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B Motivation

Transistor count of > 3 billion

Gate level models are huge
Big designer teams (several hundreds)
Big correctness issues

[ @ photo by marksze Late bugs are extremely expensive

TELECOM

ParisTech
4/49 SE303 Ulrich Kiihne 2016/2017 B=F
aw | cn ks EAE



B Motivation

The First Bug (1947)
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B votivation
The Pentium FDIV Bug (1994)
let x — 4195835, y — 3145727 = x-%.y— 200

B Bug in floating point unit = $ 450 Mio. loss for Intel

820 Chipset MTH Bug (2000)

B Error in memory translator hub

B Recall of around 1 Mio. motherboards
B $ 253 Mio. financial loss

AMD Stack Pointer Bug (2012)

B Specific instruction sequence causes wrong stack pointer update
B Found by linux developer and reproduced on 48 core system
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B | cvels of Abstraction

Specification Natural language
Reg. eng.,

modeling

) Electr. System Lvl. UML, SysML, Matlab, ...
Design Space

expl., partitioning

Transaction Lvl. C, C++, SystemC, ...

Implementation,
refinement

Register Transfer Lvl. > VHDL, Verilog, . ..

Synthesis
Gate models
Place & route
Geometric, electr. models
Manufacturing
Silicon
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I Quality Assurance

Specification
Model Driven Eng. NLP Techniques

Electr. System Lvl.

- Diagnosis
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Performance Evaluation

Transaction Luvl.

Debugging




I Design Gap - Verification Gap

manufacture

design

verify

# Transistors

Years
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B outline

Functional Verification
Circuit Models
Temporal Logic
CTL Model Checking
Bounded Model Checking
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I Functional Verification

B Dynamic verification (= simulation) still standard
technology

B Pentium 4 overall simulated cycles < one minute at
operation speed [Bentley, 2005]

® Full coverage is infeasible
B |ncreasing use of formal methods
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I Scquential Circuit Model

Mealy Machine:

m
—— 0 M= (1,0,8, So,6,)\)
| & 5:Sx1-8
A:SxI—=0
SCS

I={0,1}"

Memor . O={0,1}7

! — 3:{{0,1}}k
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module count(CLK, EN, CLR, EN
Se, S1, S2, V);

input CLK, EN, CLR;
output reg SO, S1, S2; D EN
output V;
assign V = SO & S1 & S2 &
ICLR & EN; oo 3710 O EN
always @(posedge CLK) begin
if (CLR) begin EI\EM
{S2, S1, S0} <= 0;

end else begin EN Cl11 <— 01y. O EN
if (EN) begin
{S2, S1, se}
<= {S2, S1, S0} + 1; _
end EN
end
end

endmodule // count
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I Verification Model

Mealy Machine: Kripke Structure:

M:(I,O,S,SO’(S’)\) ’C:(Saso,(s,v,ﬁ)

c " .
5:-Sx|-S 0 C Sx S transition relation

_ S CS initial states
g' g gl% o V propositional variables
0= £:S8—2Y labelling function
CLR

000y——00 —>01

EN
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N Labelling Function

Propositional variables V = {S2, S1, S0, EN, CLR, V'}

(EN, CLR}
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I \What do we want to verify?

Safety

Something bad will never happen, e.g.

“The stack pointer will never overflow”

“The traffic lights will never be green at the same time”

Liveness

Something good will eventually happen, e.g.

“Every request will be granted”

“The cache and the main memory will eventually be consistent”
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I How to specify such properties?

Computation Tree

P

00

AV DN N
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I How to specify such properties?

Some property p holds p holds in p holds in
(in the initial state) some next state all next states
EXp AX p
path next
quantifier operator
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I Further Modalities

p holds globally p holds globally
on some path on all paths

p holds in some
future state

8 Bde S ls St
EFp AFp EGp AGp

p holds eventually
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I Until Modalities

On some path, g holds On all paths, g holds
until p holds until p holds
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I computation Tree Logic

A CTL formula over propositional variables V has the form

CTL:= p, wherepeV
| A | e
| EX¢p | AXop
| EF ¢ | AF ¢
| EGo | AGp
| ElpUy) | AlpUr)
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I \What do we want to verify?

Safety
“The stack pointer will never overflow” AG (sp < 4096)

“The traffic lights will never be green at —EF (tly Atlo)
the same time”

Liveness
“Every request will be granted” AG (req — AF gnt)

“The cache and the main memory AF (mem; = cache))
will eventually be consistent”
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B Model Checking

Model Checking

Given a Kripke Structure K and a CTL formula ¢,
check if £ = .

How do we do this?

1. Compute all states in which ¢ holds:
() ={se€ S|K,s ¢}

2. Check if the initial states are a subset of those states:
So\7(p) =92
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N Example

So Sq
o——0
d_ @

S3 S4

T A

So

P 7(p) = {S2, 54, S5}
T(EX p) = {81, 52, 53, S5}
T(AX p) = {s1, S2, S5}
7(EF p) =

Ss {s2, 84,85} U {s1,83} U {so}
7(AG p) =

{s2,84,85} N {s2, S5}
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N Example

% Sq So
M
7(p) = {S2, 54, S5}
T(EX p) = {81, 52, 53, S5}
T(AX p) = {s1, S2, S5}
(EF p) =
S3 S4 S5

{82,84,85} U {sy,83} U {sp}

7(AG p) =
{s2,84,85} N {s2, S5}
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N Example

% Sq So
Y
7(p) = {S2, 54, S5}

T(EX p) = {5y, 52,3, 85}
T(AX p) = {s1, S2, S5}

r(EF p) =
S3 S4 S5 {327 Sa4, 55} U {31 ) 53} U {SO}
, 7(AG p) =
Expansion rule: {82,54,85} N {sp, 85}

EFp=¢ VvV EXEF ¢
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N Example
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I Fixed Point Algorithm for EF p

So=p
Si=pUEXp
So=pUEXpUEXEXp

.
Sp=pU JEXp=S,
i=1

= Sn = T(EF p)
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I Fixed Points

Let f: P(S) — P(S) a set-valued function and Z C G.

B Z s called a fixed point of fif f(Z) =Z

B Z is the least fixed point of f it is a fixed point and for all
other fixed points U of f it holds that Z C U.

B 7 is the greatest fixed point of f it is a fixed point and for all
other fixed points U of f it holds that U C Z.
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I Fixed Points (2)

A function f : P(S) — P(S) is called monotone if for all
X,YCS

XCY=fX)CHY) (1)

Knaster-Tarski Theorem

Let f: P(S) — P(S) be a monotone function. Then f has a
least and a greatest fixed point.

B | J (o) is the least fixed point of .

n>1

m () f"(S) is the greatest fixed point of f.

n>1
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I CTL Model Checking

Let £ = (S, Sp, 6, V, L) be a Kripke structure.

~—

{seS|peL(s)}
() N7 ()

() UT(¥)

S\ 7(¢)

IfpZ. 7(p) UEX (Z)

IfpZ. 7(¢) UAX (2)

ofpZ. () NEX (2)

afpZ. 7(¢) NAX (2)

lfpZ. 7(v) U (7(p) NEX (Z))
fpZ. 7() U (7() N AX (2))

33
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I Symbolic Model Checking

B Complexity of CTL model checking
depending on state space

B Use of symbolic representations
B Binary Decision Diagrams (BDDs)
B State space explosion still a problem
B Works for small (or very regular)
systems
B Popular tool: NuSMV
[Cimatti et al., 2002]
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I Bounded Model Checking

=17
1
[0,k
lo I Iﬂ Ix
So — Mo < M1 Mg > - Mk —— Sk+1
1 l l 1
Oo O1 02 Ok
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I Bounded Model Checking

B Avoid reachability computation by unrolling

B Encode bounded property

B Works well for safety checking

® Original method is incomplete (bug hunting only)
B Alternatively, use temporal induction

t N
lo I b I '
| | | |
So—| Mo M, My |— - —f Mg |— Sk
l 1 1 l
Oo O; (0 Ok

T A
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I Advancements in Model Checking

® Symbolic model checking with BDDs
[Burch et al., 1992]

m SAT-based bounded model checking
[Biere et al., 1999]

® Counter-example guided abstraction
refinement [Clarke et al., 2003]

B |nductive invariant checking
[Bradley, 2011]

T A

"

w, CTL, LTL

LTL,ACTL

AG p
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B outline

Decision Procedures
Boolean Satisfiability
Tseitin Transformation
SAT Solving
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I Boolean Satisfiability (SAT)

SAT Problem

Given a Boolean function f : {0,1}" — {0, 1} (in conjunctive
normal form), is there an assignment X € {0, 1}", such that
f(X)=1?

Conjunctive Normal Form

A Boolean formula over variables X = {xg ... Xp} isin
conjunctive normal form if it is a conjunction of clauses

(5171 V 6172 Voo \/517,”0) FANRERIVAN (€k71 AR V€k7mk). A clause is a
disjunction of literals £ = x; or £ = —x; for some x; € X.

B NP-complete problem [Cook, 1971]
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I SsAT-Based BMC
M=o Counterexample

SAT Solver

CNF
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I T1scitin Transformation
q S z+ (pVvag)A-r

S pvag
t t < —r
Z<+SAL

S pVva (s—=pVvag A(pVg—s)
(=svpVva@)A(=(pVaq)Vs)
(=svpVag A((-pA—q)Vs)
(=sVpV g A(=pVS)A(-qVs)

t< —r

(mtV=r)A(EVT)

Z+ SAL

(msVAtVZ)A(SVZ)A(tV —2)
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I How it Looks Like in Practice. ..

c example circuit
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I SAT Solving in a Nutshell

(—ravbve)
(avevd)
(avev—d)
(av—-cVvd)
(aVv-cV—d)
(-bV —cVd)
(mav bV -c)
( )

-aVv -bVc
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I Advancements in SAT Solving

1962: DPLL backiracking algorithm [Davis et al., 1962]
1996: Conflict learning [Silva and Sakallah, 1996]
2001: Local search, decision heuristics, engineering ...

Modern solvers handle millions of variables and clauses
Popular solvers:

e MiniSAT

* Glucose

+ Lingeling
Extensions of SAT:

+ Satisfiability Modulo Theories (SMT)

 Quantified Boolean Formulae (QBF)

¢ Max-SAT
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I Summary Decision Procedures

B Separation of verification problem and decision engine
B Many many applications in hardware & software verification
® Convenient and standardized APIs for ease of use

® Active field of research
B Popular SMT solvers:
* MathSAT
» Z3 (Microsoft Research)
+ STP (Stanford)
* Yices
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B outline

Practical Exercise
System Verilog Assertions
Round-Robin Arbiter
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N System Verilog Assertions (Reminder)

module monitor( foo.MONITOR I );

property slave_data_notunknown_when_ready;
@(posedge I.clk)
I.ready | -> $isunknown(I.s) =
endproperty

0;

assert_slave_data_notunknown_when_ready: assert property (slave_data_notunknown_when_ready)
else $error("%m: ready is asserted but data from slave is non valid");

property slave_ready_until_valid;
@(posedge I.clk)
$rose(I.ready) | -> I.ready throughout I.valid [->1]; //ou I.ready [#0:$] ##1 I.valid;
endproperty

assert_slave_ready_until_valid: assert property(slave_ready_until_valid)
else $error("%m:slave’s ready must be held until valid is set"”);

property slave_data_held_when_ready;
bit [7:0] s;
@(posedge I.clk) disable iff (I.nrst == @)
(I.ready && !I.valid , s = I.s) | => s == I.s; //ou $stable(I.s);
endproperty

assert_slave_data_held_when_ready: assert property(slave_data_held_when_ready)
else $error("%m: data must be held stable when slave is ready");
endmodule




I Basic Property Structure

// basic property structure
property foo;
@(posedge clk) disable iff (rst)
expr;
endproperty // foo

// verification directives
assert_foo: assert property(foo);
assume_foo: assume property(foo);
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N Sequences and Suffix Implication

// suffix implication
foo ## bar |-> pof ##[1:3] mop;

foo [\
bar []
pof []
mop

ck LMLy
M\
M\
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N Non-Overlapping Suffix Implication

// non-overlapping suffix implication
foo ## bar |=> pof ##[1:3] mop;

ck LMy yuyuuwowor
foo [\

bar [T\
pof [T\
mop [T
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I until

a until b a until_with b
a s_until b a s_until_with b
clkk UL ck UL
a _| a _|
b b
a until b

B Overlapping vs.
non-overlapping

ck UUUUUUUUUT m Weak vs. strong
a |
b | .

a until_with b
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I Round-Robin Arbiter

rst clk

| |

B Arbitration of four masters

req0 —| — gnt0 B Single request always granted

reql — — gnt1 ® Fair arbitration of multiple
arbiter i

req2 —i  gnt2 (simultaneous) requests

req3 —i — gnt3
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I Practical Exercise

Let’s get to work. . .
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