TELECOM
ParisTech

m &
INSTITUT

Mines-Télécom Formal Hardware Verification




B Motivation

TELECOM
ParisTech

e



B Motivation

106 15 Core
16 Core SPARCT3 ,/* Xeon
6 Core i7
1G
100M
'AMD K6
10M- /¢” ¢ Pentium IIl
v POWER 19 . “Pentium i
4 Pentium 1§ *AMD K5
2  PowerPC 601
3 M- 80486 2 %58040
2
2 8038
(Mac 1)) 68020,
100k 4 (PC AT) 80286°
10k
1k
L& omos
100-
9 10 20 % 49 5
T T T T T
1965 1970 1980 1990 2000 2010 2015

Year

[Source: www.elektormagazine.com/articles/moores-law]

e




B Motivation

Transistor count of > 3 billion

Gate level models are huge
Big designer teams (several hundreds)
Big correctness issues

[ @ photo by marksze Late bugs are extremely expensive

TELECOM

ParisTech
4/49 SE303 Ulrich Kiihne 2016/2017 B=F
aw | cn ks EAE



B Motivation

The First Bug (1947)

bE]
oG | Onkow >w’ i 7 i-‘-w-a 7632 sy ors
Jdoo . LW = O, G087 FYe 29757 cnurd
13700 (034 MP - P12 éﬂﬁm,rﬂ) Fbl S Fr5055 ()
ey Pro > 2. 1oyatyss
- f—m-u-Jr a.:!ab?&wa "
Pdous | ot bl 033 -!5-"3&14 WM B
1= o
1 (_Ar-
Lees —Jr"ci'-i",ll Cusu\q P hi{S\m J\etk:l
5 Ih i LL '.'I f Tﬂ.—
1S4y ‘Re.lm.\"“?o Pane| F
'\Moﬁhm Celay
A Ci‘.i;nr.f:..l-alchall T a-‘ bcut L[rw -{auu\.-L-
e cleard  Jpe

[ Photo: U.S. Naval Historical Center ]

TELECOM
ParisTech

e



B votivation
The Pentium FDIV Bug (1994)
let x — 4195835, y — 3145727 = x-%.y— 200

B Bug in floating point unit = $ 450 Mio. loss for Intel

820 Chipset MTH Bug (2000)

B Error in memory translator hub

B Recall of around 1 Mio. motherboards
B $ 253 Mio. financial loss

AMD Stack Pointer Bug (2012)

B Specific instruction sequence causes wrong stack pointer update
B Found by linux developer and reproduced on 48 core system

TELECOM

ParisTech

T A



B | cvels of Abstraction

Specification Natural language
Reg. eng.,

modeling

) Electr. System Lvl. UML, SysML, Matlab, ...
Design Space

expl., partitioning

Transaction Lvl. C, C++, SystemC, ...

Implementation,
refinement

Register Transfer Lvl. > VHDL, Verilog, . ..

Synthesis
Gate models
Place & route
Geometric, electr. models
Manufacturing
Silicon

TELECOM

ParisTech

T A



I Quality Assurance

Specification
Model Driven Eng. NLP Techniques

Electr. System Lvl.

- Diagnosis
TELECOM
ParisTech

T A

Performance Evaluation

Transaction Luvl.

Debugging




I Design Gap - Verification Gap

manufacture

design

verify

# Transistors

Years

TELECOM

ParisTech

T A



B outline

Functional Verification
Circuit Models
Temporal Logic
CTL Model Checking
Bounded Model Checking

TELECOM

ParisTech

T A



I Functional Verification

B Dynamic verification (= simulation) still standard
technology

B Pentium 4 overall simulated cycles < one minute at
operation speed [Bentley, 2005]

® Full coverage is infeasible
B |ncreasing use of formal methods

TELECOM

ParisTech

T A



I Scquential Circuit Model

Mealy Machine:

m
—— 0 M= (1,0,8, So,6,)\)
| & 5:Sx1-8
A:SxI—=0
SCS

I={0,1}"

Memor . O={0,1}7

! — 3:{{0,1}}k

TELECOM
ParisTech

T A



module count(CLK, EN, CLR, EN
Se, S1, S2, V);

input CLK, EN, CLR;
output reg SO, S1, S2; D EN
output V;
assign V = SO & S1 & S2 &
ICLR & EN; oo 3710 O EN
always @(posedge CLK) begin
if (CLR) begin EI\EM
{S2, S1, S0} <= 0;

end else begin EN Cl11 <— 01y. O EN
if (EN) begin
{S2, S1, se}
<= {S2, S1, S0} + 1; _
end EN
end
end

endmodule // count

TELECOM
ParisTech

e



I Verification Model

Mealy Machine: Kripke Structure:

M:(I,O,S,SO’(S’)\) ’C:(Saso,(s,v,ﬁ)

c " .
5:-Sx|-S 0 C Sx S transition relation

_ S CS initial states
g' g gl% o V propositional variables
0= £:S8—2Y labelling function
CLR

000y——00 —>01

EN

TELECD M
isTech

Pe
e



01010 +=— 01000 00101 00110
01100 35~ P
X
| | S|
;\\ﬂ-r,';’g»-,
01101 TR NN/~ 00100 D
S arN R,
01110 01001 FF2
01111 —~=# 00001 Z>00010
2T
10001 >2700000 AR “ 11111
K
10011 T AR11110
10000 11001 ),//\ '4

e " 11100 D

10101 4

/ ? 10111 11011 1110 /

10010

10100 == 49110 — 11000 = 11010

TELECOM
ParisTech

T A



N Labelling Function

Propositional variables V = {S2, S1, S0, EN, CLR, V'}

(EN, CLR}

TELECOM
ParisTech

T A



I \What do we want to verify?

Safety

Something bad will never happen, e.g.

“The stack pointer will never overflow”

“The traffic lights will never be green at the same time”

Liveness

Something good will eventually happen, e.g.

“Every request will be granted”

“The cache and the main memory will eventually be consistent”

TELECOM

ParisTech

T A



I How to specify such properties?

Computation Tree

P

00

AV DN N

TELECOM
ParisTech

T A



I How to specify such properties?

Some property p holds p holds in p holds in
(in the initial state) some next state all next states
EXp AX p
path next
quantifier operator

TELECOM

ParisTech

T A



I Further Modalities

p holds globally p holds globally
on some path on all paths

p holds in some
future state

8 Bde S ls St
EFp AFp EGp AGp

p holds eventually

TELECOM

ParisTech

T A



I Until Modalities

On some path, g holds On all paths, g holds
until p holds until p holds

TELECOM
ParisTech

e



I computation Tree Logic

A CTL formula over propositional variables V has the form

CTL:= p, wherepeV
| A | e
| EX¢p | AXop
| EF ¢ | AF ¢
| EGo | AGp
| ElpUy) | AlpUr)

TELECOM
ParisTech

T A



I \What do we want to verify?

Safety
“The stack pointer will never overflow” AG (sp < 4096)

“The traffic lights will never be green at —EF (tly Atlo)
the same time”

Liveness
“Every request will be granted” AG (req — AF gnt)

“The cache and the main memory AF (mem; = cache))
will eventually be consistent”

TELECOM

ParisTech

T A



B Model Checking

Model Checking

Given a Kripke Structure K and a CTL formula ¢,
check if £ = .

How do we do this?

1. Compute all states in which ¢ holds:
() ={se€ S|K,s ¢}

2. Check if the initial states are a subset of those states:
So\7(p) =92

TELECOM
ParisTech

T A



N Example

So Sq
o——0
d_ @

S3 S4

T A

So

P 7(p) = {S2, 54, S5}
T(EX p) = {81, 52, 53, S5}
T(AX p) = {s1, S2, S5}
7(EF p) =

Ss {s2, 84,85} U {s1,83} U {so}
7(AG p) =

{s2,84,85} N {s2, S5}

TELECOM

ParisTech



N Example

So Sq
o——0
@

S3 S4

T A

So

P 7(p) = {S2, 54, S5}
T(EX p) = {81, 52, 53, S5}
T(AX p) = {s1, S2, S5}
7(EF p) =

Ss {s2, 84,85} U {s1,83} U {so}
7(AG p) =

{s2,84,85} N {s2, S5}

TELECOM

ParisTech



N Example

So Sq
o——0
@

S3 S4

T A

So

P 7(p) = {S2, 54, S5}
T(EX p) = {81, 52, 53, S5}
T(AX p) = {s1, S2, S5}
7(EF p) =

Ss {s2, 84,85} U {s1,83} U {so}
7(AG p) =

{s2,84,85} N {s2, S5}

TELECOM

ParisTech



N Example

So Sq
o——0
d_ @

S3 S4

T A

So

P 7(p) = {S2, 54, S5}
T(EX p) = {81, 52, 53, S5}
T(AX p) = {s1, S2, S5}
7(EF p) =

Ss {s2, 84,85} U {s1,83} U {so}
7(AG p) =

{s2,84,85} N {s2, S5}

TELECOM

ParisTech



N Example

% Sq So
M
7(p) = {S2, 54, S5}
T(EX p) = {81, 52, 53, S5}
T(AX p) = {s1, S2, S5}
(EF p) =
S3 S4 S5

{82,84,85} U {sy,83} U {sp}

7(AG p) =
{s2,84,85} N {s2, S5}

TELECOM

ParisTech

T A



N Example

% Sq So
Y
7(p) = {S2, 54, S5}

T(EX p) = {5y, 52,3, 85}
T(AX p) = {s1, S2, S5}

r(EF p) =
S3 S4 S5 {327 Sa4, 55} U {31 ) 53} U {SO}
, 7(AG p) =
Expansion rule: {82,54,85} N {sp, 85}

EFp=¢ VvV EXEF ¢

TELECOM

ParisTech

T A



N Example

% Sq So
P 7(p) = {S2, 54, S5}

T(EX p) = {5y, 52,3, 85}
T(AX p) = {s1, S2, S5}

r(EF p) =
S3 S4 S5 {327 Sa4, 55} U {31 ) 53} U {SO}
, 7(AG p) =
Expansion rule: {82,54,85} N {sp, 85}

EFp=¢ VvV EXEF ¢

TELECOM

ParisTech

T A



N Example

So Sq So
b Y
P 7(p) = {S2, 54, S5}

T(EX p) = {5y, 52,3, 85}
T(AX p) = {s1, S2, S5}

e )

S3 S4 S5 {327 S4, 55} U {31 3 53} U {SO}
, 7(AG p) =
Expansion rule: {82,54,85} N {sp, 85}

EFp=¢ VvV EXEF ¢

TELECOM

ParisTech

T A



N Example

% Sq So
Y
P 7(p) = {S2, 54, S5}

T(EX p) = {5y, 52,3, 85}
T(AX p) = {s1, S2, S5}

e )

S3 S4 S5 {327 S4, 55} U {31 3 53} U {SO}
, 7(AG p) =
Expansion rule: {82,54,85} N {sp, 85}

EFp=¢ VvV EXEF ¢

TELECOM

ParisTech

T A



N Example

% Sq So
Y
P 7(p) = {S2, 54, S5}

T(EX p) = {5y, 52,3, 85}
T(AX p) = {s1, S2, S5}

SO )

S3 S4 S5 {327 S4, 55} U {31 3 53} U {SO}
, 7(AG p) =
Expansion rule: {82,54,85} N {sp, 85}

AGp=p AN AXAG ¢

TELECOM

ParisTech

T A



N Example

% Sq So
Y
P 7(p) = {S2, 54, S5}

T(EX p) = {5y, 52,3, 85}
T(AX p) = {s1, S2, S5}

SO )

S3 S4 S5 {327 S4, 55} U {31 3 53} U {SO}
, 7(AG p) =
Expansion rule: {82,54,85} N {sp, 85}

AGp=p AN AXAG ¢

TELECOM

ParisTech

T A



N Example

% Sq So
Y
P 7(p) = {S2, 54, S5}

T(EX p) = {5y, 52,3, 85}
T(AX p) = {s1, S2, S5}

r(EF p) =
S3 S4 S5 {327 Sa4, 55} U {31 ) 53} U {SO}
, 7(AG p) =
Expansion rule: {82,54,85} N {sp, 85}

AGp=p AN AXAG ¢

TELECOM

ParisTech

T A



N Example

% Sq So
Y
P 7(p) = {S2, 54, S5}

T(EX p) = {5y, 52,3, 85}
T(AX p) = {s1, S2, S5}

e )

S3 S4 S5 {327 S4, 55} U {31 3 53} U {SO}
, 7(AG p) =
Expansion rule: {82,54,85} N {sp, 85}

AGp=p AN AXAG ¢

TELECOM

ParisTech

T A



I Fixed Point Algorithm for EF p

So=p
Si=pUEXp
So=pUEXpUEXEXp

.
Sp=pU JEXp=S,
i=1

= Sn = T(EF p)

TELECOM
ParisTech

T A



I Fixed Points

Let f: P(S) — P(S) a set-valued function and Z C G.

B Z s called a fixed point of fif f(Z) =Z

B Z is the least fixed point of f it is a fixed point and for all
other fixed points U of f it holds that Z C U.

B 7 is the greatest fixed point of f it is a fixed point and for all
other fixed points U of f it holds that U C Z.

TELECOM
ParisTech

T A



I Fixed Points (2)

A function f : P(S) — P(S) is called monotone if for all
X,YCS

XCY=fX)CHY) (1)

Knaster-Tarski Theorem

Let f: P(S) — P(S) be a monotone function. Then f has a
least and a greatest fixed point.

B | J (o) is the least fixed point of .

n>1

m () f"(S) is the greatest fixed point of f.

n>1

TELECOM
ParisTech

T A



I CTL Model Checking

Let £ = (S, Sp, 6, V, L) be a Kripke structure.

~—

{seS|peL(s)}
() N7 ()

() UT(¥)

S\ 7(¢)

IfpZ. 7(p) UEX (Z)

IfpZ. 7(¢) UAX (2)

ofpZ. () NEX (2)

afpZ. 7(¢) NAX (2)

lfpZ. 7(v) U (7(p) NEX (Z))
fpZ. 7() U (7() N AX (2))

33

< >
EE

33

909 9

DOTTS
ccE88388
e

\]

~—

\]

PNFPETERERS)
T T A T

€%

\]

e



I Symbolic Model Checking

B Complexity of CTL model checking
depending on state space

B Use of symbolic representations
B Binary Decision Diagrams (BDDs)
B State space explosion still a problem
B Works for small (or very regular)
systems
B Popular tool: NuSMV
[Cimatti et al., 2002]

TELECOM

ParisTech

T A



I Bounded Model Checking

=17
1
[0,k
lo I Iﬂ Ix
So — Mo < M1 Mg > - Mk —— Sk+1
1 l l 1
Oo O1 02 Ok

TELECOM

31/49 SE303 Ulrich Kahne 2016/2017 Ji=F
I cn ks T



I Bounded Model Checking

B Avoid reachability computation by unrolling

B Encode bounded property

B Works well for safety checking

® Original method is incomplete (bug hunting only)
B Alternatively, use temporal induction

t N
lo I b I '
| | | |
So—| Mo M, My |— - —f Mg |— Sk
l 1 1 l
Oo O; (0 Ok

T A

TELECOM

’arisTech



I Advancements in Model Checking

® Symbolic model checking with BDDs
[Burch et al., 1992]

m SAT-based bounded model checking
[Biere et al., 1999]

® Counter-example guided abstraction
refinement [Clarke et al., 2003]

B |nductive invariant checking
[Bradley, 2011]

T A

"

w, CTL, LTL

LTL,ACTL

AG p

TELECOM

ParisTech



B outline

Decision Procedures
Boolean Satisfiability
Tseitin Transformation
SAT Solving

TELECOM

ParisTech

T A



I Boolean Satisfiability (SAT)

SAT Problem

Given a Boolean function f : {0,1}" — {0, 1} (in conjunctive
normal form), is there an assignment X € {0, 1}", such that
f(X)=1?

Conjunctive Normal Form

A Boolean formula over variables X = {xg ... Xp} isin
conjunctive normal form if it is a conjunction of clauses

(5171 V 6172 Voo \/517,”0) FANRERIVAN (€k71 AR V€k7mk). A clause is a
disjunction of literals £ = x; or £ = —x; for some x; € X.

B NP-complete problem [Cook, 1971]

TELECOM

ParisTech

T A



I SsAT-Based BMC
M=o Counterexample

SAT Solver

CNF

TELECOM
ParisTech

T A



I T1scitin Transformation
q S z+ (pVvag)A-r

S pvag
t t < —r
Z<+SAL

S pVva (s—=pVvag A(pVg—s)
(=svpVva@)A(=(pVaq)Vs)
(=svpVag A((-pA—q)Vs)
(=sVpV g A(=pVS)A(-qVs)

t< —r

(mtV=r)A(EVT)

Z+ SAL

(msVAtVZ)A(SVZ)A(tV —2)

TELECOM
ParisTech

T A



I How it Looks Like in Practice. ..

c example circuit

TELECOM

38/49 SE303 Ulrich Kahne 2016/2017 i=E
X cn ks T



I SAT Solving in a Nutshell

(—ravbve)
(avevd)
(avev—d)
(av—-cVvd)
(aVv-cV—d)
(-bV —cVd)
(mav bV -c)
( )

-aVv -bVc

TELECOM
ParisTech

T A



I Advancements in SAT Solving

1962: DPLL backiracking algorithm [Davis et al., 1962]
1996: Conflict learning [Silva and Sakallah, 1996]
2001: Local search, decision heuristics, engineering ...

Modern solvers handle millions of variables and clauses
Popular solvers:

e MiniSAT

* Glucose

+ Lingeling
Extensions of SAT:

+ Satisfiability Modulo Theories (SMT)

 Quantified Boolean Formulae (QBF)

¢ Max-SAT

TELECOM

ParisTech
40/49 SE303 Ulrich Kahne 2016/2017 i=E
I cn ks T



I Summary Decision Procedures

B Separation of verification problem and decision engine
B Many many applications in hardware & software verification
® Convenient and standardized APIs for ease of use

® Active field of research
B Popular SMT solvers:
* MathSAT
» Z3 (Microsoft Research)
+ STP (Stanford)
* Yices

TELECOM

ParisTech

T A



B outline

Practical Exercise
System Verilog Assertions
Round-Robin Arbiter

TELECOM

ParisTech

T A



N System Verilog Assertions (Reminder)

module monitor( foo.MONITOR I );

property slave_data_notunknown_when_ready;
@(posedge I.clk)
I.ready | -> $isunknown(I.s) =
endproperty

0;

assert_slave_data_notunknown_when_ready: assert property (slave_data_notunknown_when_ready)
else $error("%m: ready is asserted but data from slave is non valid");

property slave_ready_until_valid;
@(posedge I.clk)
$rose(I.ready) | -> I.ready throughout I.valid [->1]; //ou I.ready [#0:$] ##1 I.valid;
endproperty

assert_slave_ready_until_valid: assert property(slave_ready_until_valid)
else $error("%m:slave’s ready must be held until valid is set"”);

property slave_data_held_when_ready;
bit [7:0] s;
@(posedge I.clk) disable iff (I.nrst == @)
(I.ready && !I.valid , s = I.s) | => s == I.s; //ou $stable(I.s);
endproperty

assert_slave_data_held_when_ready: assert property(slave_data_held_when_ready)
else $error("%m: data must be held stable when slave is ready");
endmodule




I Basic Property Structure

// basic property structure
property foo;
@(posedge clk) disable iff (rst)
expr;
endproperty // foo

// verification directives
assert_foo: assert property(foo);
assume_foo: assume property(foo);

TELECOM
ParisTech

T A



N Sequences and Suffix Implication

// suffix implication
foo ## bar |-> pof ##[1:3] mop;

foo [\
bar []
pof []
mop

ck LMLy
M\
M\

TELECOM

ParisTech

T A



N Non-Overlapping Suffix Implication

// non-overlapping suffix implication
foo ## bar |=> pof ##[1:3] mop;

ck LMy yuyuuwowor
foo [\

bar [T\
pof [T\
mop [T

TELECOM

46/49 SE303 Ulrich Kahne 2016/2017 i=E
I cn ks T



I until

a until b a until_with b
a s_until b a s_until_with b
clkk UL ck UL
a _| a _|
b b
a until b

B Overlapping vs.
non-overlapping

ck UUUUUUUUUT m Weak vs. strong
a |
b | .

a until_with b

TELECOM

’arisTech

T A



I Round-Robin Arbiter

rst clk

| |

B Arbitration of four masters

req0 —| — gnt0 B Single request always granted

reql — — gnt1 ® Fair arbitration of multiple
arbiter i

req2 —i  gnt2 (simultaneous) requests

req3 —i — gnt3

TELECOM

’arisTech

T A



I Practical Exercise

Let’s get to work. . .

TELECOM

ParisTech

T A



I Rcferences |

[3 Bentley, B. (2005).
Validating a modern microprocessor.
In Etessami, K. and Rajamani, S., editors, Computer Aided Verification, volume
3576 of Lecture Notes in Computer Science, pages 2—4. Springer Berlin
Heidelberg.

ﬁ Biere, A., Cimatti, A., Clarke, E. M., Fujita, M., and Zhu, Y. (1999).
Symbolic model checking using SAT procedures instead of BDDs.
In Design Automation Conference (DAC), pages 317-320.

[@ Bradiey, A R. (2011).
SAT-based model checking without unrolling.
In Verification, Model Checking, and Abstract Interpretation (VMCAI), pages
70-87.

ﬁ Burch, J., Clarke, E., McMillan, K., Dill, D., and Hwang, L. (1992).

Symbolic model checking: 1020 States and beyond.
Information and Computation, 98(2):142—170.

TELECOM

ParisTech

e



I Rcferences i

@ Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., and Tacchella, A. (2002).
NuSMV Version 2: An OpenSource Tool for Symbolic Model Checking.
In Proc. International Conference on Computer-Aided Verification (CAV 2002),
volume 2404 of LNCS, Copenhagen, Denmark. Springer.

@ Clarke, E. M., Grumberg, O., Jha, S., Lu, Y., and Veith, H. (2003).
Counterexample-guided abstraction refinement for symbolic model checking.
Journal of the ACM, 50(5):752-794.

@ Cook, s. (1971).
The complexity of theorem proving procedures.
In 3. ACM Symposium on Theory of Computing, pages 151-158.

@ Davis, M., Logemann, G., and Loveland, D. (1962).
A machine program for theorem-proving.
Commun. ACM, 5(7):394-397.

TELECOM

51/49 SE303 Ulrich Kahne 2016/2017 i=E
IEC cn ks T



I Rcferences il

@ Silva, J. a. P. M. and Sakallah, K. A. (1996).
Grasp — a new search algorithm for satisfiability.
In Proceedings of the 1996 IEEE/ACM International Conference on

Computer-aided Design, ICCAD '96, pages 220-227, Washington, DC, USA.
IEEE Computer Society.

TELECOM

ParisTech
52/49 SE303 Ulrich Kiihne 2016/2017 B=F
I cn ks T



	Functional Verification
	Circuit Models
	Temporal Logic
	CTL Model Checking
	Bounded Model Checking

	Decision Procedures
	Boolean Satisfiability
	Tseitin Transformation
	SAT Solving

	Practical Exercise
	System Verilog Assertions
	Round-Robin Arbiter

	Appendix

