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Motivation

[Source: www.elektormagazine.com/articles/moores-law]
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Motivation

[ CC© photo by mark.sze ]

Transistor count of > 3 billion

Gate level models are huge
Big designer teams (several hundreds)
Big correctness issues
Late bugs are extremely expensive
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Motivation

The First Bug (1947)

[ Photo: U.S. Naval Historical Center ]
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Motivation
The Pentium FDIV Bug (1994)
let x = 4195835, y = 3145727 ⇒ x − x

y · y = 256
Bug in floating point unit⇒ $ 450 Mio. loss for Intel

820 Chipset MTH Bug (2000)

Error in memory translator hub

Recall of around 1 Mio. motherboards
$ 253 Mio. financial loss

AMD Stack Pointer Bug (2012)

Specific instruction sequence causes wrong stack pointer update

Found by linux developer and reproduced on 48 core system
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Levels of Abstraction

Specification

Electr. System Lvl.

Transaction Lvl.

Register Transfer Lvl.

Netlist

Layout

Chip

Natural language

UML, SysML, Matlab, . . .

C, C++, SystemC, . . .

VHDL, Verilog, . . .

Gate models

Geometric, electr. models

Silicon

Req. eng.,
modeling

Design Space
expl., partitioning

Implementation,
refinement

Synthesis

Place & route

Manufacturing
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Quality Assurance

Specification

Electr. System Lvl.

Transaction Lvl.

Register Transfer Lvl.

Netlist

Layout

Chip

Equiv. Checking

Diagnosis

ATPG

Coverage

Robustness

Debugging

Model Checking

High Lvl. Synth.

Conf. Checking

NLP TechniquesModel Driven Eng.

Performance Evaluation
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Design Gap – Verification Gap
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Outline

Functional Verification
Circuit Models
Temporal Logic
CTL Model Checking
Bounded Model Checking

Decision Procedures
Boolean Satisfiability
Tseitin Transformation
SAT Solving

Practical Exercise
System Verilog Assertions
Round-Robin Arbiter
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Functional Verification

Dynamic verification (= simulation) still standard
technology
Pentium 4 overall simulated cycles < one minute at
operation speed [Bentley, 2005]
Full coverage is infeasible
Increasing use of formal methods
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Sequential Circuit Model

Memory

I O
n m

k k
δ

λ

Mealy Machine:

M = (I,O,S,S0, δ, λ)

δ : S × I → S
λ : S × I → O
S0 ⊆ S

I = {0,1}n
O = {0,1}m
S = {0,1}k
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module count(CLK, EN, CLR,
S0, S1, S2, V);

input CLK, EN, CLR;
output reg S0, S1, S2;
output V;

assign V = S0 & S1 & S2 &
!CLR & EN;

always @(posedge CLK) begin
if (CLR) begin

{S2, S1, S0} <= 0;
end else begin

if (EN) begin
{S2, S1, S0}

<= {S2, S1, S0} + 1;
end

end
end

endmodule // count
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Verification Model

Mealy Machine:

M = (I,O,S,S0, δ, λ)

δ : S × I → S
λ : S × I → O
S0 ⊆ S

000 001 010
EN

EN

CLR

Kripke Structure:

K = (S,S0, δ,V,L)

δ ⊆ S × S transition relation
S0 ⊆ S initial states
V propositional variables
L : S → 2V labelling function

000 | 00

000 | 10

000 | 01

000 | 11

001 | 00

001 | 10

001 | 01

001 | 11

010 | 00

010 | 10

010 | 01

010 | 11
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Labelling Function

Propositional variables V = {S2,S1,S0,EN,CLR,V}

∅

{EN,CLR}

{S0}

{S1,CLR}

000 | 00

000 | 10

000 | 01

000 | 11

001 | 00

001 | 10

001 | 01

001 | 11

010 | 00

010 | 10

010 | 01

010 | 11
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What do we want to verify?

Safety
Something bad will never happen, e.g.
“The stack pointer will never overflow”
“The traffic lights will never be green at the same time”

Liveness
Something good will eventually happen, e.g.
“Every request will be granted”
“The cache and the main memory will eventually be consistent”
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How to specify such properties?

Computation Tree

000 | 00

000 | 00 000 | 01 000 | 10

000 | 00 000 | 01 000 | 10 000 | 00 000 | 01 000 | 10 001 | 00 001 | 01 001 | 10

. . . . . . . . .
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How to specify such properties?

Some property p holds
(in the initial state)

p

p

p holds in
some next state

p

EX p

path
quantifier

next
operator

p holds in
all next states

p p

AX p
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Further Modalities

p holds in some
future state

p

EFp

p holds eventually

p

p p

AFp

p holds globally
on some path

p

p

p

EGp

p holds globally
on all paths

p

p p

p p p p

AGp
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Until Modalities

On some path, q holds
until p holds

q

q

p

E(qUp)

On all paths, q holds
until p holds

q

p q

p p

A(qUp)
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Computation Tree Logic

A CTL formula over propositional variables V has the form

CTL ::= p, where p ∈ V
| ϕ ∧ ψ | ¬ϕ
| EX ϕ | AX ϕ
| EF ϕ | AF ϕ
| EG ϕ | AG ϕ
| E(ϕ U ψ) | A(ϕ U ψ)
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What do we want to verify?

Safety
“The stack pointer will never overflow” AG (sp < 4096)

“The traffic lights will never be green at
the same time”

¬EF (tl1 ∧ tl2)

Liveness
“Every request will be granted” AG (req→ AF gnt)

“The cache and the main memory
will eventually be consistent”

AF (memi = cachei)
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Model Checking

Model Checking

Given a Kripke Structure K and a CTL formula ϕ,
check if K |= ϕ.

How do we do this?

1. Compute all states in which ϕ holds:
τ(ϕ) = {s ∈ S | K, s |= ϕ}

2. Check if the initial states are a subset of those states:
S0 \ τ(ϕ) = ∅
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Example
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p
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s3 s4 s5

τ(p) = {s2, s4, s5}
τ(EX p) = {s1, s2, s3, s5}
τ(AX p) = {s1, s2, s5}

τ(EF p) =
{s2, s4, s5} ∪ {s1, s3} ∪ {s0}

τ(AG p) =
{s2, s4, s5} ∩ {s2, s5}
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Fixed Point Algorithm for EF p

..
.

. .
.

p

S0 = p
S1 = p ∪ EX p
S2 = p ∪ EX p ∪ EX EX p
. . .
Sn = p ∪

n⋃
i=1

EXip = Sn−1

⇒ Sn = τ(EF p)
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Fixed Points

Let f : P(S)→ P(S) a set-valued function and Z ⊆ G.

Z is called a fixed point of f if f (Z ) = Z
Z is the least fixed point of f it is a fixed point and for all
other fixed points U of f it holds that Z ⊆ U.
Z is the greatest fixed point of f it is a fixed point and for all
other fixed points U of f it holds that U ⊆ Z .
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Fixed Points (2)

A function f : P(S)→ P(S) is called monotone if for all
X ,Y ⊆ S

X ⊆ Y ⇒ f (X ) ⊆ f (Y ) (1)

Knaster-Tarski Theorem
Let f : P(S)→ P(S) be a monotone function. Then f has a
least and a greatest fixed point.

⋃
n≥1

f n(∅) is the least fixed point of f .⋂
n≥1

f n(S) is the greatest fixed point of f .
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CTL Model Checking

Let K = (S,S0, δ,V,L) be a Kripke structure.

τ(p) = {s ∈ S | p ∈ L(s)}
τ(ϕ ∧ ψ) = τ(ϕ) ∩ τ(ψ)
τ(ϕ ∨ ψ) = τ(ϕ) ∪ τ(ψ)
τ(¬ϕ) = S \ τ(ϕ)
τ(EF ϕ) = lfpZ . τ(ϕ) ∪ EX (Z )
τ(AF ϕ) = lfpZ . τ(ϕ) ∪ AX (Z )
τ(EG ϕ) = gfpZ . τ(ϕ) ∩ EX (Z )
τ(AG ϕ) = gfpZ . τ(ϕ) ∩ AX (Z )
τ(E(ϕ U ψ)) = lfpZ . τ(ψ) ∪ (τ(ϕ) ∩ EX (Z ))
τ(A(ϕ U ψ)) = lfpZ . τ(ψ) ∪ (τ(ϕ) ∩ AX (Z ))
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Symbolic Model Checking

Complexity of CTL model checking
depending on state space
Use of symbolic representations
Binary Decision Diagrams (BDDs)
State space explosion still a problem
Works for small (or very regular)
systems
Popular tool: NuSMV
[Cimatti et al., 2002]
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Bounded Model Checking

M0S0

I0

O0

S1 M1 M2 . . . Mk Sk+1

I1 I2 Ik

O1 O2 Ok

JϕK[0,k ]

= 1?
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Bounded Model Checking

Avoid reachability computation by unrolling
Encode bounded property
Works well for safety checking
Original method is incomplete (bug hunting only)
Alternatively, use temporal induction

t

M0S0

I0

O0

M1 M2 . . . Mk Sk+1

I1 I2 Ik

O1 O2 Ok
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Advancements in Model Checking

Symbolic model checking with BDDs
[Burch et al., 1992]
SAT-based bounded model checking
[Biere et al., 1999]
Counter-example guided abstraction
refinement [Clarke et al., 2003]
Inductive invariant checking
[Bradley, 2011]

µ,CTL,LTL

LTL,ACTL

AG p
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Outline

Functional Verification
Circuit Models
Temporal Logic
CTL Model Checking
Bounded Model Checking

Decision Procedures
Boolean Satisfiability
Tseitin Transformation
SAT Solving

Practical Exercise
System Verilog Assertions
Round-Robin Arbiter
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Boolean Satisfiability (SAT)

SAT Problem
Given a Boolean function f : {0,1}n → {0,1} (in conjunctive
normal form), is there an assignment X ∈ {0,1}n, such that
f (X ) = 1?

Conjunctive Normal Form

A Boolean formula over variables X = {x0 . . . xn} is in
conjunctive normal form if it is a conjunction of clauses
(`1,1 ∨ `1,2 ∨ · · · ∨ `1,m0) ∧ · · · ∧ (`k ,1 ∨ · · · ∨ `k ,mk ). A clause is a
disjunction of literals ` = xi or ` = ¬xi for some xi ∈ X .

NP-complete problem [Cook, 1971]
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SAT-Based BMC

M |= ϕ

CNF

SAT Solver

UNSAT

SAT

Counterexample
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Tseitin Transformation

zp
q

r
t

s z ↔ (p ∨ q) ∧ ¬r

s ↔ p ∨ q
t ↔ ¬r
z ↔ s ∧ t

s ↔ p ∨ q ≡ (s → p ∨ q) ∧ (p ∨ q → s)
≡ (¬s ∨ p ∨ q) ∧ (¬(p ∨ q) ∨ s)
≡ (¬s ∨ p ∨ q) ∧ ((¬p ∧ ¬q) ∨ s)
≡ (¬s ∨ p ∨ q) ∧ (¬p ∨ s) ∧ (¬q ∨ s)

t ↔ ¬r ≡ (¬t ∨ ¬r) ∧ (t ∨ r)

z ↔ s ∧ t ≡ (¬s ∨ ¬t ∨ z) ∧ (s ∨ ¬z) ∧ (t ∨ ¬z)
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How it Looks Like in Practice. . .

c example circuit
c
p cnf 6 8
-4 1 2 0
-1 4 0
-2 4 0
-5 -3 0
5 3 0
-4 -3 6 0
4 -6 0
5 -6 0

(¬s ∨ p ∨ q) ∧
(¬p ∨ s) ∧
(¬q ∨ s) ∧
(¬t ∨ ¬r) ∧ . . .
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SAT Solving in a Nutshell

(¬a ∨ b ∨ c)
(a ∨ c ∨ d)
(a ∨ c ∨ ¬d)
(a ∨ ¬c ∨ d)
(a ∨ ¬c ∨ ¬d)
(¬b ∨ ¬c ∨ d)
(¬a ∨ b ∨ ¬c)
(¬a ∨ ¬b ∨ c)

a

b

c
0 1

0
c

0 1

1

0

b

0 1

1
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Advancements in SAT Solving

1962: DPLL backtracking algorithm [Davis et al., 1962]
1996: Conflict learning [Silva and Sakallah, 1996]
2001: Local search, decision heuristics, engineering . . .

Modern solvers handle millions of variables and clauses
Popular solvers:

• MiniSAT
• Glucose
• Lingeling

Extensions of SAT:
• Satisfiability Modulo Theories (SMT)
• Quantified Boolean Formulae (QBF)
• Max-SAT
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Summary Decision Procedures

Separation of verification problem and decision engine
Many many applications in hardware & software verification
Convenient and standardized APIs for ease of use
Active field of research
Popular SMT solvers:

• MathSAT
• Z3 (Microsoft Research)
• STP (Stanford)
• Yices
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System Verilog Assertions (Reminder)
module monitor( foo.MONITOR I );

property slave_data_notunknown_when_ready;
@(posedge I.clk)

I.ready | -> $isunknown(I.s) == 0;
endproperty

assert_slave_data_notunknown_when_ready: assert property (slave_data_notunknown_when_ready)
else $error("%m: ready is asserted but data from slave is non valid");

property slave_ready_until_valid;
@(posedge I.clk)

$rose(I.ready) | -> I.ready throughout I.valid [->1]; //ou I.ready [*0:$] ##1 I.valid;
endproperty

assert_slave_ready_until_valid: assert property(slave_ready_until_valid)
else $error("%m:slave’s ready must be held until valid is set");

property slave_data_held_when_ready;
bit [7:0] s;
@(posedge I.clk) disable iff (I.nrst == 0)

(I.ready && !I.valid , s = I.s) | => s == I.s; //ou $stable(I.s);
endproperty

assert_slave_data_held_when_ready: assert property(slave_data_held_when_ready)
else $error("%m: data must be held stable when slave is ready");

endmodule
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Basic Property Structure

// basic property structure
property foo;

@(posedge clk) disable iff (rst)
expr;

endproperty // foo

// verification directives
assert_foo: assert property(foo);
assume_foo: assume property(foo);
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Sequences and Suffix Implication

// suffix implication
foo ## bar |-> pof ##[1:3] mop;

clk

foo

bar

pof

mop
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Non-Overlapping Suffix Implication

// non-overlapping suffix implication
foo ## bar |=> pof ##[1:3] mop;

clk

foo

bar

pof

mop
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Until

a until b
a s_until b

clk

a

b

a until b
a until_with b

clk

a

b

a until_with b
a s_until_with b

clk

a

b

Overlapping vs.
non-overlapping
Weak vs. strong
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Round-Robin Arbiter

arbiter

clkrst

gnt0

gnt1

gnt2

gnt3

req0

req1

req2

req3

Arbitration of four masters
Single request always granted
Fair arbitration of multiple
(simultaneous) requests
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Practical Exercise

Let’s get to work. . .
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