 ( s , A[i], B[i] );

xor xor1 ( S[i] , s , c[i] );

and and0 ( e0 , A[i], B[i] );

and and1 ( e1 , s , c[i] );

or or0 ( c[i+1], e0 , e1 );

end

endgenerate

assign m = position[W/2].s;

endmodule
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Processus always
pour de la logique séquentielle synchrone

La bascule D

module Dff ( input clk,

input D ,

output reg Q );

always @(posedge clk)

Q <= D;

endmodule

QD

clk
A chaque front montant (posedge ) de l’horloge on mémorise la valeur de
l’entrée.
Entre les fronts d’horloge la sortie conserve sa valeur.
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always_ff

En SystemVerilog on peut utiliser always_ff .
Équivalent à “always ”.
Le concepteur précise qu’il veut décrire de la logique séquentielle et les outils
le vérifient.
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Avec remise à zéro synchrone:

always_ff @(posedge clk)

if (reset)

begin

// Remise à zéro synchrone des registres

...

end

else

begin

// Que se passe-t-il à chaque front de l'horloge

...

end

Si reset vaut 1 au moment du front d’horloge!
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Avec remise à zéro asynchrone:

always_ff @(posedge clk or posedge reset)

if (reset)

begin

// Remise à zéro asynchrone des registres

...

end

else

begin

// Que se passe-t-il à chaque front de l'horloge

...

end

Si reset vaut 1 (dès qu’il passe à 1) indépendamment du front d’horloge.

Il faut que la condition testée et la liste de sensibilité soient cohérentes.
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Avec remise à zéro asynchrone:

always_ff @(posedge clk or negedge nreset)

if (!nreset)

begin

// Remise à zéro asynchrone des registres

...

end

else

begin

// Que se passe-t-il à chaque front de l'horloge

...

end

Si nreset vaut 0 (dès qu’il passe à 0) indépendamment du front d’horloge.
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Une bascule D avec reset synchrone:

D
reset

Q

module Dff ( clk, reset, D, Q );

input clk, reset ;

input D ;

output reg Q ;

always_ff @(posedge clk)

if (reset)

Q <= 1'b0;

else

Q <= D;

endmodule
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Un registre :
Avec reset synchrone et enable

reset

Q
N

D
N 0

1

en

module Reg( input clk, reset, en,

input [7:0] D,

output logic [7:0] Q );

always_ff @(posedge clk)

if (reset)

Q <= 8'd0;

else

if (en) Q <= D;

endmodule
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Un registre à décalage:

1
0

1
0

1
0

Q

en

D
R0RN−1 R1
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Un registre à décalage:

1
0

1
0

1
0

Q

en

D
R0RN−1 R1

module SftReg # ( parameter N = 8 )

( input clk, en ,

input D ,

output Q );

logic [N-1:0] R;

assign Q = R[0];

always_ff @(posedge clk)

if (en) R <= { D, R[N-1:1] };

endmodule
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Astuce
mettre la même valeur à tous les bits d’un vecteur

Opérateur de duplication

reg [N-1:0] A,B,C;

initial

begin

A = {N{1'b1}}; // tous les bits à 1

B = {N{1'b0}}; // tous les bits à 0

C = {N{1'bz}}; // tous les bits à z

...
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Astuce
mettre la même valeur à tous les bits d’un vecteur

Opérateur de duplication

reg [N-1:0] A,B,C;

initial

begin

A = {N{1'b1}}; // tous les bits à 1

B = {N{1'b0}}; // tous les bits à 0

C = {N{1'bz}}; // tous les bits à z

...

Des raccourcis

logic [N-1:0] A,B,C,D;

initial

begin

A = '1; // tous les bits à 1

B = '0; // tous les bits à 0

C = 'z; // tous les bits à z

...

D = 'd1 // 1 en décimal adapté

// à la taille de D!
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Un compteur :

reset

Q
NN 0

1

en
1
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Un compteur :

reset

Q
NN 0

1

en
1

module Cpt ( clk, reset, en, Q );

parameter N = 8;

input clk, reset, en ;

output logic [N-1:0] Q ;

always_ff @(posedge clk)

if (reset)

Q <= '0;

else

if (en)

Q <= Q + 1;

endmodule
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Affectations bloquantes/différées

Quelle est la différence entre ces deux codes:

logic a,b,r,q;

always_ff @(posedge clk)

begin

r = a & b;

q <= r;

end

logic a,b,r,q;

always_ff @(posedge clk)

begin

r <= a & b;

q <= r;

end
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Affectations bloquantes/différées

Quelle est la différence entre ces deux codes:

logic a,b,r,q;

always_ff @(posedge clk)

begin

r = a & b;

q <= r;

end

b
a r q

logic a,b,r,q;

always_ff @(posedge clk)

begin

r <= a & b;

q <= r;

end

b
a r q
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Affectations bloquantes/différées

Et ici ?

logic [N:0] R;

always_ff @(posedge clk)

begin: loop

int i;

for (i=0; i<N; i++)

R[i+1] = R[i];

end

logic [N:0] R;

always_ff @(posedge clk)

begin: loop

int i;

for (i=0; i<N; i++)

R[i+1] <= R[i];

end
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Affectations bloquantes/différées

Et ici ?

logic [N:0] R;

always_ff @(posedge clk)

begin: loop

int i;

for (i=0; i<N; i++)

R[i+1] = R[i];

end

R0 RN

logic [N:0] R;

always_ff @(posedge clk)

begin: loop

int i;

for (i=0; i<N; i++)

R[i+1] <= R[i];

end

R0
R1 R2 RN
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Variables locales

Pour éviter le non-déterminisme en simulation, déclarer des variables locales aux
processus.

logic a,b,r,q;

always_ff @(posedge clk)

begin

r = a & b;

q <= r;

end

logic a,b,q;

always_ff @(posedge clk)

begin:named_process

logic r;

r = a & b;

q <= r;

end

On est sûr que r ne peut être lu dans un autre processus.
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Affectations bloquantes/différées

Que fait ce code?

logic [N-1:0] R;

logic p;

always_ff @(posedge clk)

begin: loop

int i;

logic t;

t = 0;

for (i=0; i<N; i++)

t = t ^ R[i];

p <= t;

end
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Affectations bloquantes/différées
Que fait ce code?

logic [N-1:0] R;

logic p;

always_ff @(posedge clk)

begin: loop

int i;

logic t;

t = 0;

for (i=0; i<N; i++)

t = t ^ R[i];

p <= t;

end

R0 R1 R2 RN−2 RN−1

p
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Machines à états finis

Méthode pour concevoir des
automates.
A partir d’un graphe d’états.
Système synchrone. S0

S1

cond0cond2

cond1

Init

cond0

cond2

cond1
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Déclaration du registre d’état
et des états

En Verilog 95

`define INIT 2'b00

`define S0 2'b01

`define S1 2'b10

reg [1:0] state, n_state;

//...Le code

`undef INIT

`undef S0

`undef S1
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Déclaration du registre d’état
et des états

En Verilog 2001

localparam INIT = 2'b00;

localparam S0 = 2'b01;

localparam S1 = 2'b10;

reg [1:0] state, n_state;

//...Le code
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Déclaration du registre d’état
et des états

En SystemVerilog

enum logic[1:0] { INIT, S0, S1 } state, n_state;

//...Le code

44/70 SE204 Tarik Graba 2019/2020



Modification de l’état

Synchrone

always_ff @(posedge clk)

if (reset)

state <= INIT ;

else

state <= n_state ;

L’état initial au reset doit être explicite.
• Si l’état initial n’est pas connu le comportement n’est pas déterministe.

Le changement d’état se fait de façon synchrone.
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Machine de Moore

Il faut mémoriser l’état (registre).

Le prochain état dépend de l’état actuel et des entrées.

Les sorties dépendent combinatoirement de l’état courant.

stateinputs n_state

outputs
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3 processus
Un processus séquentiel pour sauvegarder l’état.

Deux processus combinatoires:
• Calcul de l’état futur.
• Calcul des sorties.

n_state doit être un signal.

stateinputs n_state

outputs

always_combalways_ffalways_comb
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3 processus

always_comb

begin

// par défaut on reste

// dans l'état courant

n_state = state ;

case (state)

INIT: if (cond0)

n_state = S0;

S0 : if (cond1)

n_state = S1;

S1 : if (cond2)

n_state = INIT;

endcase

end

always_ff @(posedge clk)

if (reset)

state <= INIT ;

else

state <= n_state ;

always_comb

begin

if (state == INIT) begin

output1 = ...

end

else if (state == S0) begin

output1 = ...

end

else if (state == S0) begin

output1 = ...

end

else begin // Par défaut

output1 = ...

end

end

stateinputs n_state

outputs

always_combalways_ffalways_comb
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2 processus

Un processus séquentiel pour modifier l’état.
Un processus combinatoire pour le calcul des sorties en fonction de l’état.
n_state disparaît.

stateinputs n_state

outputs

always_ff always_comb
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2 processus

always_ff @(posedge clk)

if (reset)

state <= INIT ;

else

case (state)

INIT: if (cond0)

state <= S0;

S0 : if (cond1)

state <= S1;

S1 : if (cond2)

state <= INIT;

endcase

// Sinon on reste dans

// l'état courant

always_comb

begin

if (state == INIT) begin

output1 = ...

end

else if (state == S0) begin

output1 = ...

end

else if (state == S0) begin

output1 = ...

end

else begin // Par défaut

output1 = ...

end

end

stateinputs n_state

outputs

always_ff always_comb
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Inconvénient

Un changement de sortie nécessite un changement d’état et donc au moins un
cycle de latence.

clk

state S0 S1

c

o

S0

S1

c

c

o <= 0

o <= 1
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Machines de Mealy

Il faut mémoriser l’état (registre).

Le prochain état dépend de l’état actuel et des entrées.

Les sorties dépendent combinatoirement de l’état courant et des entrées.

staten_state

outputsinputs
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Inconvénient

Un changement d’entrée peut être propagé immédiatement sur une sortie.

clk

state S0 S1

c

o

S0

S1

c

c

o <= c

o <= 1
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2 processus

Un processus séquentiel pour modifier l’état.
Un processus combinatoire pour le calcul des sorties en fonction de l’état et des entrées.

staten_state

outputsinputs

always_ff always_comb
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2 processus
always_ff @(posedge clk)

if (reset)

state <= INIT ;

else

case (state)

INIT: if (cond0)

state <= S0;

S0 : if (cond1)

state <= S1;

S1 : if (cond2)

state <= INIT;

endcase

// Sinon on reste dans

// l'état courant

always_comb

begin

if (state == INIT) begin

output1 = f1(inputs ...)

end

else if (state == S0) begin

output1 = f2(inputs ...)...

end

else if (state == S0) begin

output1 = f3(inputs ...)

end

else begin // Par défaut

output1 = f4(inputs ...)

end

end

staten_state

outputsinputs

always_ff always_comb
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Inconvénient

On relie les entrées et les sorties par un chemin combinatoire:
Le chemin critique n’est pas maitrisé.
La modification de la MAE modifie les performances du reste du circuit.
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Machines de Mealy resynchronisées

C’est une machine de Mealy pour laquelle les sorties sont resynchronisées pour
éviter les chemins combinatoires.

Il faut ajouter des registres sur les sorties

staten_state

inputs outputs
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3 processus

Un processus séquentiel pour modifier l’état.
Un processus combinatoire pour le calcul des sorties en fonction de l’état et des entrées.
Faire apparaitre un signal interne pour les sorties avant resynchronisation.
Un processus séquentiel pour resynchroniser les sorties.

always_ff always_comb

staten_state

inputs outputs

always_ff

outputs_i
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2 processus

Un processus séquentiel pour modifier l’état.
Un séquentiel pour le calcul des sorties

always_ff

staten_state

inputs outputs

always_ff
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2 processus

always_ff @(posedge clk)

if (reset)

state <= INIT ;

else

case (state)

INIT: if (cond0)

state <= S0;

S0 : if (cond1)

state <= S1;

S1 : if (cond2)

state <= INIT;

endcase

// Sinon on reste dans

// l'état courant

always_ff @(posedge clk)

if (reset)

begin

// initialiser les sorties

output1 <= ...

end

else

begin

if (state == INIT) begin

output1 <= f1(inputs ...)

end

else if (state == S0) begin

output1 <= f2(inputs ...)...

end

else if (state == S0) begin

output1 <= f3(inputs ...)

end

end

always_ff

staten_state

inputs outputs

always_ff
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1 processus

Un processus séquentiel pour modifier l’état et les sorties.

staten_state

inputs outputs

always_ff
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1 processus
always_ff @(posedge clk)

if (reset)

begin

// Initialiser l'état

state <= INIT ;

// Initialiser les sorties

output1 <= ...

end

else

begin

// Les transitions

case (state)

INIT: if (cond0)

state <= S0;

S0 : if (cond1)

state <= S1;

...

...

S1 : if (cond2)

state <= INIT;

endcase

// Les sorties

if (state == INIT) begin

output1 <= f1(inputs ...)

end

else if (state == S0) begin

output1 <= f2(inputs ...)...

end

else if (state == S0) begin

output1 <= f3(inputs ...)

end

end

staten_state

inputs outputs

always_ff
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Mémoire synchrone
mémoire simple port

un bus d’adresse
2 bus pour les données:

• écriture
• lecture

des signaux de contôle
une horloge
PAS DE RESET
On ne peut accéder qu’à un seul
élément dans le même cycle!

8

8

sram
8

Do

Addr

Di

wr

clk
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Mémoire synchrone
mémoire simple port

un bus d’adresse
2 bus pour les données:

• écriture
• lecture

des signaux de contôle
une horloge
PAS DE RESET
On ne peut accéder qu’à un seul
élément dans le même cycle!

module sram(input clk, wr,

input [7:0] Addr,

input [7:0] Di,

output logic [7:0] Do );

logic[7:0] mem [0:255];

always_ff @(posedge clk)

begin

if (wr)

mem[Addr] <= Di;

Do <= mem[Addr];

end

endmodule
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Mémoire synchrone
mémoire simple port

un bus d’adresse
2 bus pour les données:

• écriture
• lecture

des signaux de contôle
une horloge
PAS DE RESET
On ne peut accéder qu’à un seul
élément dans le même cycle!

module sram(input clk, wr,

input [7:0] Addr,

input [7:0] Di,

output [7:0] Do );

logic[7:0] mem [0:255];

logic[7:0] Addr_r;

always_ff @(posedge clk)

begin

if (wr)

mem[Addr] <= Di;

Addr_r <= Addr;

end

assign Do = mem[Addr_r];

endmodule
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Mémoire synchrone
mémoire double ports

permet un accès double
l’écriture et la lecture à la même
adresse dans le même cycle
n’est pas prédictible
pourrait avoir deux horloges

sram_dp

8

8

8

8 8

8

Addr1

Di1

Do1

wr1

clk

wr2

Do2

Di2

Addr2
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Mémoire synchrone
mémoire double ports

permet un accès double
l’écriture et la lecture à la même
adresse dans le même cycle
n’est pas prédictible
pourrait avoir deux horloges

module sram_dp(input clk, wr1, wr2,

input [7:0] Addr1, Addr2,

input [7:0] Di1, Di2,

output logic [7:0] Do1, Do2 );

logic[7:0] mem [0:255];

always_ff @(posedge clk)

begin

if (wr1)

mem[Addr1] <= Di1;

Do1 <= mem[Addr1];

end

always_ff @(posedge clk)

begin

if (wr2)

mem[Addr2] <= Di2;

Do2 <= mem[Addr2];

end

endmodule
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Mémoire synchrone
Initialisation du contenu

Possible seulement pour les FPGA
initial est normalement
exclusivement réservé à la
simulation
$readmemh (ou $readmemb ) permet
d’initialiser une table à partir d’un
fichier

module sram(input clk, wr,

input [7:0] Addr,

input [7:0] Di,

output logic [7:0] Do );

logic[7:0] mem [0:255];

initial

$readmemh("init.txt", mem);

always_ff @(posedge clk)

begin

if (wr)

mem[Addr] <= Di;

Do <= mem[Addr];

end

endmodule
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Mémoire synchrone
ROM synchrone

Possible seulement pour les FPGA
il suffit d’enlever la possibilité
d’écrire

module rom (input clk,

input [7:0] Addr,

output logic [7:0] Do );

logic[7:0] mem [0:255];

initial

$readmemh("init.txt", mem);

always_ff @(posedge clk)

Do <= mem[Addr];

endmodule
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