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N Logique combinatoire

Rappel

B | a sortie d’'un bloc combinatoire ne dépend que de la valeur de ses entrées.

Dit autrement, pour les mémes valeurs des entrées on doit toujours avoir les
mémes valeurs de sortie.
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I Affectations concurrentes assign

Les affectations concurrentes ne permettent que de représenter de la logique
combinatoire.

Elles ne permettent pas d’avoir de structures de contréle (if , case ...) on la
réservera aux cas simples (connexions, inversions par exemple)

Exemple:

assign o = s? a:b; // un multiplexeur
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N always_comb

En SystemVerilog on peut utiliser always_comb .
® Equivalent 4 “always @(*) ”.

B | e designer précise qu’il veut décrire de la logique combinatoire et les outils le
vérifient.
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Processus always pour
décrire la logique combinatoire

Exemple: Un multiplexeur 2 — 1

S

module mux21( s, a, b, 0 );

input s;
input a, b ;
output reg o ;

always @(a or b or s) a

if (s) o = a;
else o =b;

/% Pourrait étre

o =b;
if (s) o = a;
* ou

o=s?a:b;
*/
endmodule
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Processus always pour
décrire la logique combinatoire

Exemple: Un multiplexeur 2 — 1

S

module mux21( s, a, b, 0 );

input s;
input a, b ;
output reg o ;

always @(*) a
if (s) o = a;
= b;

else o

/% Pourrait étre

o =b;
if (s) o = a;
* ou

o=s?a:b;
*/
endmodule
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Processus always pour
décrire la logique combinatoire

Exemple: Un multiplexeur 2 — 1

S

module mux21( s, a, b, 0 );

input s;
input a, b ;
output logic o ;

always_comb a
if (s) o = a;
= b;

else o

/% Pourrait étre

o =b;
if (s) o = a;
* ou

o=s?a:b;
*/
endmodule
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I Un mux 41

module mux41( s, a, 0 );
input [1:0] s;
S input [3:0] a;

output reg o ;

always @(x)

case(s)
2'b00: o = a[0l;
a‘[()] 0 2'bo1: o = al1];
2'b10: o = a[2];
2'b11: o = al3];
a[1 ] 1 endcase
O /* Pourrait étre
o = a[s];
a[2] 2 v
if (a == 2'de) o = alel;
else if (a == 2'd1) o = a[1];
a[3] 3 else if (a == 2'd2) o = a[2];
else if (a == 2'd3) o = a[3];
/ *

endmodule




B Un mux incomplet

module mux_il( s, a, o );
input [1:0] s;
input [3:0] a;

output reg o ;

always @( * )

case(s)
2'b00: o = al0];
2'bo1: o = al1];
2'b10: o = al2];

endcase

endmodule

TELEFDM
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B Un mux incomplet

module mux_il( s, a, o );

input [1:0] s;
input [3:0] a;
output reg o ;

Que se passe-t-il sis = 3?7 alvays @( * )

case(s)
2'b00: o
2'bo1: o
2'b10: o

endcase

al0];
al1l;
alf2];

endmodule
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B Un mux incomplet

On mémorise la valeur précédente!!

2

S module mux_il( s, a, o );

input [1:0] s;
input [3:0] a;
a[o] —_— output reg o ;
a[1] —

a[2] —

always @( * )

case(s)

D Q o 2'b00: o = alo];
2'bo1: o = al1];
2'b10: o = al2];

endcase

w N =+ O

endmodule

Erreur avec always_comb
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I Un muxincomplet

Valeurs des sorties toujours définies

module mux_i( s, a, o );

input [1:0] s;
S input [3:0] a;

output reg o ;

always @(x)

begin

// la valeur par défaut

o = a[2];
case(s)
2'b0o: o
2'bo1: o
endcase

O end

/* Pourrait étre
case(s)
2'b00: o = a[0];
2'bo1: o = a[ll;
default: o = a[2];
endcase
*/
endmodule

alo];
alll;

\C}OI\J—*O
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Reégles pour décrire la logique
combinatoire

B | a liste de sensibilité doit contenir toutes les entrées.

B | es valeurs des sorties doivent étre définie pour toutes les valeurs des
entrées.

Recommandations

B Liste de sensibilité automatique.
B Donner systématiquement une valeur par défaut aux sorties.
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B Exercixce

® Ecrire le code SystemVerilog d’'un
décodeur 7 segments

® Ecrire le code SystemVerilog d’'un
décodeur 7 segments qui ne décode
que les nombres de 0 a 9
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I un décodeur 7 segments

module dec7seg ( I, 0 );
input [3:0] I;
output [6:0] O;
logic [6:0] 0;
always_comb
case(I)
4'ho: 0 = 7'b0111111
4'h1: 0 = 7'b0o000110 ;
4'h2: 0 = 7'b1011011 ;
4'h3: 0 = 7'b1001111
4 7 4'h4: 0 = 7'b1100110 ;
4'h5: 0 = 7'b1101101 ;
I —<%—>»| Dec 7 Seg =3 0 4'h6: 0 = 7'b1111101 ;
4'h7: 0 = 7'b0000111 ;
4'h8: 0 = 7'b1111111
4'h9: 0 = 7'b1100111 ;
4'ha: 0 = 7'b1110111
4'hb: 0 = 7'b1111100 ;
4'hc: 0 = 7'b0111001 ;
4'hd: 0 = 7'b1011110 ;
4'he: 0 = 7'b1111001 ;
4'hf: 0 = 7'b1110001 ;
endcase
endmodule




I Un décodeur 7 segments

utilisation d’une table

module dec7segT ( I, 0 );
input [3:0] I;
output [6:0] O;
logic [6:0] O;

logic [6:0] Tab [0:15] = '{
bo111111
'bo00o110
‘bie11011
61001111
. ; "b1100110
"b1101101
I =<3 Dec 7 Seg =k 0 "b1111101
'b0000111
USRRRERR!
"b1100111
"b1110111
"b1111100
60111001
‘ble11110
"b1111001
"b1110001

LUT: LookUp Table

e v e e e e e e e e e e e e

always_comb 0 = Tab[I];

endmodule




I un décodeur 7 segments incomplet

module dec7segI ( I, 0 );
input [3:0] I;
output [6:0] O;
logic [6:0] O;
always_comb
case(I)
4'ho : 0 =7'b0111111 ;
4'h : 0 = 7'b0000110 ;
4'h2 : 0 =7'b1011011 ;
4 7 4'h3 : 0 =7'b1001111 ;
4'h4 : 0 =17'b1100110 ;
I —<%—»| Dec 7 Seg —ri—> 0 4'h5  : 0= 7'bl101101 ;
4'hé : 0 =7'b1111101 ;
4'h7 : 0 = 7'b0o000111 ;
4'h8 : 0 =7'b1111111 ;
4'h9 : 0 =7'b1100111 ;
4'd10,4'd11,
4'd12,4'd13,
4'd14,4'd15
: 0 = 7'b0o000000 ;
endcase
endmodule




I un décodeur 7 segments incomplet

module dec7segl ( I, 0 );
input [3:0] I;
output [6:0] O;
logic [6:0] 0;
always_comb
case(I)
4'ho : 0 =7'b0111111 ;
4'h : 0 = 7'b0000110 ;
4 7 4'h2 ;0= 7'blo11011 ;
I ﬂh) Dec 7 Seg ﬂh) 0 4'h3  : 0= 7'b1001111 ;
4'h4 : 0 =17'b1100110 ;
4'h5 : 0 =7'bl101101 ;
4'hé : 0 =7'b1111101 ;
4'h7 : 0 = 7'b0o0o0111 ;
4'h8 : 0 =7'b1111111 ;
4'h9 : 0 =7'b1100111 ;
default: 0 = 7'b0000000 ;
endcase
endmodule
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I un décodeur 7 segments incomplet

module dec7segl ( I, 0 );
input [3:0] I;
output [6:0] O;
logic [6:0] O;
always_comb
begin
0 = 7'b0000000 ; // valeur par défaut
case(I)
4'ho : 0 =7'b0111111
4 7 4'h1 ;0 = 7'b0000110 ;
I =< Dec 7 Seg =k 0 4'h2  : 0= 7'bletie1 ;
4'h3 : 0 =17'b1001111 ;
4'h4 : 0 =17'b1100110 ;
4'h5 : 0 =7'bl101101 ;
4'h6 : 0 =7'b1111101 ;
4'h7 : 0 = 7'b0o00111 ;
4'h8 : 0 =7'b1111111 ;
4'h9 : 0 =7'b1100111 ;
endcase
begin
endmodule




Un décodeur 7 segments incomplet

Utilisation de casez

module dec7segI ( I, 0 );
input [3:0] I;
output [6:0] O;
logic [6:0] O;
always_comb
casez(I)
4'ho : 0 =7'b0111111 ;
4'h1 : 0 = 7'booool110 ;
4 7 4'h2 1 0 =7'bl011011 ;
A > A > 4'h3 0 =7'b1001111 ;
I Dec 7 Seg 0 4'h4 : 0 =7'b1100110 ;
4'h5 : 0 =7'b1101101 ;
4'h6 : 0 =7'b1111101 ;
4'h7 : 0 = 7'b000111 ;
4'h8 : 0 =7'b1111111 ;
4'h9 : 0 =17'b1100111 ;
4'b1017,
4'b1122: 0 = 7'b0000000 ;
endcase
endmodule




I Utiliser des fonctions

Pour “mutualiser” du code on peut utiliser des modules.

I1 =<3 Nb1

12— Nb1
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I Utiliser des fonctions

Pour “mutualiser” du code on peut aussi utiliser des fonctions.

module foo( I1,I2, 0 );
input [7:0] I1,I2;
output logic O;

// Nombre de 1 dans un mot de 8bits
function [3:0] nbr1 (input [7:0] N); 8
int tmp; I1 ﬂ;’ Nb1
begin
tmp = 0;
for (int i = 0; i<8; i++)
if (N[il) tmp++; 0
return tmp;
// On aurait pu écrire
// nbr1 = tmp ;
end 8
endfunction IZﬂQ Nb1

always_comb
0 = nbr1(I1) > nbr1(I2);

endmodule




N B Utiliser des fonctions

différence entre taches et fonctions

En SystemVerilog il y deux type de sous-programmes:
Les fonctions: Exécution en temps nul

B Affectation bloquantes
B Pas de synchronisation (#,@,...)

Les taches: Ne renvoient pas de valeurs
B Peuvent avoir des output

Plus d’informations et des exemples Section 13 de la norme.
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I raire un code paramétrable

Les modules peuvent étre paramétrables:
® Définir leur comportement/structure en fonction de certains paramétres
Le code peut ainsi étre réutilisé dans des conditions différentes.
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I Faire un code paramétrable

parameter

8
A
S0

8
B 10

8 S
C

8 S1
D
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I Faire un code paramétrable

parameter

8
A
_ S0
module adder #(parameter WIDTH = 8) 8
(input [WIDTH-1:0] A,B,
output [WIDTH :0]1 S ); B 10
S
assign S = A + B; 8
C
endmodule
8 S1
D
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I Faire un code paramétrable

parameter
8
module truc ( input [7:0] A,B,C,D, A
output [9:0] S ); S0
wire [8:0] $S@,S1; B s 10
adder #(.WIDTH(8)) add1 (.A(A),.B(B),.S(S0)); S
adder #(.WIDTH(8)) add2 (.A(C),.B(D),.S(S1)); 8
C
adder #(.WIDTH(9)) add3 (.A(S@),.B(S1),.5(S));
endmodule D ° S1
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I Faire un code paramétrable

localparam

Parfois on a besoin de paramétres non

modifiables a l'instanciation.

parameter SIZE
parameter WIDTH
localparam I_WIDTH

input

input [I_WIDTH-1:0]
input [WIDTH-1:0]
output [WIDTH-1:0]
logic [WIDTH-1:0]

begin

end

endmodule

module Table (clk, index, valeur_e, valeur_s);

256;
8;
$clog2(SIZE) ;

clk;
index;
valeur_e;
valeur_s;
valeur_s;

logic [WIDTH-1:0] Tab [0:SIZE-1];
always_ff @(posedge clk)

Tab[index] <= valeur_e;
valeur_s <= Tab[index];

Un parametre local est:
B Une constante
B Calculé a partir d’autres constantes

lIs ne sont pas modifiables a I'extérieur du
module.




I raire un code paramétrable

Comment changer le code en fonction de ces paramétres?
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I Faire un code paramétrable

generate

De fagon conditionnelle:

module adder #( parameter generic = "YES" )
( input [7:0] A,B,
output [7:0] S);
generate
if ( generic == "YES")
begin
assign S = A +B ;
end
else
begin
optimised_adder o_adder (A,B,S);
end
endgenerate

endmodule

Remplace dans ce cas des directives de préprocesseur (*ifdef )

TELECOM

e



I Faire un code paramétrable

generate

En répétant le comportement

// Extrait de la norme section 27.4
module gray2bin #(parameter W = 8)
( input [W-1:0] G,
output [W-1:0]1 B
DA

genvar i;

generate
for ( i=0; i<W; i++ )
begin:position

// Le Xor des bit i a W-1
assign B[i] = *G[W-1:i];

end
endgenerate

endmodule




I Faire un code paramétrable

generate
En répétant la structure

module struct_adder #( parameter W = 8 )
( input [W-1:0] A,B, input Ci,
output [W-1:0] S, output Co,m );
wire [W:0] c;

assign c[0] = Ci;
assign Co = c[W];

genvar ij;
generate
for ( i=0; i<W; i++ )
begin:position
// ces noeuds seront dupliqués
wire s, €@, el;

xor xor® (s , ALil, BLil );
xor xorl ( S[i]l , s , c[il);
and and@ ( €@ , ALil, B[i] );
and andl ( el , s, clil );
or or@ ( c[i+1], e0 , el A
end
endgenerate

assign m = position[W/2].s;
endmodule




B rian

Logique séquentielle synchrone
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N B Processus always

pour de la logique séquentielle synchrone

La bascule D

module Dff ( input clk, D Q

input D ,
output reg Q );

always @(posedge clk) /\
Q <=D;

endmodule

B A chaque front montant (posedge ) de I'horloge on mémorise la valeur de
'entrée.
B Entre les fronts d’horloge la sortie conserve sa valeur.
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N always_ff

En SystemVerilog on peut utiliser always_ff .
® Equivalent a “always ”.

B e concepteur précise qu’il veut décrire de la logique séquentielle et les outils
le vérifient.
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I Avec remise a zéro synchrone:

always_ff @(posedge clk)
if (reset)
begin
// Remise & zéro synchrone des registres
end
else
begin
// Que se passe-t-il a chaque front de 1'horloge

end

Si reset vaut 1 au moment du front d’horloge!
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I Avec remise a zéro asynchrone:

always_ff @(posedge clk or posedge reset)
if (reset)
begin
// Remise & zéro asynchrone des registres
end
else
begin
// Que se passe-t-il a chaque front de 1'horloge

end

Si reset vaut 1 (des qu'il passe a 1) indépendamment du front d’horloge.

Il faut que la condition testée et la liste de sensibilité soient cohérentes.
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I Avec remise a zéro asynchrone:

always_ff @(posedge clk or negedge nreset)
if (!nreset)
begin
// Remise & zéro asynchrone des registres
end
else
begin
// Que se passe-t-il a chaque front de 1'horloge

end

Si nreset vaut @ (dés qu'il passe a 9) indépendamment du front d’horloge.
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I Une bascule D avec reset synchrone:

module Dff ( clk, reset, D, Q );

input clk, reset ;
input D ;
output reg Q ;

always_ff @(posedge clk)
reset if (reset)

Q <= 1'b0;
A else

Q <= D;

endmodule
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I Un registre :

Avec reset synchrone et enable

module Reg( input clk, reset, en,
input [7:0] D,
output logic [7:0]1 Q );

N N
. Q always_ff @(posedge clk)
D @ if (reset)
Q <= 8'do;
en else

if (en) Q <= D;
reset

endmodule
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B un registre a décalage:

o L 1 B o

Ro

en -
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B un registre a décalage:

module SftReg # ( parameter N = 8 )
input clk, en ,
input D ,

L output Q );
logic [N-1:0] R;
ﬂ Q

Ro

1.5

Rn-1 R

assign Q = R[0];

en —

always_ff @(posedge clk)
if (en) R <= { D, RIN-1:1] };

endmodule
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| e
mettre la méme valeur a tous les bits d’un vecteur

Opérateur de duplication

reg [N-1:0] A,B,C;

initial
begin
A = {N{1'b1}}; // tous les bits a1
B = {N{1'b0}}; // tous les bits a @
C = {N{1'bz}}; // tous les bits a z
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BN Astuce

mettre la méme valeur a tous les bits d’un vecteur

Opérateur de duplication Des raccourcis

logic [N-1:0] A,B,C,D;

reg [N-1:0] A,B,C;

initial
initial begin
begin A ="1; // tous les bits a 1
A = {N{1'b1}}; // tous les bits & 1 B = '0; // tous les bits a @
B = {N{1'b0}}; // tous les bits & @ C = "'z; // tous les bits a z

D = 'dl // 1 en décimal adapté
// a la taille de D!

C = {N{1'bz}}; // tous les bits a z
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B un compteur :

gﬂ.l Q
en

reset
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B un compteur :

module Cpt ( clk, reset, en, Q );
parameter N = 8;

input clk, reset, en ;
output logic [N-1:0] Q ;

always_ff @(posedge clk)

if (reset)
Q<= "0;

endmodule




I Affectations bloquantes/différées

Quelle est la différence entre ces deux codes:

logic a,b,r,q;

always_ff @(posedge clk)
begin

r =aé&hb;

q<=r;
end

logic a,b,r,q;

always_ff @(posedge clk)
begin

r<=aé&hb;

q<=r;
end
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is
e



I Affectations bloquantes/différées

Quelle est la différence entre ces deux codes:

logic a,b,r,q; logic a,b,r,q;
always_ff @(posedge clk) always_ff @(posedge clk)
begin begin

r =agé&hb; r<=aéa&hb;

a<=r; q<=r;
end end

- Fo 2 =
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I Affectations bloquantes/différées

Etici ?
logic [N:0] R; logic [N:0] R;
always_ff @(posedge clk) always_ff @(posedge clk)
begin: loop begin: loop
int i; int i;
for (i=0; i<N; i++) for (i=0; i<N; i++)
RCi+1] = RLiD; R[i+1] <= R[il;
end end
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Etici ?

I Affectations bloquantes/différées

logic [N:0] R;

always_ff @(posedge clk)

begin: loop
int i
for (i=0; i<N; i++)
RCi+1] = R[il;
end

logic [N:0] R;

always_ff @(posedge clk)
begin: loop
int i;
for (i=0; i<N; i++)
RLi+1] <= R[i];
end

Ro — —An

o L

I Ry
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I Variables locales

Pour éviter le non-déterminisme en simulation, déclarer des variables locales aux

processus.

logic a,b,r,q; logic a,b,q;
always_ff @(posedge clk) always_ff @(posedge clk)
begin begin:named_process

r =a&hb; logic r;

q<=r;
end r =aé&hb;

q<=r;
end

On est sOr que r ne peut étre lu dans un autre processus.
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I Affectations bloquantes/différées

Que fait ce code?

logic [N-1:0] R;
logic p;

always_ff @(posedge clk)
begin: loop

int i;

logic t;

t =0;

for (i=0; i<N; i++)

t=1t*RIi];

p <=t

end
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I Affectations bloquantes/différées

Que fait ce code?

logic [N-1:0] R;
logic p;

always_ff @(posedge clk)
begin: loop

int i;

logic t;

t =0;

for (i=0; i<N; i++)

t =t " R[];

p <=t

end

Ro An_2 Rn-1
LB&D BDE r

is
e




B rian

Machines a états finis
Machines de Moore
Machines de Mealy
Machines de Mealy resynchronisées
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I Machines a états finis

condy
B Méthode pour concevoir des conds condy

automates.
B A partir d’'un graphe d’états. conds

® Systéme synchrone. Q

conds

.7

cond,

TELECOM
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Déclaration du registre d’état
et des états

En Verilog 95

*define INIT 2'b0o0
“define S@  2'bo1
“define S1  2'b10

reg [1:0] state, n_state;
//...Le code

‘undef INIT
‘undef S@
‘undef S1
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Déclaration du registre d’état
et des états

En Verilog 2001

localparam INIT = 2'b00;
localparam S0 = 2'bo1;
localparam S1 = 2'b10;

reg [1:0] state, n_state;
//...Le code
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Déclaration du registre d’état
et des états

En SystemVerilog

enum logic[1:0] { INIT, S@, S1 } state, n_state;
//...Le code
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B Modification de I'état

Synchrone

always_ff @(posedge clk)
if (reset)

state <= INIT ;
else

state <= n_state ;

B |’état initial au reset doit étre explicite.
« SiI'état initial n’est pas connu le comportement n’est pas déterministe.

B | e changement d’état se fait de fagon synchrone.
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B rian

La logique combinatoire

La généricité

Logique séquentielle synchrone

Machines a états finis
Machines de Moore

Modélisation des mémoires
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I Machine de Moore

| || faut mémoriser I'état (registre).
B e prochain état dépend de I'état actuel et des entrées.

B |es sorties dépendent combinatoirement de I'état courant.

¢ .

n_state state

outputs

inputs
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BN processus

B Un processus séquentiel pour sauvegarder I'état.

B Deux processus combinatoires:

« Calcul de I'état futur.
» Calcul des sorties.

B n_state doit étre un signal.

¢ .

n, state state

outputs
—

inputs

always_comb always_comb
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BN processus

always_comb

begin
// par défaut on reste
// dans 1'état courant
n_state = state ;
case (state)
INIT: if (condo)

n_state = SO;
So : if (condl)
n_state = S1;

S1 : if (cond2)
n_state = INIT;
endcase
end

always_ff @(posedge clk)
if (reset)

state <= INIT ;
else

state <= n_state ;

o —
inputs

always_comb

begin

if (state == INIT) begin
outputl = ...

end

else if (state == S0@) begin
outputl = ...

end

else if (state == S@) begin
outputl = ...

end

else begin // Par défaut
outputl = ...

end

end

n| state state

always_comb
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BN processus

B Un processus séquentiel pour modifier I'état.
® Un processus combinatoire pour le calcul des sorties en fonction de I'état.

B n_state disparait.

outputs
—

inputs
n_state state

always_comb
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BN processus

always_ff @(posedge clk)
if (reset)
state <= INIT ;
else
case (state)
INIT: if (cond@)
state <= S0;
Se : if (condl)
state <= S1;
S1 : if (cond2)
state <= INIT;
endcase
// Sinon on reste dans
// 1'état courant

inputs

always_comb
begin
if (state == INIT) begin
outputl = ...
end
else if (state == S@) begin
outputl = ...
end
else if (state == S@) begin
outputl = ...
end
else begin // Par défaut
outputl = ...
end
end

n_state state

outputs
| o
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I hconvénient

Un changement de sortie nécessite un changement d’état et donc au moins un
cycle de latence.

clk [ 1L 1T

state So X S
c /
o 1
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I Machines de Mealy

m || faut mémoriser I'état (registre).
B |e prochain état dépend de I'état actuel et des entrées.

B |es sorties dépendent combinatoirement de I'état courant et des entrées.

¢ .

inputs outputs
——

n_state state
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I hconvénient

Un changement d’entrée peut étre propagé immédiatement sur une sortie.

clk [ 1L 1T

state So )
c 4%
o [
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BN processus

B Un processus séquentiel pour modifier I'état.

B Un processus combinatoire pour le calcul des sorties en fonction de I'état et des entrées.

always_comb

inputs outputs
—— —

n_state state
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BN processus

always_ff @(posedge clk)
if (reset)
state <= INIT ;
else
case (state)
INIT: if (cond@)
state <= So;
Se : if (condl)
state <= S1;
S1 : if (cond2)
state <= INIT;
endcase
// Sinon on reste dans
// 1'état courant

inputs

always_comb

begin

if (state == INIT) begin
outputl = f1(inputs ...)

end

else if (state == S@) begin

outputl = f2(inputs ...)...

end

else if (state == SO) begin
outputl = f3(inputs ...)

end

else begin // Par défaut
outputl = f4(inputs ...)

end

end

always_comb

@ -

outputs

n_state statel

I
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I hconvénient

On relie les entrées et les sorties par un chemin combinatoire:
B | e chemin critique n’est pas maitrisé.
B | a modification de la MAE modifie les performances du reste du circuit.
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I Machines de Mealy resynchronisées

m C’est une machine de Mealy pour laquelle les sorties sont resynchronisées pour
éviter les chemins combinatoires.

B || faut ajouter des registres sur les sorties

¢ . .

inputs outputs
——| —
n_state state
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BN processus

B Un processus séquentiel pour modifier I'état.
B Un processus combinatoire pour le calcul des sorties en fonction de I'état et des entrées.
®m Faire apparaitre un signal interne pour les sorties avant resynchronisation.

® Un processus séquentiel pour resynchroniser les sorties.

always_comb

¢ O outputs_i @]

inputs /(-/—\‘\ outputs
——— -
n_state state v
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BN processus

® Un processus séquentiel pour modifier I'état.
® Un séquentiel pour le calcul des sorties

inputs outputs
| -
n_state state

TEL M

is
e



BN processus

always_ff @(posedge clk)
if (reset)
state <= INIT ;
else
case (state)
INIT: if (cond@)
state <= SO;
Se : if (condl)
state <= S1;
S1 : if (cond2)
state <= INIT;
endcase
// Sinon on reste dans
// 1'état courant

inputs
——

always_ff @(posedge clk)
if (reset)
begin
// initialiser les sorties
outputl <= ...
end
else
begin
if (state == INIT) begin
outputl <= f1(inputs ..
end
else if (state == S@) begin
outputl <= f2(inputs ..
end
else if (state == S@) begin
outputl <= f3(inputs ..
end
end

2

...
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N processus

B Un processus séquentiel pour modifier I'état et les sorties.

inputs outputs
—— | [
n_state state
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N processus

always_ff @(posedge clk)
if (reset)
begin
// Initialiser 1'état
state <= INIT ;
// Initialiser les sorties
outputl <= ...
end
else
begin
// Les transitions
case (state)
INIT: if (cond@)
state <= S0;
Se : if (condl)
state <= S1

S1 : if (cond2)
state <= INIT;

endcase

// Les sorties

if (state == INIT) begin
outputl <= f1(inputs ..

end

else if (state == S@) begin
outputl <= f2(inputs ..

end

else if (state == S@) begin
outputl <= f3(inputs ..

end

end

D]

D
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inputs
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outputs
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N B Mémoire synchrone

mémoire simple port

B un bus d’adresse

B 2 bus pour les données:
* écriture
* lecture

B des signaux de contéle
® une horloge
® PAS DE RESET

® On ne peut accéder qu’a un seul
élément dans le méme cycle!

Addr =l
8 sram
Di —le
wr
clk
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N B Mémoire synchrone

mémoire simple port

un bus d’adresse

2 bus pour les données:
* écriture
* lecture

des signaux de contble
une horloge
PAS DE RESET

On ne peut accéder qu’a un seul
élément dans le méme cycle!

module sram(input clk, wr,
input [7:0] Addr,
input [7:0] Di,
output logic [7:0] Do );

logic[7:0] mem [0:255];

always_ff @(posedge clk)
begin
if (wr)
mem[Addr] <= Di;
Do <= mem[Addr];
end

endmodule
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N B Mémoire synchrone

mémoire simple port

un bus d’adresse
2 bus pour les données:

e @criture
* lecture

des signaux de contdle
une horloge
PAS DE RESET

On ne peut accéder qu’a un seul
élément dans le méme cycle!

module sram(input clk, wr,
input [7:0] Addr,
input [7:0] Di,
output [7:0] Do );

logic[7:0] mem [0:255];
logic[7:0] Addr_r;

always_ff @(posedge clk)
begin
if (wr)
mem[Addr] <= Di;
Addr_r <= Addr;
end

assign Do = mem[Addr_r1;

endmodule
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N B Mémoire synchrone

mémoire double ports

Addr1 ﬂb ﬁLAder
B permet un acceés double Di1 ﬂ;’S q ﬁL Di2
B ['écriture et la lecture a la méme Dol ﬁL Sran-ep ﬁL> Do2
adresse dans le méme cycle
n'est pas prédictible wrl —— ——wr2
B pourrait avoir deux horloges
clk
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N B Mémoire synchrone

mémoire double ports

module sram_dp(input clk, wrl, wr2,
input [7:0] Addr1, Addr2,
input [7:0] Di1, Di2,
output logic [7:0] Dol, Do2 );

B permet un acces double fogiel7 01 mem [0:2551;
m 'écriture et la lecture & la méme e poeede® €0
adresse dans le méme cycle  peniaddrt] < pit;
n'est pas prédictible et
B pourrait avoir deux horloges alvays.fF @(posede clly
if (wr2)

mem[Addr2] <= Di2;
Do2 <= mem[Addr2];
end

endmodule
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N B Mémoire synchrone

Initialisation du contenu

module sram(input clk, wr,
input [7:0] Addr,
input [7:0] Di,

B Possible seulement pour les FPGA output logic [7:6] Do );

B initial est normalement
exclusivement réserveé a la

logic[7:0] mem [0:255];

initial
Slmu|atI0n Sieadmemh(”init.txt”, mem) ;
B $readmemh (ou $readmemb ) permet piveys-ff €lposedge 1)
d’initialiser une table a partir d’un ) < bi.
fichier Do <= mem[Addr];
end
endmodule
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Mémoire synchrone
ROM synchrone

module rom (input clk,
input [7:0] Addr,
output logic [7:0] Do );

B Possible seulement pour les FPGA

logic[7:0] mem [0:255];
m j| suffit d’enlever la possibilité initial

7 . $readmemh(”init.txt"”, mem);
d’écrire

always_ff @(posedge clk)
Do <= mem[Addr];

endmodule
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