Paris
mEET

N 1P PARIS

SystemVerilog

B rian

La logique combinatoire
Exemples

TELEFDM
2aris

e

N Logique combinatoire

Rappel

B | a sortie d’'un bloc combinatoire ne dépend que de la valeur de ses entrées.

Dit autrement, pour les mémes valeurs des entrées on doit toujours avoir les
mémes valeurs de sortie.

TELEFDM
2aris

e

I Affectations concurrentes assign

Les affectations concurrentes ne permettent que de représenter de la logique
combinatoire.

Elles ne permettent pas d’avoir de structures de contréle (if , case ...) on la
réservera aux cas simples (connexions, inversions par exemple)

Exemple:

assign o = s? a:b; // un multiplexeur

TELECOM

Paris

e

N always_comb

En SystemVerilog on peut utiliser always_comb .
® Equivalent 4 “always @(*) ”.

B | e designer précise qu’il veut décrire de la logique combinatoire et les outils le
vérifient.

TELECOM

Paris

e

B rian

La logique combinatoire
Exemples

La généricité

Logique séquentielle synchrone

Machines a états finis

Modélisation des mémoires

TELEFDM
2aris

e

Processus always pour
décrire la logique combinatoire

Exemple: Un multiplexeur 2 — 1

S

module mux21(s, a, b, 0);

input s;
input a, b ;
output reg o ;

always @(a or b or s) a

if (s) o = a;
else o =b;

/% Pourrait étre

o =b;
if (s) o = a;
* ou

o=s?a:b;
*/
endmodule

TELECOM

Paris

e

Processus always pour
décrire la logique combinatoire

Exemple: Un multiplexeur 2 — 1

S

module mux21(s, a, b, 0);

input s;
input a, b ;
output reg o ;

always @(*) a
if (s) o = a;
= b;

else o

/% Pourrait étre

o =b;
if (s) o = a;
* ou

o=s?a:b;
*/
endmodule

TELECOM

Paris

e

Processus always pour
décrire la logique combinatoire

Exemple: Un multiplexeur 2 — 1

S

module mux21(s, a, b, 0);

input s;
input a, b ;
output logic o ;

always_comb a
if (s) o = a;
= b;

else o

/% Pourrait étre

o =b;
if (s) o = a;
* ou

o=s?a:b;
*/
endmodule

TELECOM

Paris

e

I Un mux 41

module mux41(s, a, 0);
input [1:0] s;
S input [3:0] a;

output reg o ;

always @(x)

case(s)
2'b00: o = a[0l;
a‘[()] 0 2'bo1: o = al1];
2'b10: o = a[2];
2'b11: o = al3];
a[1] 1 endcase
O /* Pourrait étre
o = a[s];
a[2] 2 v
if (a == 2'de) o = alel;
else if (a == 2'd1) o = a[1];
a[3] 3 else if (a == 2'd2) o = a[2];
else if (a == 2'd3) o = a[3];
/ *

endmodule

B Un mux incomplet

module mux_il(s, a, o);
input [1:0] s;
input [3:0] a;

output reg o ;

always @(*)

case(s)
2'b00: o = al0];
2'bo1: o = al1];
2'b10: o = al2];

endcase

endmodule

TELEFDM

=T

B Un mux incomplet

module mux_il(s, a, o);

input [1:0] s;
input [3:0] a;
output reg o ;

Que se passe-t-il sis = 3?7 alvays @(*)

case(s)
2'b00: o
2'bo1: o
2'b10: o

endcase

al0];
al1l;
alf2];

endmodule

TELECOM

e

B Un mux incomplet

On mémorise la valeur précédente!!

2

S module mux_il(s, a, o);

input [1:0] s;
input [3:0] a;
a[o] —_— output reg o ;
a[1] —

a[2] —

always @(*)

case(s)

D Q o 2'b00: o = alo];
2'bo1: o = al1];
2'b10: o = al2];

endcase

w N =+ O

endmodule

Erreur avec always_comb

TELECOM

Paris

e

I Un muxincomplet

Valeurs des sorties toujours définies

module mux_i(s, a, o);

input [1:0] s;
S input [3:0] a;

output reg o ;

always @(x)

begin

// la valeur par défaut

o = a[2];
case(s)
2'b0o: o
2'bo1: o
endcase

O end

/* Pourrait étre
case(s)
2'b00: o = a[0];
2'bo1: o = a[ll;
default: o = a[2];
endcase
*/
endmodule

alo];
alll;

\C}OI\J—*O

TELECOM

e

Reégles pour décrire la logique
combinatoire

B | a liste de sensibilité doit contenir toutes les entrées.

B | es valeurs des sorties doivent étre définie pour toutes les valeurs des
entrées.

Recommandations

B Liste de sensibilité automatique.
B Donner systématiquement une valeur par défaut aux sorties.

TELEFDM
2aris

e

B Exercixce

® Ecrire le code SystemVerilog d’'un
décodeur 7 segments

® Ecrire le code SystemVerilog d’'un
décodeur 7 segments qui ne décode
que les nombres de 0 a 9

TELEFDM
2aris

e

I un décodeur 7 segments

module dec7seg (I, 0);
input [3:0] I;
output [6:0] O;
logic [6:0] 0;
always_comb
case(I)
4'ho: 0 = 7'b0111111
4'h1: 0 = 7'b0o000110 ;
4'h2: 0 = 7'b1011011 ;
4'h3: 0 = 7'b1001111
4 7 4'h4: 0 = 7'b1100110 ;
4'h5: 0 = 7'b1101101 ;
I —<%—>»| Dec 7 Seg =3 0 4'h6: 0 = 7'b1111101 ;
4'h7: 0 = 7'b0000111 ;
4'h8: 0 = 7'b1111111
4'h9: 0 = 7'b1100111 ;
4'ha: 0 = 7'b1110111
4'hb: 0 = 7'b1111100 ;
4'hc: 0 = 7'b0111001 ;
4'hd: 0 = 7'b1011110 ;
4'he: 0 = 7'b1111001 ;
4'hf: 0 = 7'b1110001 ;
endcase
endmodule

I Un décodeur 7 segments

utilisation d’une table

module dec7segT (I, 0);
input [3:0] I;
output [6:0] O;
logic [6:0] O;

logic [6:0] Tab [0:15] = '{
bo111111
'bo00o110
‘bie11011
61001111
. ; "b1100110
"b1101101
I =<3 Dec 7 Seg =k 0 "b1111101
'b0000111
USRRRERR!
"b1100111
"b1110111
"b1111100
60111001
‘ble11110
"b1111001
"b1110001

LUT: LookUp Table

e v e e e e e e e e e e e e

always_comb 0 = Tab[I];

endmodule

I un décodeur 7 segments incomplet

module dec7segI (I, 0);
input [3:0] I;
output [6:0] O;
logic [6:0] O;
always_comb
case(I)
4'ho : 0 =7'b0111111 ;
4'h : 0 = 7'b0000110 ;
4'h2 : 0 =7'b1011011 ;
4 7 4'h3 : 0 =7'b1001111 ;
4'h4 : 0 =17'b1100110 ;
I —<%—»| Dec 7 Seg —ri—> 0 4'h5 : 0= 7'bl101101 ;
4'hé : 0 =7'b1111101 ;
4'h7 : 0 = 7'b0o000111 ;
4'h8 : 0 =7'b1111111 ;
4'h9 : 0 =7'b1100111 ;
4'd10,4'd11,
4'd12,4'd13,
4'd14,4'd15
: 0 = 7'b0o000000 ;
endcase
endmodule

I un décodeur 7 segments incomplet

module dec7segl (I, 0);
input [3:0] I;
output [6:0] O;
logic [6:0] 0;
always_comb
case(I)
4'ho : 0 =7'b0111111 ;
4'h : 0 = 7'b0000110 ;
4 7 4'h2 ;0= 7'blo11011 ;
I ﬂh) Dec 7 Seg ﬂh) 0 4'h3 : 0= 7'b1001111 ;
4'h4 : 0 =17'b1100110 ;
4'h5 : 0 =7'bl101101 ;
4'hé : 0 =7'b1111101 ;
4'h7 : 0 = 7'b0o0o0111 ;
4'h8 : 0 =7'b1111111 ;
4'h9 : 0 =7'b1100111 ;
default: 0 = 7'b0000000 ;
endcase
endmodule

TELEFDM

e

I un décodeur 7 segments incomplet

module dec7segl (I, 0);
input [3:0] I;
output [6:0] O;
logic [6:0] O;
always_comb
begin
0 = 7'b0000000 ; // valeur par défaut
case(I)
4'ho : 0 =7'b0111111
4 7 4'h1 ;0 = 7'b0000110 ;
I =< Dec 7 Seg =k 0 4'h2 : 0= 7'bletie1 ;
4'h3 : 0 =17'b1001111 ;
4'h4 : 0 =17'b1100110 ;
4'h5 : 0 =7'bl101101 ;
4'h6 : 0 =7'b1111101 ;
4'h7 : 0 = 7'b0o00111 ;
4'h8 : 0 =7'b1111111 ;
4'h9 : 0 =7'b1100111 ;
endcase
begin
endmodule

Un décodeur 7 segments incomplet

Utilisation de casez

module dec7segI (I, 0);
input [3:0] I;
output [6:0] O;
logic [6:0] O;
always_comb
casez(I)
4'ho : 0 =7'b0111111 ;
4'h1 : 0 = 7'booool110 ;
4 7 4'h2 1 0 =7'bl011011 ;
A > A > 4'h3 0 =7'b1001111 ;
I Dec 7 Seg 0 4'h4 : 0 =7'b1100110 ;
4'h5 : 0 =7'b1101101 ;
4'h6 : 0 =7'b1111101 ;
4'h7 : 0 = 7'b000111 ;
4'h8 : 0 =7'b1111111 ;
4'h9 : 0 =17'b1100111 ;
4'b1017,
4'b1122: 0 = 7'b0000000 ;
endcase
endmodule

I Utiliser des fonctions

Pour “mutualiser” du code on peut utiliser des modules.

I1 =<3 Nb1

12— Nb1

TELEFDM
2aris

e

I Utiliser des fonctions

Pour “mutualiser” du code on peut aussi utiliser des fonctions.

module foo(I1,I2, 0);
input [7:0] I1,I2;
output logic O;

// Nombre de 1 dans un mot de 8bits
function [3:0] nbr1 (input [7:0] N); 8
int tmp; I1 ﬂ;’ Nb1
begin
tmp = 0;
for (int i = 0; i<8; i++)
if (N[il) tmp++; 0
return tmp;
// On aurait pu écrire
// nbr1 = tmp ;
end 8
endfunction IZﬂQ Nb1

always_comb
0 = nbr1(I1) > nbr1(I2);

endmodule

N B Utiliser des fonctions

différence entre taches et fonctions

En SystemVerilog il y deux type de sous-programmes:
Les fonctions: Exécution en temps nul

B Affectation bloquantes
B Pas de synchronisation (#,@,...)

Les taches: Ne renvoient pas de valeurs
B Peuvent avoir des output

Plus d’informations et des exemples Section 13 de la norme.

TELEFDM
2aris

e

B rian

La généricité

TELEFDM
2aris

e

I raire un code paramétrable

Les modules peuvent étre paramétrables:
® Définir leur comportement/structure en fonction de certains paramétres
Le code peut ainsi étre réutilisé dans des conditions différentes.

TELEFDM
2aris

e

I Faire un code paramétrable

parameter

8
A
S0

8
B 10

8 S
C

8 S1
D

TELEFDM
2aris

e

I Faire un code paramétrable

parameter

8
A
_ S0
module adder #(parameter WIDTH = 8) 8
(input [WIDTH-1:0] A,B,
output [WIDTH :0]1 S); B 10
S
assign S = A + B; 8
C
endmodule
8 S1
D

TELECOM

Paris

e

I Faire un code paramétrable

parameter
8
module truc (input [7:0] A,B,C,D, A
output [9:0] S); S0
wire [8:0] $S@,S1; B s 10
adder #(.WIDTH(8)) add1 (.A(A),.B(B),.S(S0)); S
adder #(.WIDTH(8)) add2 (.A(C),.B(D),.S(S1)); 8
C
adder #(.WIDTH(9)) add3 (.A(S@),.B(S1),.5(S));
endmodule D ° S1

TELECOM

e

I Faire un code paramétrable

localparam

Parfois on a besoin de paramétres non

modifiables a l'instanciation.

parameter SIZE
parameter WIDTH
localparam I_WIDTH

input

input [I_WIDTH-1:0]
input [WIDTH-1:0]
output [WIDTH-1:0]
logic [WIDTH-1:0]

begin

end

endmodule

module Table (clk, index, valeur_e, valeur_s);

256;
8;
$clog2(SIZE) ;

clk;
index;
valeur_e;
valeur_s;
valeur_s;

logic [WIDTH-1:0] Tab [0:SIZE-1];
always_ff @(posedge clk)

Tab[index] <= valeur_e;
valeur_s <= Tab[index];

Un parametre local est:
B Une constante
B Calculé a partir d’autres constantes

lIs ne sont pas modifiables a I'extérieur du
module.

I raire un code paramétrable

Comment changer le code en fonction de ces paramétres?

TELEFDM
2aris

e

I Faire un code paramétrable

generate

De fagon conditionnelle:

module adder #(parameter generic = "YES")
(input [7:0] A,B,
output [7:0] S);
generate
if (generic == "YES")
begin
assign S = A +B ;
end
else
begin
optimised_adder o_adder (A,B,S);
end
endgenerate

endmodule

Remplace dans ce cas des directives de préprocesseur (*ifdef)

TELECOM

e

I Faire un code paramétrable

generate

En répétant le comportement

// Extrait de la norme section 27.4
module gray2bin #(parameter W = 8)
(input [W-1:0] G,
output [W-1:0]1 B
DA

genvar i;

generate
for (i=0; i<W; i++)
begin:position

// Le Xor des bit i a W-1
assign B[i] = *G[W-1:i];

end
endgenerate

endmodule

I Faire un code paramétrable

generate
En répétant la structure

module struct_adder #(parameter W = 8)
(input [W-1:0] A,B, input Ci,
output [W-1:0] S, output Co,m);
wire [W:0] c;

assign c[0] = Ci;
assign Co = c[W];

genvar ij;
generate
for (i=0; i<W; i++)
begin:position
// ces noeuds seront dupliqués
wire s, €@, el;

xor xor® (s , ALil, BLil);
xor xorl (S[i]l , s , c[il);
and and@ (€@ , ALil, B[i]);
and andl (el , s, clil);
or or@ (c[i+1], e0 , el A
end
endgenerate

assign m = position[W/2].s;
endmodule

B rian

Logique séquentielle synchrone
Exemples

TELEFDM
2aris

e

N B Processus always

pour de la logique séquentielle synchrone

La bascule D

module Dff (input clk, D Q

input D ,
output reg Q);

always @(posedge clk) /\
Q <=D;

endmodule

B A chaque front montant (posedge) de I'horloge on mémorise la valeur de
'entrée.
B Entre les fronts d’horloge la sortie conserve sa valeur.

TELEFDM
2aris

e

N always_ff

En SystemVerilog on peut utiliser always_ff .
® Equivalent a “always ”.

B e concepteur précise qu’il veut décrire de la logique séquentielle et les outils
le vérifient.

TELECOM

Paris

e

I Avec remise a zéro synchrone:

always_ff @(posedge clk)
if (reset)
begin
// Remise & zéro synchrone des registres
end
else
begin
// Que se passe-t-il a chaque front de 1'horloge

end

Si reset vaut 1 au moment du front d’horloge!

TELEFDM
2aris

e

I Avec remise a zéro asynchrone:

always_ff @(posedge clk or posedge reset)
if (reset)
begin
// Remise & zéro asynchrone des registres
end
else
begin
// Que se passe-t-il a chaque front de 1'horloge

end

Si reset vaut 1 (des qu'il passe a 1) indépendamment du front d’horloge.

Il faut que la condition testée et la liste de sensibilité soient cohérentes.

TELECOM

Paris

e

I Avec remise a zéro asynchrone:

always_ff @(posedge clk or negedge nreset)
if (!nreset)
begin
// Remise & zéro asynchrone des registres
end
else
begin
// Que se passe-t-il a chaque front de 1'horloge

end

Si nreset vaut @ (dés qu'il passe a 9) indépendamment du front d’horloge.

TELECOM

Paris

e

B rian

La logique combinatoire

La généricité

Logique séquentielle synchrone
Exemples

Machines a états finis

Modélisation des mémoires

TELEFDM
2aris

e

I Une bascule D avec reset synchrone:

module Dff (clk, reset, D, Q);

input clk, reset ;
input D ;
output reg Q ;

always_ff @(posedge clk)
reset if (reset)

Q <= 1'b0;
A else

Q <= D;

endmodule

TELECOM

e

I Un registre :

Avec reset synchrone et enable

module Reg(input clk, reset, en,
input [7:0] D,
output logic [7:0]1 Q);

N N
. Q always_ff @(posedge clk)
D @ if (reset)
Q <= 8'do;
en else

if (en) Q <= D;
reset

endmodule

TELECOM
is

e

B un registre a décalage:

o L 1 B o

Ro

en -

TELEFDM
2aris

e

B un registre a décalage:

module SftReg # (parameter N = 8)
input clk, en ,
input D ,

L output Q);
logic [N-1:0] R;
ﬂ Q

Ro

1.5

Rn-1 R

assign Q = R[0];

en —

always_ff @(posedge clk)
if (en) R <= { D, RIN-1:1] };

endmodule

TELECOM

e

| e
mettre la méme valeur a tous les bits d’un vecteur

Opérateur de duplication

reg [N-1:0] A,B,C;

initial
begin
A = {N{1'b1}}; // tous les bits a1
B = {N{1'b0}}; // tous les bits a @
C = {N{1'bz}}; // tous les bits a z

TELEFDM

e

BN Astuce

mettre la méme valeur a tous les bits d’un vecteur

Opérateur de duplication Des raccourcis

logic [N-1:0] A,B,C,D;

reg [N-1:0] A,B,C;

initial
initial begin
begin A ="1; // tous les bits a 1
A = {N{1'b1}}; // tous les bits & 1 B = '0; // tous les bits a @
B = {N{1'b0}}; // tous les bits & @ C = "'z; // tous les bits a z

D = 'dl // 1 en décimal adapté
// a la taille de D!

C = {N{1'bz}}; // tous les bits a z

TELECOM
is

e

B un compteur :

gﬂ.l Q
en

reset

TELEFDM
2aris

e

B un compteur :

module Cpt (clk, reset, en, Q);
parameter N = 8;

input clk, reset, en ;
output logic [N-1:0] Q ;

always_ff @(posedge clk)

if (reset)
Q<= "0;

endmodule

I Affectations bloquantes/différées

Quelle est la différence entre ces deux codes:

logic a,b,r,q;

always_ff @(posedge clk)
begin

r =aé&hb;

q<=r;
end

logic a,b,r,q;

always_ff @(posedge clk)
begin

r<=aé&hb;

q<=r;
end

TEL

is
e

I Affectations bloquantes/différées

Quelle est la différence entre ces deux codes:

logic a,b,r,q; logic a,b,r,q;
always_ff @(posedge clk) always_ff @(posedge clk)
begin begin

r =agé&hb; r<=aéa&hb;

a<=r; q<=r;
end end

- Fo 2 =

TELECOM

Paris

e

I Affectations bloquantes/différées

Etici ?
logic [N:0] R; logic [N:0] R;
always_ff @(posedge clk) always_ff @(posedge clk)
begin: loop begin: loop
int i; int i;
for (i=0; i<N; i++) for (i=0; i<N; i++)
RCi+1] = RLiD; R[i+1] <= R[il;
end end

TELECOM

e

Etici ?

I Affectations bloquantes/différées

logic [N:0] R;

always_ff @(posedge clk)

begin: loop
int i
for (i=0; i<N; i++)
RCi+1] = R[il;
end

logic [N:0] R;

always_ff @(posedge clk)
begin: loop
int i;
for (i=0; i<N; i++)
RLi+1] <= R[i];
end

Ro — —An

o L

I Ry

TELEFDM
2aris

e

I Variables locales

Pour éviter le non-déterminisme en simulation, déclarer des variables locales aux

processus.

logic a,b,r,q; logic a,b,q;
always_ff @(posedge clk) always_ff @(posedge clk)
begin begin:named_process

r =a&hb; logic r;

q<=r;
end r =aé&hb;

q<=r;
end

On est sOr que r ne peut étre lu dans un autre processus.

TELECOM

Paris

e

I Affectations bloquantes/différées

Que fait ce code?

logic [N-1:0] R;
logic p;

always_ff @(posedge clk)
begin: loop

int i;

logic t;

t =0;

for (i=0; i<N; i++)

t=1t*RIi];

p <=t

end

TELEFDM
2aris

e

I Affectations bloquantes/différées

Que fait ce code?

logic [N-1:0] R;
logic p;

always_ff @(posedge clk)
begin: loop

int i;

logic t;

t =0;

for (i=0; i<N; i++)

t =t " R[];

p <=t

end

Ro An_2 Rn-1
LB&D BDE r

is
e

B rian

Machines a états finis
Machines de Moore
Machines de Mealy
Machines de Mealy resynchronisées

TELEFDM
2aris

e

I Machines a états finis

condy
B Méthode pour concevoir des conds condy

automates.
B A partir d’'un graphe d’états. conds

® Systéme synchrone. Q

conds

.7

cond,

TELECOM

Paris

Tark Graba 201912020 @SEATTET

Déclaration du registre d’état
et des états

En Verilog 95

*define INIT 2'b0o0
“define S@ 2'bo1
“define S1 2'b10

reg [1:0] state, n_state;
//...Le code

‘undef INIT
‘undef S@
‘undef S1

TELEFDM
2aris

e

Déclaration du registre d’état
et des états

En Verilog 2001

localparam INIT = 2'b00;
localparam S0 = 2'bo1;
localparam S1 = 2'b10;

reg [1:0] state, n_state;
//...Le code

TELEFDM
2aris

e

Déclaration du registre d’état
et des états

En SystemVerilog

enum logic[1:0] { INIT, S@, S1 } state, n_state;
//...Le code

TELEFDM
2aris

e

B Modification de I'état

Synchrone

always_ff @(posedge clk)
if (reset)

state <= INIT ;
else

state <= n_state ;

B |’état initial au reset doit étre explicite.
« SiI'état initial n’est pas connu le comportement n’est pas déterministe.

B | e changement d’état se fait de fagon synchrone.

TELECOM

Paris

e

B rian

La logique combinatoire

La généricité

Logique séquentielle synchrone

Machines a états finis
Machines de Moore

Modélisation des mémoires

TELEFDM
2aris

e

I Machine de Moore

| || faut mémoriser I'état (registre).
B e prochain état dépend de I'état actuel et des entrées.

B |es sorties dépendent combinatoirement de I'état courant.

¢ .

n_state state

outputs

inputs

TELECOM

Paris

e

BN processus

B Un processus séquentiel pour sauvegarder I'état.

B Deux processus combinatoires:

« Calcul de I'état futur.
» Calcul des sorties.

B n_state doit étre un signal.

¢ .

n, state state

outputs
—

inputs

always_comb always_comb

TELEFDM
2aris

e

BN processus

always_comb

begin
// par défaut on reste
// dans 1'état courant
n_state = state ;
case (state)
INIT: if (condo)

n_state = SO;
So : if (condl)
n_state = S1;

S1 : if (cond2)
n_state = INIT;
endcase
end

always_ff @(posedge clk)
if (reset)

state <= INIT ;
else

state <= n_state ;

o —
inputs

always_comb

begin

if (state == INIT) begin
outputl = ...

end

else if (state == S0@) begin
outputl = ...

end

else if (state == S@) begin
outputl = ...

end

else begin // Par défaut
outputl = ...

end

end

n| state state

always_comb

Tarik Graba

always_comb

outputs

2019/2020

BN processus

B Un processus séquentiel pour modifier I'état.
® Un processus combinatoire pour le calcul des sorties en fonction de I'état.

B n_state disparait.

outputs
—

inputs
n_state state

always_comb

TELEFDM
2aris

e

BN processus

always_ff @(posedge clk)
if (reset)
state <= INIT ;
else
case (state)
INIT: if (cond@)
state <= S0;
Se : if (condl)
state <= S1;
S1 : if (cond2)
state <= INIT;
endcase
// Sinon on reste dans
// 1'état courant

inputs

always_comb
begin
if (state == INIT) begin
outputl = ...
end
else if (state == S@) begin
outputl = ...
end
else if (state == S@) begin
outputl = ...
end
else begin // Par défaut
outputl = ...
end
end

n_state state

outputs
| o

Tarik Graba

always_comb

2019/2020

I hconvénient

Un changement de sortie nécessite un changement d’état et donc au moins un
cycle de latence.

clk [1L 1T

state So X S
c /
o 1

TELEFDM
2aris

s [T

B rian

La logique combinatoire

La généricité

Logique séquentielle synchrone

Machines a états finis

Machines de Mealy

Modélisation des mémoires

TELEFDM
2aris

e

I Machines de Mealy

m || faut mémoriser I'état (registre).
B |e prochain état dépend de I'état actuel et des entrées.

B |es sorties dépendent combinatoirement de I'état courant et des entrées.

¢ .

inputs outputs
——

n_state state

TELECOM

Paris

e

I hconvénient

Un changement d’entrée peut étre propagé immédiatement sur une sortie.

clk [1L 1T

state So)
c 4%
o [

TELEFDM
2aris

s e

BN processus

B Un processus séquentiel pour modifier I'état.

B Un processus combinatoire pour le calcul des sorties en fonction de I'état et des entrées.

always_comb

inputs outputs
—— —

n_state state

TELECOM

Paris

e

BN processus

always_ff @(posedge clk)
if (reset)
state <= INIT ;
else
case (state)
INIT: if (cond@)
state <= So;
Se : if (condl)
state <= S1;
S1 : if (cond2)
state <= INIT;
endcase
// Sinon on reste dans
// 1'état courant

inputs

always_comb

begin

if (state == INIT) begin
outputl = f1(inputs ...)

end

else if (state == S@) begin

outputl = f2(inputs ...)...

end

else if (state == SO) begin
outputl = f3(inputs ...)

end

else begin // Par défaut
outputl = f4(inputs ...)

end

end

always_comb

@ -

outputs

n_state statel

I

Lo

57/70 SE204

Tarik Graba

2019/2020

I hconvénient

On relie les entrées et les sorties par un chemin combinatoire:
B | e chemin critique n’est pas maitrisé.
B | a modification de la MAE modifie les performances du reste du circuit.

TELEFDM
2aris

e

B rian

La logique combinatoire

La généricité

Logique séquentielle synchrone

Machines a états finis

Machines de Mealy resynchronisées

Modélisation des mémoires

TELEFDM
2aris

e

I Machines de Mealy resynchronisées

m C’est une machine de Mealy pour laquelle les sorties sont resynchronisées pour
éviter les chemins combinatoires.

B || faut ajouter des registres sur les sorties

¢ . .

inputs outputs
——| —
n_state state

TELECOM

Paris

e

BN processus

B Un processus séquentiel pour modifier I'état.
B Un processus combinatoire pour le calcul des sorties en fonction de I'état et des entrées.
®m Faire apparaitre un signal interne pour les sorties avant resynchronisation.

® Un processus séquentiel pour resynchroniser les sorties.

always_comb

¢ O outputs_i @]

inputs /(-/—\‘\ outputs
——— -
n_state state v

TELEFDM
2aris

e

BN processus

® Un processus séquentiel pour modifier I'état.
® Un séquentiel pour le calcul des sorties

inputs outputs
| -
n_state state

TEL M

is
e

BN processus

always_ff @(posedge clk)
if (reset)
state <= INIT ;
else
case (state)
INIT: if (cond@)
state <= SO;
Se : if (condl)
state <= S1;
S1 : if (cond2)
state <= INIT;
endcase
// Sinon on reste dans
// 1'état courant

inputs
——

always_ff @(posedge clk)
if (reset)
begin
// initialiser les sorties
outputl <= ...
end
else
begin
if (state == INIT) begin
outputl <= f1(inputs ..
end
else if (state == S@) begin
outputl <= f2(inputs ..
end
else if (state == S@) begin
outputl <= f3(inputs ..
end
end

2

...

D)

outputs

N processus

B Un processus séquentiel pour modifier I'état et les sorties.

inputs outputs
—— | [
n_state state

TEL M

is
e

N processus

always_ff @(posedge clk)
if (reset)
begin
// Initialiser 1'état
state <= INIT ;
// Initialiser les sorties
outputl <= ...
end
else
begin
// Les transitions
case (state)
INIT: if (cond@)
state <= S0;
Se : if (condl)
state <= S1

S1 : if (cond2)
state <= INIT;

endcase

// Les sorties

if (state == INIT) begin
outputl <= f1(inputs ..

end

else if (state == S@) begin
outputl <= f2(inputs ..

end

else if (state == S@) begin
outputl <= f3(inputs ..

end

end

D]

D

2

inputs
——

outputs

B rian

Modélisation des mémoires

TELECOM
is

e

N B Mémoire synchrone

mémoire simple port

B un bus d’adresse

B 2 bus pour les données:
* écriture
* lecture

B des signaux de contéle
® une horloge
® PAS DE RESET

® On ne peut accéder qu’a un seul
élément dans le méme cycle!

Addr =l
8 sram
Di —le
wr
clk

TELEFDM
2aris

e

N B Mémoire synchrone

mémoire simple port

un bus d’adresse

2 bus pour les données:
* écriture
* lecture

des signaux de contble
une horloge
PAS DE RESET

On ne peut accéder qu’a un seul
élément dans le méme cycle!

module sram(input clk, wr,
input [7:0] Addr,
input [7:0] Di,
output logic [7:0] Do);

logic[7:0] mem [0:255];

always_ff @(posedge clk)
begin
if (wr)
mem[Addr] <= Di;
Do <= mem[Addr];
end

endmodule

TELEFDM
2aris

=34t |

N B Mémoire synchrone

mémoire simple port

un bus d’adresse
2 bus pour les données:

e @criture
* lecture

des signaux de contdle
une horloge
PAS DE RESET

On ne peut accéder qu’a un seul
élément dans le méme cycle!

module sram(input clk, wr,
input [7:0] Addr,
input [7:0] Di,
output [7:0] Do);

logic[7:0] mem [0:255];
logic[7:0] Addr_r;

always_ff @(posedge clk)
begin
if (wr)
mem[Addr] <= Di;
Addr_r <= Addr;
end

assign Do = mem[Addr_r1;

endmodule

TELECOM
is

e

N B Mémoire synchrone

mémoire double ports

Addr1 ﬂb ﬁLAder
B permet un acceés double Di1 ﬂ;’S q ﬁL Di2
B ['écriture et la lecture a la méme Dol ﬁL Sran-ep ﬁL> Do2
adresse dans le méme cycle
n'est pas prédictible wrl —— ——wr2
B pourrait avoir deux horloges
clk

TELEFDM
2aris

e

N B Mémoire synchrone

mémoire double ports

module sram_dp(input clk, wrl, wr2,
input [7:0] Addr1, Addr2,
input [7:0] Di1, Di2,
output logic [7:0] Dol, Do2);

B permet un acces double fogiel7 01 mem [0:2551;
m 'écriture et la lecture & la méme e poeede® €0
adresse dans le méme cycle peniaddrt] < pit;
n'est pas prédictible et
B pourrait avoir deux horloges alvays.fF @(posede clly
if (wr2)

mem[Addr2] <= Di2;
Do2 <= mem[Addr2];
end

endmodule

TELECOM

Paris

e

N B Mémoire synchrone

Initialisation du contenu

module sram(input clk, wr,
input [7:0] Addr,
input [7:0] Di,

B Possible seulement pour les FPGA output logic [7:6] Do);

B initial est normalement
exclusivement réserveé a la

logic[7:0] mem [0:255];

initial
Slmu|atI0n Sieadmemh(”init.txt”, mem) ;
B $readmemh (ou $readmemb) permet piveys-ff €lposedge 1)
d’initialiser une table a partir d’un) < bi.
fichier Do <= mem[Addr];
end
endmodule

TELEFDM
2aris

e

Mémoire synchrone
ROM synchrone

module rom (input clk,
input [7:0] Addr,
output logic [7:0] Do);

B Possible seulement pour les FPGA

logic[7:0] mem [0:255];
m j| suffit d’enlever la possibilité initial

7 . $readmemh(”init.txt"”, mem);
d’écrire

always_ff @(posedge clk)
Do <= mem[Addr];

endmodule

TELECOM

I
e

	La logique combinatoire
	Exemples

	La généricité
	Logique séquentielle synchrone
	Exemples

	 Machines à états finis
	 Machines de Moore
	 Machines de Mealy
	 Machines de Mealy resynchronisées

	Modélisation des mémoires

