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Optimized Design of Processors

How to get optimized design of reliable processors based
on unreliable devices?
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Optimized Design of Processors

How to get optimized design of reliable processors based
on unreliable devices?

Risk minimization

More (than) Moore

Fabless generalization

Reliability improvement
⇒ penalties !
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Fault Propagation
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Masking Effects

⇒ Reliability assessment !
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Hardware Fault Injection

8 /65
Lirida Alves de Barros-Naviner
Master Program



Laser Fault Injection
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Heavy Ions Test on a µProc
Test vehicle: Leon3 SoC Core

Test Board and Experimental Setup

Heavy Ions Test Result on a 65nm Sparc-V8 Radiation-Hard Microprocessor (IRPS’2014)
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Heavy Ions Test on a µProc (cont.)
Test vehicle: Leon3 SoC Core

Alpha-particles irradiation for setup validation

Heavy Ions Test Result on a 65nm Sparc-V8 Radiation-Hard Microprocessor (IRPS’2014)
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Fault Injection: HW Emulation

Saboteur. Setup for SEU Fault Injection
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Fault Injection: HW Emulation (cont.)

Fault Injection/Emulation Platform.
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Fault Injection: Simulation

Platform General Structure
Frequency and Voltage Effects on SER on a 65nm Sparc-V8 Microprocessor Under Radiation Test (IRPS’2015)
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Probabilistic Transfer Matrix (PTM)

A matrix that models the
probability of output values
according to the occurrence of
input values and gate
reliability.

A fault-free gate is modeled by
ideal transfer matrix (ITM).




• • · · · •
• • · · · •
...
• • · · · •


in

p
u

ts

outputs

probabilities of correct

and incorrect outputs

[1] S. Krishnaswamy, G. Viamontes, I. Markov, and J. Hayes, “Accurate reliability evaluation
and enhancement via probabilistic transfer matrices,” DATE’05
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Examples

Logic gate NOT

A Y

PTMINV =

[
p0 q0
q1 p1

]
ITMINV =

[
0 1
1 0

]
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Examples (cont.)

Logic gate AND

A

B
Y

PTMAND =




q00 p00
q01 p01
q10 p10
p11 q11


 ITMAND




1 0
1 0
1 0
0 1



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Examples (cont.)

Logic gate NAND

A

B
Y

PTMNAND =




p00 q00
p01 q01
p10 q10
q11 p11


 ITMNAND




0 1
0 1
0 1
1 0



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Examples (cont.)

Logic gate NOR

A

B
Y

PTMNOR =




p00 q00
q01 p01
q10 p10
q11 p11


 ITMNOR




0 1
1 0
1 0
1 0



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Reliability ↔ PTM

Definition

R =
∑

(i,j)|ITM(i,j)=1

p(j|i)p(i) =
∑

(i,j)|ITM(i,j)=1

PTM(i, j)p(i) (1)
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Reliability ↔ PTM

Logic gate NAND

R = P{00, 1}+ P{01, 1}+ P{10, 1}+ P{11, 0}

PAB =




a0b0
a0b1
a1b0
a1b1


 PTMNAND =




p00 q00
p01 q01
p10 q10
q11 p11


 ITMNAND




0 1
0 1
0 1
1 0




R = a0b0q00 + a0b1q01 + a1b0q10 + a1b1q11
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Example

A

B

C

Y

pij = p and qij = q for all (i, j)
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Parallel blocks: Kronecker Product

M1 =




q00 p00
q01 p01
q10 p10
p11 q11


 M2 =

[
p0 q0
q1 p1

]
ML1 = M1 ⊗M2

A

B

C

Y ML1 =




pq q2 p2 pq
q2 pq pq p2

pq q2 p2 pq
q2 pq pq p2

pq q2 p2 pq
q2 pq pq p2

p2 pq pq q2

pq p2 q2 pq




pij = p and qij = q∀(i, j)
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Series blocks: Scalar Product

M3 =




p00 q00
q01 p01
q10 p10
q11 p11


 PTMcirc = Mcirc = ML1.M3

A

B

C

Y




2p2q + pq2 + q3 p3 + p2q + 2pq2

p2q + 3pq2 p3 + 2p2q + q3

2p2q + pq2 + q3 p3 + p2q + 2pq2

p2q + 3pq2 p3 + 2p2q + q3

2p2q + pq2 + q3 p3 + p2q + 2pq2

p2q + 3pq2 p3 + 2p2q + q3

p3 + 2pq2 + q3 3p2q + pq2

2p2q + pq2 + q3 p3 + p2q + 2pq2




pij = p and qij = q∀(i, j)
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Reliability Calculation

Mcirc =




2p2q + pq2 + q3 p3 + p2q + 2pq2

p2q + 3pq2 p3 + 2p2q + q3

2p2q + pq2 + q3 p3 + p2q + 2pq2

p2q + 3pq2 p3 + 2p2q + q3

2p2q + pq2 + q3 p3 + p2q + 2pq2

p2q + 3pq2 p3 + 2p2q + q3

p3 + 2pq2 + q3 3p2q + pq2

2p2q + pq2 + q3 p3 + p2q + 2pq2




; ITMcirc =




1 0
0 1
1 0
0 1
1 0
0 1
1 0
1 0




R = a0b0c0
(
2p2q + pq2 + q3

)
+ a0b0c1

(
p3 + 2p2q + q3

)
+

a0b1c0
(
2p2q + pq2 + q3

)
+ a0b1c1

(
p3 + 2p2q + q3

)
+

a1b0c0
(
2p2q + pq2 + q3

)
+ a1b0c1

(
p3 + 2p2q + q3

)
+

a1b1c0
(
p3 + 2pq2 + q3

)
+ a1b1c1

(
2p2q + pq2 + q3

)

;
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System versus Component Reliability

0.5 0.6 0.7 0.8 0.9 1

0.6

0.8

1

q

R
(q

)

P (aibici) =
1

8
⇒ Rcirc = q3+ 3q2

4 (−q + 1)+ 7q
4 (−q + 1)

2
+ 1

2 (−q + 1)
3
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PTM Computing Flow

Generation Tool

PTM Model

Library

(.dat)

PTM

(.tcl)

Script

PTM
circuit
model
(.dat)

PTM

Reliability Tool

Circuit Reliability

(.sce)

Scilab

Verilog

HDL

(.v)

Netlist

EDIF

(.edf)

Netlist

EDIF

(.edf)

Verilog

HDL

(.v)

Script

(.tcl)

Standard Cell

Library

Netlist

VHDL

VHDL

(.vhd)

Design

SYNTHESIS TOOL

(.vhd)

PTM Reliability Analysis Tools
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PTM – Conclusions

Accurate reliability assessment

Single and multiple faults

PTM’s size increases exponentially with the number of
inputs and outputs

Intractable computing times and memory storage needs for
medium size circuits.

Scalability problem
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Fault State

Definition

Let be the set of n components in a system

C = {c0, c1, c2, · · · , cn−1}

The fault state of a component i is defined as

fi =

{
0 if the component i is fault-free

1 if the component i is faulty

for i = 0, 1, 2, · · · , n− 1.

29 /65
Lirida Alves de Barros-Naviner
Master Program



Fault Modelling

fi = 1 inverts expected ci output

Remark: a component ci can be a simple gate gi or a block
of gates bi = 1

x0

x1

x2

x3

x4

x5

b0

b1

b2

b3

b4

b5

y0

y1
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System Fault State

Definition

The system fault state is defined as

f = fn−1 · · · f2f1f0
The set of possible f is

F = {f0, f1, · · · , fr, · · · , f2n−1}

where f0 corresponds to all components fault-free.

Fn:k is a subset of F of all fr with k 1’s

Fn:0 = {f0}
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System Input and Output

Definition

The system input is defined as

x = xm−1 · · ·x2x1x0 where xi ∈ {0, 1}

The set of possible x is

X = {x0,x1, · · · ,xv, · · · ,x2m−1}

where x0 means xi = 0 for all i = 0, 1, 2, · · · ,m− 1.
The system output is defined as

y = ys−1 · · · y2x1y0 where yi ∈ {0, 1}
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Check Function

Definition

The check system function is defined as

h(v, r) =

{
1, y(xv, f0) = y(xv, fr)

0, otherwise

or

h(v, r) = y(xv, f0)⊕ y(xv, fr)
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PBR Model

Definition (Probabilistic Binomial Reliability Model)

R =
2n−1∑

r=0

P{fr}
2m−1∑

v=0

P{xv}h(v, r)

Generalized reliability function for a given circuit with m-bits
input and n logic gates (gi).

34 /65
Lirida Alves de Barros-Naviner
Master Program



Reliability Calculation with PBR

x

x0

x1

x2

x3

x4

x5

b0

b1

b2

b3

b4

b5

y0

y1

y/ /
m n

R =

2n−1∑

r=0

P{fr}
2m−1∑

v=0

P{xv}
︷ ︸︸ ︷
(y(xv, f0) = y(xv, fr)

Inputs relevance

Technology & fault relevance

Logical masking

h(v, r)

[1] Reliability Analysis of Combinational Circuits Based on a Probabilistic Binomial Model
(NEWCAS’08)
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Reliability Calculation with PBR
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PBR Model

k simultaneous faults: Rk

R =

2n−1∑

r=0

P{fr}
2m−1∑

v=0

P{xv}h(v, r)

Rk =

Cn
k∑

l=1

P{fn:k(l)}
2m−1∑

j=0

P{xj}y(xj , fn:0)⊕ y(xj , fn:k(l))
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PBR Model

Definition (Independent faults)

R =

2n−1∑

r=0

∏

corr

qi
∏

incr

(1− qi)
2m−1∑

v=0

P{xv}h(v, r)

Rk =

Cn
k∑

l=1

∏

corl

qi
∏

incl

(1− qi)
2m−1∑

v=0

P{xv}y(xj , fn:0)⊕ y(xj , fn:k(l))
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PBR Model

Definition (Identical probability of faults)

Rk =

Cn
k∑

l=1

(1− q)kqn−k
2m−1∑

v=0

P{xv}y(xj , fn:0)⊕ y(xj , fn:k(l))

R =

n∑

k=0

Rk =

n∑

k=0

b(q, k)ck

b(q, k) = (1− q)kqn−k

ck are coefficients related to k-faults masking effect
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PBR Model (cont.)

k-faults masking coefficient

ck =

Cn
k∑

l=1

2m−1∑

j=0

P{xj}y(xj , fn:0)⊕ y(xj , fn:k(l))

=

2m−1∑

j=0

P{xj}




Cn
k∑

l=1

y(xj , fn:0)⊕ y(xj , fn:k(l))



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PBR Model

Definition (Uniform probability distribution)

Assuming uniform probability distribution for input vectors x

ck =
1

2m
c̆k

c̆k =

Cn
k∑

l=1

2m−1∑

j=0

y(xj , fn:0)⊕ y(xj , fn:k(l))

R =
1

2m

n∑

k=0

b(q, k) (c̆k)
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PBR Computing Flow

(.vhd)

VHDL

bench
Test−

(.vhd)

VHDL

bench
Test−

Standard Cell

Library

Fault

results

(.dat)

Fault

Analysis

Tool

PC

Design

Verilog

HDL

(.v)

VHDL

Verilog

HDL

(.v)

VHDL

(.vhd)

Netlist

Netlist

Netlist

EDIF

(.edf)
(.vhd)

SYNTHESIS TOOL

EDIF

(.edf)

Standard Cell

Library

Script

(.tcl)

circuit modification

FIN Tool

VHDL

(.vhd)

MODELSIM QUARTUS II

FPGA

Simulation or FPGA emulation!
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Comparing Performances
PTM and PBR Models

PTM PBR
Adder Time Memory Time Memory Mean error
size (s) (MB) (s) (MB) (%)
2 0,37 0,133 < 10−3 0.027 0.209
3 5,93 1,563 0.04 0.078 0.214
4 104,7 5,819 2.48 0.483 0.301
5 2002.4 255,966 4.91 0.714 0.404
6 - - 7.94 0.915 0.437
7 - - 64.12 1.034 0.411
8 - - 106.69 1.241 0.408

0.8 < q < 0.99, 1.7GHz Pentium 4
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Accuracy and Scalability Issues
Exhaustive and Relaxed Implementaion

PBR is as accurate as PTM.

0.80 0.82 0.84 0.86 0.88 0.90 0.92 0.94 0.96 0.98 1.00

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

PBR

PBR − single fault

Limit

PTM

R
e

lia
b

ili
ty

Cell individual probability (q)

6−bits carry−select adder
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Accuracy and Scalability Issues (cont.)
Exhaustive and Relaxed Implementaion

P (n, k) = (Cnk )qn−k(1− q)k

0 100 200 300 400 500 600
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

q = 0.96
q = 0.88

ε B

Multiple faults evaluation

P
(k

,w
)

Number of multiple faults (k)

44 /65
Lirida Alves de Barros-Naviner
Master Program



Accuracy and Scalability Issues (cont.)
Exhaustive and Relaxed Implementaion

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
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Application of the PBR model
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R
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y
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(q
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Accuracy and Scalability Issues
HW Acceleration

Fault injection/analisys implemented by FPGA
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PBR – Conclusions

Accurate exhaustive approach

• Gives exact results as PTM model. Requires less memory
than PTM.

• Takes into account all possible inputs and error
configurations. Takes into account reconvergent fanouts

Efficient tradeoffs related to accuracy and exhaustivity can
be found

• Relaxed version of PBR model giving exact (useful) results

Suitable to be integrated in the design flow

• Reliability metric becomes a control parameter for the
synthesis.

HW acceleration with FIFA platform is cost and time
efficient
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Signal Probability Analysis (SPR)

Fault prone signals s are in one of four different states

The possible states and respective probabilities are represented
in two 2 by 2 matrices

s =

[
0c 1i
0i 1c

]
and P{s} =

[
P{0c} P{1i}
P{0i} P{1c}

]
(2)

P{0c}+ P{0i}+ P{1i}+ P{1c} = 1 (3)

The probability matrix P (s) embeds the reliability information

Rs = P{0c}+ P{1c} (4)
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Propagation of Signal Probabilities

a

b

y

[
0c 1i
0i 1c

]

[
0c 1i
0i 1c

]




0c0c 0c1i 1i0c 1i1i
0c0i 0c1c 1i0i 1i1c
0i0c 0i1i 1c0c 1c1i
0i0i 0i1c 1c0i 1c1c







q p
q p
q p
p q







0c0cq + 0c1iq + 1i0cq + 1i1ip 0c0cp+ 0c1ip+ 1i0cp+ 1i1iq

0c0iq + 0c1cq + 1i0iq + 1i1cp 0c0ip+ 0c1cp+ 1i0ip+ 1i1cq

0i0cq + 0i1iq + 1c0cq + 1c1ip 0i0cp+ 0i1ip+ 1c0cp+ 1c1iq

0i0iq + 0i1cq + 1c0iq + 1c1cp 0i0ip+ 0i1cp+ 1c0ip+ 1c1cq







0c 1i

0i 1c







1 0

1 0

1 0

0 1




Input signal matrix PTM

ITM

. =
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Example

A

B

C

Y

pij = p and qij = q for all (i, j)
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L1: Output of Gate NAND

A

B

C

Y

W

AB =




a0cb0c a0cb1i a1ib0c a1ib1i
a0cb0i a0cb1c a1ib0i a1ib1c
a0ib0c a0ib1i a1cb0c a1cb1i
a0ib0i a0ib1c a1cb0i a1cb1c




PTM =




a0cb0cq + a0cb1iq + a1ib0cq + a1ib1ip a0cb0cp+ a0cb1ip+ a1ib0cp+ a1ib1iq
a0cb0iq + a0cb1cq + a1ib0iq + a1ib1cp a0cb0ip+ a0cb1cp+ a1ib0ip+ a1ib1cq
a0ib0cq + a0ib1iq + a1cb0cq + a1cb1ip a0ib0cp+ a0ib1ip+ a1cb0cp+ a1cb1iq
a0ib0iq + a0ib1cq + a1cb0iq + a1cb1cp a0ib0ip+ a0ib1cp+ a1cb0ip+ a1cb1cq




w0c = a0cb0cq + a0cb0iq + a0cb1cq + a0cb1iq + a0ib0cq + a0ib1iq+
a1cb0cq + a1cb1ip+ a1ib0cq + a1ib0iq + a1ib1cp+ a1ib1ip

w0i = a0ib0iq + a0ib1cq + a1cb0iq + a1cb1cp
w1c = a0ib0ip+ a0ib1cp+ a1cb0ip+ a1cb1cq
w1i = a0cb0cp+ a0cb0ip+ a0cb1cp+ a0cb1ip+ a0ib0cp+ a0ib1ip+

a1cb0cp+ a1cb1iq + a1ib0cp+ a1ib0ip+ a1ib1cq + a1ib1iq

W =

(
w0c w1i

w0i w1c

)
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L1: Output of Gate NOT

A

B

C

Y

Z

C =

(
c0c c1i
c0i c1c

)

PTM =

(
c0cp+ c1iq c0cq + c1ip
c0ip+ c1cq c0iq + c1cp

) z0c = c0ip+ c1cq
z0i = c0cp+ c1iq
z1c = c0cq + c1ip
z1i = c0iq + c1cp

Z =

(
c0ip+ c1cq c0iq + c1cp
c0cp+ c1iq c0cq + c1ip

)

;

52 /65
Lirida Alves de Barros-Naviner
Master Program



L2: Output of Gate NOR

A

B

C

Y WZ =




3q2/8 3q (−q + 1) /8 3q (−q + 1) /8 3 (−q + 1)2 /8

3q (−q + 1) /8 3q2/8 3 (−q + 1)2 /8 3q (−q + 1) /8

q (−q + 1) /8 (−q + 1)2 /8 q2/8 q (−q + 1) /8

(−q + 1)2 /8 q (−q + 1) /8 q (−q + 1) /8 q2/8




PTM =




3p
8 q

2 + 3q2

4 (−q + 1) + 3q
8 (−q + 1)2 3p

4 q (−q + 1) + 3p
8 (−q + 1)2 + 3q3

8
3p
8 q (−q + 1) + 3q3

8 + 3q2

8 (−q + 1) + 3q
8 (−q + 1)2 3p

8 q
2 + 3p

8 q (−q + 1) + 3p
8 (−q + 1)2 + 3q2

8 (−q + 1)
pq
8 (−q + 1) + q3

8 + q2

8 (−q + 1) + q
8 (−q + 1)2 pq2

8 + pq
8 (−q + 1) + p

8 (−q + 1)2 + q2

8 (−q + 1)
p
8 (−q + 1)2 + q3

8 + q2

4 (−q + 1) pq2

8 + pq
4 (−q + 1) + q

8 (−q + 1)2




y0c = 5q3

8 + 3q2

4 (−q + 1) + q (−q + 1)2 + 1
8 (−q + 1)3

y0i = 9q2

8 (−q + 1) + 3q
8 (−q + 1)2

y1c = 3q3

8 + 3q
4 (−q + 1)2 + 3

8 (−q + 1)3

y1i = 9q2

8 (−q + 1) + 7q
8 (−q + 1)2 + 1

2 (−q + 1)3

Y =

(
y0c y1i
y0i y1c

)
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System versus Component Reliability

0.5 0.6 0.7 0.8 0.9 1

0.6

0.8

1

q

R
(q

)

P (aibici) =
1

8
⇒ Rcirc = q3+ 3q2

4 (−q + 1)+ 7q
4 (−q + 1)

2
+ 1

2 (−q + 1)
3
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SPR Model

Dealing with the effect of reconvergence

Dynamic Weighted Averaging Algorithm – DWAA (Linear
complexity)

Multi-pass Algorithm – MP (Linear to exponential
complexity)

Conditional Probability Method – CPM (Linear
complexity)
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Accuracy & Complexity: Some Results

PBR PTM SPR SPR MP
t(s) ε(%) t(s) ε(%) t(s) ε(%) t(s) ε(%)

C17 3.3 0.0 0.008 0.0 0.004 4.51 0.02 0.0
CRA 4b 3.83 0.0 287.65 0.0 0.004 13.93 22.98 0.0
CRA 8b 50684 0.0 - - 0.004 10.19 29218 0.0
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First Order Fanout Analysis (SPR+)
Profile of the Fanout Nodes

D(f) = |R1(f)−R0| and f has


High impact, if D(f)/Dmax > 0.8

Medium impact, if D(f)/Dmax > 0.2

Low impact, otherwise

c17 c432 c499 c1355 c1908 c2670 c3540 c5315
0.99

0.992

0.994

0.996

0.998

1

R
e
li
a
b

il
it

y

SPR
Simple Ranking
Neg/Pos Contributions
SPRMP (R12th)

[1] Reliability Assessment of Combinational Logic Using First-Order-Only Fanout Reconver-
gence Analysis (MWSCAS’13)
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SPR Computing Flow

Verilog

HDL

(.v)

Netlist

EDIF

(.edf)

Netlist

EDIF

(.edf)

Verilog

HDL

(.v)

Script

(.tcl)

Standard Cell

Library

Reliability Tool

SPR

(.tcl)

ScriptLibrary

(.dat)

PTM

Netlist

VHDL

VHDL

(.vhd)

Design

SYNTHESIS TOOL

(.vhd)

SPR Reliability Analysis Tools

Circuit Reliability

(.sce)

Scilab

Generation Tool

circuit
model
(.dat)

SPR

SPR Model

DWAA

multi−pass

[1] A Tool for Signal Reliability Analysis of Logic Circuits (DATE’09)
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SPR – Effect of Voter’s Reliability
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MTBF Prediction
Functional Simulation + Fault Injection Scheme

Example (PBR Implementation)

4-bit Adder Individual cell MTBFi(hours)
1012 109 106 103

RCA 1.09 · 1011 1.10 · 108 1.08 · 105 109
CSA 1.03 · 1011 1.07 · 108 1.06 · 105 106
CLA 0.68 · 1011 0.66 · 108 0.71 · 105 70
SD 0.20 · 1011 0.18 · 108 0.26 · 105 21
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Analysis of CED Schemes
PBR: Functional Simulation + Fault Injection Scheme

Fault−free 
comparator

Prediction
information

Input
Output

Output’

Fault−prone
Checker

Design fault−free version

CED oriented design
Fault−prone

fi

vi

ξ : The checker indicates a valid operation when
the outputs are correct.

τ : The checker indicates a non-valid operation
when the outputs are correct.

ψ : The checker indicates a valid operation when
the outputs are incorrect.

χ : The checker indicates a non-valid operation
when the outputs are incorrect.

p(fi = 1, vi = 1) = p(ξ)

p(fi = 1, vi = 0) = p(τ)

p(fi = 0, vi = 1) = p(ψ)

p(fi = 0, vi = 0) = p(χ)

Effective reliability: < = p (ξ|ξ ∪ ψ)
Time penalty: Γ = p (τ ∪ χ)
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Selective Hardening

Start

Reliability

Calculation

Target

Met?

Stop

Condition

Met?

Elect Next Block

To Harden
End

End

Cq
{qi∗}

R

Yes

Yes

No

No

R = f(q0, q1, · · · , qi, · · · , qj , · · · , qK−1)

qi → q∗i ⇒ R→ R∗
i

x0

x1

x2

x3

x4

x5

b0

b1

b2

b3

b4

b5

y0

y1

R

Sensitivity to reliability change: σi = ∂R/∂qi

Impact of reliability improvement qi → q∗i : ∆i = R∗
i −R

Easiness to harden: γ = f(A,P, T )

[1] Reliability analysis based on significance (CMTA’11)
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Selective Hardening

Start

Reliability

Calculation

Target

Met?

Stop

Condition

Met?

Elect Next Block

To Harden
End

End

Cq
{qi∗}

R

Yes

Yes

No

No

Start

i = 0

Significance

Effectiveness

i = N − 1?

End

Cq

γ

i ← i + 1

Γ

{qi∗}

γi

O{Γi∗}

No

Yes

Γi = ∆w1

i × γw2

i

New partial ordering is needed after hardening a block

[1] Reliability analysis based on significance (CMTA’11)
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Conclusions

Reliability issues and challenges

Need of cost-effective fault
tolerant architectures

Need of efficient assessment
approaches

Main issues of reliability assessment approaches

• Scalability: accuracy, complexity
• Design flow integration
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