
Formal Hardware Verification
Conception des systèmes sur puces

Ulrich Kühne
2016/2017

Motivation

2/49 SE303 Ulrich Kühne 2016/2017

Motivation

[Source: www.elektormagazine.com/articles/moores-law]

3/49 SE303 Ulrich Kühne 2016/2017

Motivation

[CC© photo by mark.sze]

Transistor count of > 3 billion

Gate level models are huge
Big designer teams (several hundreds)
Big correctness issues
Late bugs are extremely expensive

4/49 SE303 Ulrich Kühne 2016/2017

Motivation

The First Bug (1947)

[Photo: U.S. Naval Historical Center]

5/49 SE303 Ulrich Kühne 2016/2017

Motivation
The Pentium FDIV Bug (1994)
let x = 4195835, y = 3145727 ⇒ x − x

y · y = 256
Bug in floating point unit⇒ $ 450 Mio. loss for Intel

820 Chipset MTH Bug (2000)

Error in memory translator hub

Recall of around 1 Mio. motherboards
$ 253 Mio. financial loss

AMD Stack Pointer Bug (2012)

Specific instruction sequence causes wrong stack pointer update

Found by linux developer and reproduced on 48 core system

6/49 SE303 Ulrich Kühne 2016/2017

Levels of Abstraction

Specification

Electr. System Lvl.

Transaction Lvl.

Register Transfer Lvl.

Netlist

Layout

Chip

Natural language

UML, SysML, Matlab, . . .

C, C++, SystemC, . . .

VHDL, Verilog, . . .

Gate models

Geometric, electr. models

Silicon

Req. eng.,
modeling

Design Space
expl., partitioning

Implementation,
refinement

Synthesis

Place & route

Manufacturing

7/49 SE303 Ulrich Kühne 2016/2017

Quality Assurance

Specification

Electr. System Lvl.

Transaction Lvl.

Register Transfer Lvl.

Netlist

Layout

Chip

Equiv. Checking

Diagnosis

ATPG

Coverage

Robustness

Debugging

Model Checking

High Lvl. Synth.

Conf. Checking

NLP TechniquesModel Driven Eng.

Performance Evaluation

8/49 SE303 Ulrich Kühne 2016/2017

Design Gap – Verification Gap

manufacture

design

verify

#
Tr

an
si

st
or

s

Years

9/49 SE303 Ulrich Kühne 2016/2017

Outline

Functional Verification
Circuit Models
Temporal Logic
CTL Model Checking
Bounded Model Checking

Decision Procedures
Boolean Satisfiability
Tseitin Transformation
SAT Solving

Practical Exercise
System Verilog Assertions
Round-Robin Arbiter

10/49 SE303 Ulrich Kühne 2016/2017

Functional Verification

Dynamic verification (= simulation) still standard
technology
Pentium 4 overall simulated cycles < one minute at
operation speed [Bentley, 2005]
Full coverage is infeasible
Increasing use of formal methods

11/49 SE303 Ulrich Kühne 2016/2017

Sequential Circuit Model

Memory

I O
n m

k k
δ

λ

Mealy Machine:

M = (I,O,S,S0, δ, λ)

δ : S × I → S
λ : S × I → O
S0 ⊆ S

I = {0,1}n
O = {0,1}m
S = {0,1}k

12/49 SE303 Ulrich Kühne 2016/2017

module count(CLK, EN, CLR,
S0, S1, S2, V);

input CLK, EN, CLR;
output reg S0, S1, S2;
output V;

assign V = S0 & S1 & S2 &
!CLR & EN;

always @(posedge CLK) begin
if (CLR) begin

{S2, S1, S0} <= 0;
end else begin

if (EN) begin
{S2, S1, S0}

<= {S2, S1, S0} + 1;
end

end
end

endmodule // count

000

001 010 011

100

101110111

EN

EN EN

EN

EN

ENEN

ENEN/V

EN

EN

EN

EN

EN

EN

EN

EN

CLR

13/49 SE303 Ulrich Kühne 2016/2017

Verification Model

Mealy Machine:

M = (I,O,S,S0, δ, λ)

δ : S × I → S
λ : S × I → O
S0 ⊆ S

000 001 010
EN

EN

CLR

Kripke Structure:

K = (S,S0, δ,V,L)

δ ⊆ S × S transition relation
S0 ⊆ S initial states
V propositional variables
L : S → 2V labelling function

000 | 00

000 | 10

000 | 01

000 | 11

001 | 00

001 | 10

001 | 01

001 | 11

010 | 00

010 | 10

010 | 01

010 | 11

14/49 SE303 Ulrich Kühne 2016/2017

10000

10001

10101

10100

01101

01100

11111
11110

11010

11011

01000

01001

00111

00110

00010

00011

10011

10010
10110

10111

01110
01111

11001

11000

11100
11101

01011

01010

00001

00000

00100

00101

15/49 SE303 Ulrich Kühne 2016/2017

Labelling Function

Propositional variables V = {S2,S1,S0,EN,CLR,V}

∅

{EN,CLR}

{S0}

{S1,CLR}

000 | 00

000 | 10

000 | 01

000 | 11

001 | 00

001 | 10

001 | 01

001 | 11

010 | 00

010 | 10

010 | 01

010 | 11

16/49 SE303 Ulrich Kühne 2016/2017

What do we want to verify?

Safety
Something bad will never happen, e.g.
“The stack pointer will never overflow”
“The traffic lights will never be green at the same time”

Liveness
Something good will eventually happen, e.g.
“Every request will be granted”
“The cache and the main memory will eventually be consistent”

17/49 SE303 Ulrich Kühne 2016/2017

How to specify such properties?

Computation Tree

000 | 00

000 | 00 000 | 01 000 | 10

000 | 00 000 | 01 000 | 10 000 | 00 000 | 01 000 | 10 001 | 00 001 | 01 001 | 10

.

18/49 SE303 Ulrich Kühne 2016/2017

How to specify such properties?

Some property p holds
(in the initial state)

p

p

p holds in
some next state

p

EX p

path
quantifier

next
operator

p holds in
all next states

p p

AX p

19/49 SE303 Ulrich Kühne 2016/2017

Further Modalities

p holds in some
future state

p

EFp

p holds eventually

p

p p

AFp

p holds globally
on some path

p

p

p

EGp

p holds globally
on all paths

p

p p

p p p p

AGp

20/49 SE303 Ulrich Kühne 2016/2017

Until Modalities

On some path, q holds
until p holds

q

q

p

E(qUp)

On all paths, q holds
until p holds

q

p q

p p

A(qUp)

21/49 SE303 Ulrich Kühne 2016/2017

Computation Tree Logic

A CTL formula over propositional variables V has the form

CTL ::= p, where p ∈ V
| ϕ ∧ ψ | ¬ϕ
| EX ϕ | AX ϕ
| EF ϕ | AF ϕ
| EG ϕ | AG ϕ
| E(ϕ U ψ) | A(ϕ U ψ)

22/49 SE303 Ulrich Kühne 2016/2017

What do we want to verify?

Safety
“The stack pointer will never overflow” AG (sp < 4096)

“The traffic lights will never be green at
the same time”

¬EF (tl1 ∧ tl2)

Liveness
“Every request will be granted” AG (req→ AF gnt)

“The cache and the main memory
will eventually be consistent”

AF (memi = cachei)

23/49 SE303 Ulrich Kühne 2016/2017

Model Checking

Model Checking

Given a Kripke Structure K and a CTL formula ϕ,
check if K |= ϕ.

How do we do this?

1. Compute all states in which ϕ holds:
τ(ϕ) = {s ∈ S | K, s |= ϕ}

2. Check if the initial states are a subset of those states:
S0 \ τ(ϕ) = ∅

24/49 SE303 Ulrich Kühne 2016/2017

Example

p

p p

p

p p

p

p p

p

p p

p

p p

p

p p

p

p p

p

p p

p

p p

p

p p

s0 s1 s2

s3 s4 s5

τ(p) = {s2, s4, s5}
τ(EX p) = {s1, s2, s3, s5}
τ(AX p) = {s1, s2, s5}

τ(EF p) =
{s2, s4, s5} ∪ {s1, s3} ∪ {s0}

τ(AG p) =
{s2, s4, s5} ∩ {s2, s5}

25/49 SE303 Ulrich Kühne 2016/2017

Example

p

p p

p

p p

p

p p

p

p p

p

p p

p

p p

p

p p

p

p p

p

p p

p

p p

s0 s1 s2

s3 s4 s5

τ(p) = {s2, s4, s5}
τ(EX p) = {s1, s2, s3, s5}
τ(AX p) = {s1, s2, s5}

τ(EF p) =
{s2, s4, s5} ∪ {s1, s3} ∪ {s0}

τ(AG p) =
{s2, s4, s5} ∩ {s2, s5}

25/49 SE303 Ulrich Kühne 2016/2017

Example

p

p p

p

p p

p

p p

p

p p

p

p p

p

p p

p

p p

p

p p

p

p p

p

p p

s0 s1 s2

s3 s4 s5

τ(p) = {s2, s4, s5}
τ(EX p) = {s1, s2, s3, s5}
τ(AX p) = {s1, s2, s5}

τ(EF p) =
{s2, s4, s5} ∪ {s1, s3} ∪ {s0}

τ(AG p) =
{s2, s4, s5} ∩ {s2, s5}

25/49 SE303 Ulrich Kühne 2016/2017

Example

p

p p

p

p p

p

p p

p

p p

p

p p

p

p p

p

p p

p

p p

p

p p

p

p p

s0 s1 s2

s3 s4 s5

τ(p) = {s2, s4, s5}
τ(EX p) = {s1, s2, s3, s5}
τ(AX p) = {s1, s2, s5}

τ(EF p) =
{s2, s4, s5} ∪ {s1, s3} ∪ {s0}

τ(AG p) =
{s2, s4, s5} ∩ {s2, s5}

25/49 SE303 Ulrich Kühne 2016/2017

Example

p

p p

p

p p

p

p p

p

p p

p

p p

p

p p

p

p p

p

p p

p

p p

p

p p

s0 s1 s2

s3 s4 s5

τ(p) = {s2, s4, s5}
τ(EX p) = {s1, s2, s3, s5}
τ(AX p) = {s1, s2, s5}

τ(EF p) =
{s2, s4, s5} ∪ {s1, s3} ∪ {s0}

τ(AG p) =
{s2, s4, s5} ∩ {s2, s5}

25/49 SE303 Ulrich Kühne 2016/2017

Example

p

p p

p

p p

p

p p

p

p p

p

p p

Expansion rule:
EF ϕ = ϕ ∨ EX EF ϕ

p

p p

p

p p

p

p p

p

p p

p

p p

s0 s1 s2

s3 s4 s5

τ(p) = {s2, s4, s5}
τ(EX p) = {s1, s2, s3, s5}
τ(AX p) = {s1, s2, s5}

τ(EF p) =
{s2, s4, s5} ∪ {s1, s3} ∪ {s0}

τ(AG p) =
{s2, s4, s5} ∩ {s2, s5}

25/49 SE303 Ulrich Kühne 2016/2017

Example

p

p p

p

p p

p

p p

p

p p

p

p p

Expansion rule:
EF ϕ = ϕ ∨ EX EF ϕ

p

p p

p

p p

p

p p

p

p p

p

p p

s0 s1 s2

s3 s4 s5

τ(p) = {s2, s4, s5}
τ(EX p) = {s1, s2, s3, s5}
τ(AX p) = {s1, s2, s5}

τ(EF p) =
{s2, s4, s5} ∪ {s1, s3} ∪ {s0}

τ(AG p) =
{s2, s4, s5} ∩ {s2, s5}

25/49 SE303 Ulrich Kühne 2016/2017

Example

p

p p

p

p p

p

p p

p

p p

p

p p

Expansion rule:
EF ϕ = ϕ ∨ EX EF ϕ

p

p p

p

p p

p

p p

p

p p

p

p p

s0 s1 s2

s3 s4 s5

τ(p) = {s2, s4, s5}
τ(EX p) = {s1, s2, s3, s5}
τ(AX p) = {s1, s2, s5}

τ(EF p) =
{s2, s4, s5} ∪ {s1, s3} ∪ {s0}

τ(AG p) =
{s2, s4, s5} ∩ {s2, s5}

25/49 SE303 Ulrich Kühne 2016/2017

Example

p

p p

p

p p

p

p p

p

p p

p

p p

Expansion rule:
EF ϕ = ϕ ∨ EX EF ϕ

p

p p

p

p p

p

p p

p

p p

p

p p

s0 s1 s2

s3 s4 s5

τ(p) = {s2, s4, s5}
τ(EX p) = {s1, s2, s3, s5}
τ(AX p) = {s1, s2, s5}

τ(EF p) =
{s2, s4, s5} ∪ {s1, s3} ∪ {s0}

τ(AG p) =
{s2, s4, s5} ∩ {s2, s5}

25/49 SE303 Ulrich Kühne 2016/2017

Example

p

p p

p

p p

p

p p

p

p p

p

p p

p

p p

p

p p

p

p p

Expansion rule:
AG ϕ = ϕ ∧ AX AG ϕ

p

p p

p

p p

s0 s1 s2

s3 s4 s5

τ(p) = {s2, s4, s5}
τ(EX p) = {s1, s2, s3, s5}
τ(AX p) = {s1, s2, s5}

τ(EF p) =
{s2, s4, s5} ∪ {s1, s3} ∪ {s0}

τ(AG p) =
{s2, s4, s5} ∩ {s2, s5}

25/49 SE303 Ulrich Kühne 2016/2017

Example

p

p p

p

p p

p

p p

p

p p

p

p p

p

p p

p

p p

p

p p

Expansion rule:
AG ϕ = ϕ ∧ AX AG ϕ

p

p p

p

p p

s0 s1 s2

s3 s4 s5

τ(p) = {s2, s4, s5}
τ(EX p) = {s1, s2, s3, s5}
τ(AX p) = {s1, s2, s5}

τ(EF p) =
{s2, s4, s5} ∪ {s1, s3} ∪ {s0}

τ(AG p) =
{s2, s4, s5} ∩ {s2, s5}

25/49 SE303 Ulrich Kühne 2016/2017

Example

p

p p

p

p p

p

p p

p

p p

p

p p

p

p p

p

p p

p

p p

Expansion rule:
AG ϕ = ϕ ∧ AX AG ϕ

p

p p

p

p p

s0 s1 s2

s3 s4 s5

τ(p) = {s2, s4, s5}
τ(EX p) = {s1, s2, s3, s5}
τ(AX p) = {s1, s2, s5}

τ(EF p) =
{s2, s4, s5} ∪ {s1, s3} ∪ {s0}

τ(AG p) =
{s2, s4, s5} ∩ {s2, s5}

25/49 SE303 Ulrich Kühne 2016/2017

Example

p

p p

p

p p

p

p p

p

p p

p

p p

p

p p

p

p p

p

p p

Expansion rule:
AG ϕ = ϕ ∧ AX AG ϕ

p

p p

p

p p

s0 s1 s2

s3 s4 s5

τ(p) = {s2, s4, s5}
τ(EX p) = {s1, s2, s3, s5}
τ(AX p) = {s1, s2, s5}

τ(EF p) =
{s2, s4, s5} ∪ {s1, s3} ∪ {s0}

τ(AG p) =
{s2, s4, s5} ∩ {s2, s5}

25/49 SE303 Ulrich Kühne 2016/2017

Fixed Point Algorithm for EF p

..
.

. .
.

p

S0 = p
S1 = p ∪ EX p
S2 = p ∪ EX p ∪ EX EX p
. . .
Sn = p ∪

n⋃
i=1

EXip = Sn−1

⇒ Sn = τ(EF p)

26/49 SE303 Ulrich Kühne 2016/2017

Fixed Points

Let f : P(S)→ P(S) a set-valued function and Z ⊆ G.

Z is called a fixed point of f if f (Z) = Z
Z is the least fixed point of f it is a fixed point and for all
other fixed points U of f it holds that Z ⊆ U.
Z is the greatest fixed point of f it is a fixed point and for all
other fixed points U of f it holds that U ⊆ Z .

27/49 SE303 Ulrich Kühne 2016/2017

Fixed Points (2)

A function f : P(S)→ P(S) is called monotone if for all
X ,Y ⊆ S

X ⊆ Y ⇒ f (X) ⊆ f (Y) (1)

Knaster-Tarski Theorem
Let f : P(S)→ P(S) be a monotone function. Then f has a
least and a greatest fixed point.

⋃
n≥1

f n(∅) is the least fixed point of f .⋂
n≥1

f n(S) is the greatest fixed point of f .

28/49 SE303 Ulrich Kühne 2016/2017

CTL Model Checking

Let K = (S,S0, δ,V,L) be a Kripke structure.

τ(p) = {s ∈ S | p ∈ L(s)}
τ(ϕ ∧ ψ) = τ(ϕ) ∩ τ(ψ)
τ(ϕ ∨ ψ) = τ(ϕ) ∪ τ(ψ)
τ(¬ϕ) = S \ τ(ϕ)
τ(EF ϕ) = lfpZ . τ(ϕ) ∪ EX (Z)
τ(AF ϕ) = lfpZ . τ(ϕ) ∪ AX (Z)
τ(EG ϕ) = gfpZ . τ(ϕ) ∩ EX (Z)
τ(AG ϕ) = gfpZ . τ(ϕ) ∩ AX (Z)
τ(E(ϕ U ψ)) = lfpZ . τ(ψ) ∪ (τ(ϕ) ∩ EX (Z))
τ(A(ϕ U ψ)) = lfpZ . τ(ψ) ∪ (τ(ϕ) ∩ AX (Z))

29/49 SE303 Ulrich Kühne 2016/2017

Symbolic Model Checking

Complexity of CTL model checking
depending on state space
Use of symbolic representations
Binary Decision Diagrams (BDDs)
State space explosion still a problem
Works for small (or very regular)
systems
Popular tool: NuSMV
[Cimatti et al., 2002]

x1

x2

0

x2

1

x3

0

x3

1

1

1

0

0

01 10

30/49 SE303 Ulrich Kühne 2016/2017

Bounded Model Checking

M0S0

I0

O0

S1 M1 M2 . . . Mk Sk+1

I1 I2 Ik

O1 O2 Ok

JϕK[0,k]

= 1?

31/49 SE303 Ulrich Kühne 2016/2017

Bounded Model Checking

Avoid reachability computation by unrolling
Encode bounded property
Works well for safety checking
Original method is incomplete (bug hunting only)
Alternatively, use temporal induction

t

M0S0

I0

O0

M1 M2 . . . Mk Sk+1

I1 I2 Ik

O1 O2 Ok

32/49 SE303 Ulrich Kühne 2016/2017

Advancements in Model Checking

Symbolic model checking with BDDs
[Burch et al., 1992]
SAT-based bounded model checking
[Biere et al., 1999]
Counter-example guided abstraction
refinement [Clarke et al., 2003]
Inductive invariant checking
[Bradley, 2011]

µ,CTL,LTL

LTL,ACTL

AG p

33/49 SE303 Ulrich Kühne 2016/2017

Outline

Functional Verification
Circuit Models
Temporal Logic
CTL Model Checking
Bounded Model Checking

Decision Procedures
Boolean Satisfiability
Tseitin Transformation
SAT Solving

Practical Exercise
System Verilog Assertions
Round-Robin Arbiter

34/49 SE303 Ulrich Kühne 2016/2017

Boolean Satisfiability (SAT)

SAT Problem
Given a Boolean function f : {0,1}n → {0,1} (in conjunctive
normal form), is there an assignment X ∈ {0,1}n, such that
f (X) = 1?

Conjunctive Normal Form

A Boolean formula over variables X = {x0 . . . xn} is in
conjunctive normal form if it is a conjunction of clauses
(`1,1 ∨ `1,2 ∨ · · · ∨ `1,m0) ∧ · · · ∧ (`k ,1 ∨ · · · ∨ `k ,mk). A clause is a
disjunction of literals ` = xi or ` = ¬xi for some xi ∈ X .

NP-complete problem [Cook, 1971]

35/49 SE303 Ulrich Kühne 2016/2017

SAT-Based BMC

M |= ϕ

CNF

SAT Solver

UNSAT

SAT

Counterexample

36/49 SE303 Ulrich Kühne 2016/2017

Tseitin Transformation

zp
q

r
t

s z ↔ (p ∨ q) ∧ ¬r

s ↔ p ∨ q
t ↔ ¬r
z ↔ s ∧ t

s ↔ p ∨ q ≡ (s → p ∨ q) ∧ (p ∨ q → s)
≡ (¬s ∨ p ∨ q) ∧ (¬(p ∨ q) ∨ s)
≡ (¬s ∨ p ∨ q) ∧ ((¬p ∧ ¬q) ∨ s)
≡ (¬s ∨ p ∨ q) ∧ (¬p ∨ s) ∧ (¬q ∨ s)

t ↔ ¬r ≡ (¬t ∨ ¬r) ∧ (t ∨ r)

z ↔ s ∧ t ≡ (¬s ∨ ¬t ∨ z) ∧ (s ∨ ¬z) ∧ (t ∨ ¬z)

37/49 SE303 Ulrich Kühne 2016/2017

How it Looks Like in Practice. . .

c example circuit
c
p cnf 6 8
-4 1 2 0
-1 4 0
-2 4 0
-5 -3 0
5 3 0
-4 -3 6 0
4 -6 0
5 -6 0

(¬s ∨ p ∨ q) ∧
(¬p ∨ s) ∧
(¬q ∨ s) ∧
(¬t ∨ ¬r) ∧ . . .

38/49 SE303 Ulrich Kühne 2016/2017

SAT Solving in a Nutshell

(¬a ∨ b ∨ c)
(a ∨ c ∨ d)
(a ∨ c ∨ ¬d)
(a ∨ ¬c ∨ d)
(a ∨ ¬c ∨ ¬d)
(¬b ∨ ¬c ∨ d)
(¬a ∨ b ∨ ¬c)
(¬a ∨ ¬b ∨ c)

a

b

c
0 1

0
c

0 1

1

0

b

0 1

1

39/49 SE303 Ulrich Kühne 2016/2017

Advancements in SAT Solving

1962: DPLL backtracking algorithm [Davis et al., 1962]
1996: Conflict learning [Silva and Sakallah, 1996]
2001: Local search, decision heuristics, engineering . . .

Modern solvers handle millions of variables and clauses
Popular solvers:

• MiniSAT
• Glucose
• Lingeling

Extensions of SAT:
• Satisfiability Modulo Theories (SMT)
• Quantified Boolean Formulae (QBF)
• Max-SAT

40/49 SE303 Ulrich Kühne 2016/2017

Summary Decision Procedures

Separation of verification problem and decision engine
Many many applications in hardware & software verification
Convenient and standardized APIs for ease of use
Active field of research
Popular SMT solvers:

• MathSAT
• Z3 (Microsoft Research)
• STP (Stanford)
• Yices

41/49 SE303 Ulrich Kühne 2016/2017

Outline

Functional Verification
Circuit Models
Temporal Logic
CTL Model Checking
Bounded Model Checking

Decision Procedures
Boolean Satisfiability
Tseitin Transformation
SAT Solving

Practical Exercise
System Verilog Assertions
Round-Robin Arbiter

42/49 SE303 Ulrich Kühne 2016/2017

System Verilog Assertions (Reminder)
module monitor(foo.MONITOR I);

property slave_data_notunknown_when_ready;
@(posedge I.clk)

I.ready | -> $isunknown(I.s) == 0;
endproperty

assert_slave_data_notunknown_when_ready: assert property (slave_data_notunknown_when_ready)
else $error("%m: ready is asserted but data from slave is non valid");

property slave_ready_until_valid;
@(posedge I.clk)

$rose(I.ready) | -> I.ready throughout I.valid [->1]; //ou I.ready [*0:$] ##1 I.valid;
endproperty

assert_slave_ready_until_valid: assert property(slave_ready_until_valid)
else $error("%m:slave’s ready must be held until valid is set");

property slave_data_held_when_ready;
bit [7:0] s;
@(posedge I.clk) disable iff (I.nrst == 0)

(I.ready && !I.valid , s = I.s) | => s == I.s; //ou $stable(I.s);
endproperty

assert_slave_data_held_when_ready: assert property(slave_data_held_when_ready)
else $error("%m: data must be held stable when slave is ready");

endmodule

43/49 SE303 Ulrich Kühne 2016/2017

Basic Property Structure

// basic property structure
property foo;

@(posedge clk) disable iff (rst)
expr;

endproperty // foo

// verification directives
assert_foo: assert property(foo);
assume_foo: assume property(foo);

44/49 SE303 Ulrich Kühne 2016/2017

Sequences and Suffix Implication

// suffix implication
foo ## bar |-> pof ##[1:3] mop;

clk

foo

bar

pof

mop

45/49 SE303 Ulrich Kühne 2016/2017

Non-Overlapping Suffix Implication

// non-overlapping suffix implication
foo ## bar |=> pof ##[1:3] mop;

clk

foo

bar

pof

mop

46/49 SE303 Ulrich Kühne 2016/2017

Until

a until b
a s_until b

clk

a

b

a until b
a until_with b

clk

a

b

a until_with b
a s_until_with b

clk

a

b

Overlapping vs.
non-overlapping
Weak vs. strong

47/49 SE303 Ulrich Kühne 2016/2017

Round-Robin Arbiter

arbiter

clkrst

gnt0

gnt1

gnt2

gnt3

req0

req1

req2

req3

Arbitration of four masters
Single request always granted
Fair arbitration of multiple
(simultaneous) requests

48/49 SE303 Ulrich Kühne 2016/2017

Practical Exercise

Let’s get to work. . .

49/49 SE303 Ulrich Kühne 2016/2017

References I

Bentley, B. (2005).
Validating a modern microprocessor.
In Etessami, K. and Rajamani, S., editors, Computer Aided Verification, volume
3576 of Lecture Notes in Computer Science, pages 2–4. Springer Berlin
Heidelberg.

Biere, A., Cimatti, A., Clarke, E. M., Fujita, M., and Zhu, Y. (1999).
Symbolic model checking using SAT procedures instead of BDDs.
In Design Automation Conference (DAC), pages 317–320.

Bradley, A. R. (2011).
SAT-based model checking without unrolling.
In Verification, Model Checking, and Abstract Interpretation (VMCAI), pages
70–87.

Burch, J., Clarke, E., McMillan, K., Dill, D., and Hwang, L. (1992).
Symbolic model checking: 1020 States and beyond.
Information and Computation, 98(2):142–170.

50/49 SE303 Ulrich Kühne 2016/2017

References II

Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., and Tacchella, A. (2002).
NuSMV Version 2: An OpenSource Tool for Symbolic Model Checking.
In Proc. International Conference on Computer-Aided Verification (CAV 2002),
volume 2404 of LNCS, Copenhagen, Denmark. Springer.

Clarke, E. M., Grumberg, O., Jha, S., Lu, Y., and Veith, H. (2003).
Counterexample-guided abstraction refinement for symbolic model checking.
Journal of the ACM, 50(5):752–794.

Cook, S. (1971).
The complexity of theorem proving procedures.
In 3. ACM Symposium on Theory of Computing, pages 151–158.

Davis, M., Logemann, G., and Loveland, D. (1962).
A machine program for theorem-proving.
Commun. ACM, 5(7):394–397.

51/49 SE303 Ulrich Kühne 2016/2017

References III

Silva, J. a. P. M. and Sakallah, K. A. (1996).
Grasp – a new search algorithm for satisfiability.
In Proceedings of the 1996 IEEE/ACM International Conference on
Computer-aided Design, ICCAD ’96, pages 220–227, Washington, DC, USA.
IEEE Computer Society.

52/49 SE303 Ulrich Kühne 2016/2017

	Functional Verification
	Circuit Models
	Temporal Logic
	CTL Model Checking
	Bounded Model Checking

	Decision Procedures
	Boolean Satisfiability
	Tseitin Transformation
	SAT Solving

	Practical Exercise
	System Verilog Assertions
	Round-Robin Arbiter

	Appendix

