
SystemVerilog pour la verification
Testbenches avancés

Tarik Graba
Année 2019/2020

Plan

Introduction

Le scheduler

Les «program»

Les «clocking block»

Les classes et la génération d’aléa

Les assertions

Analyse de couverture

2/66 SE303 Tarik Graba 2019/2020

Testbenches Verilog

3/66 SE303 Tarik Graba 2019/2020

Testbenches Verilog

Un module pour le testbench

Une instance du module testé (DUT)

Générer des stimuli vers les entrées du
DUT et récupérer les sorties

• initial, always…

module testbench;

// déclaration des signaux

...

module_a_tester DUT(.*);

initial

begin

// générer des stimuli

...

end

initial

begin

// observer les sorties

...

end

endmodule

4/66 SE303 Tarik Graba 2019/2020

Plus qu’un simple testbench
Pourquoi?

Cette façon de faire des testsbench n’est plus suffisante :
Complexité :

• des fonctionnalités complexes
• des protocoles de bus complexes
• des fournisseurs différents

Aller au-delà du test fonctionnel :
• détecter des bugs avant fabrication
• en dehors des spécifications

Diviser le travail :
• qui définit les tests?
• comment les rendre modulaires et réutilisables?

5/66 SE303 Tarik Graba 2019/2020

Plus qu’un simple testbench
Comment?

Constrained Random Verification :
• des stimuli générés aléatoirement

– des contraintes pour cibler les cas intéressants
• des assertions

– pour détecter les cas interdits/problématiques
• analyser la couverture des tests

– a-t-on testé tous les cas intéressants

6/66 SE303 Tarik Graba 2019/2020

Vérification en SystemVerilog
Qu’apporte le langage?

Standardisation de l’ordonnancement du simulateur pour séparer «design» et
«testbench»
Le langage intègre des constructions pour :

• les assertions
• la génération d’aléas sous contraintes
• l’analyse de la couverture

Le langage intègre des constructions pour construire et maintenir des tests
complexes

• classes/programmation orientée objet

7/66 SE303 Tarik Graba 2019/2020

Vérification en SystemVerilog
Comment on s’en sert?

Comment ne pas réinventer la roue systématiquement !

Des méthodologies ont été proposées et standardisées :
VMM : Verification Methodology Manual…
OVM : Open Verification Methodology
UVM : Universal Verification Methodology

C’est UVM qui est le standard le plus utilisé actuellement.

Ce cours ne présente pas ces méthodologies mais plutôt les briques du langage qui les
permettent !

8/66 SE303 Tarik Graba 2019/2020

Plan

Introduction

Le scheduler

Les «program»

Les «clocking block»

Les classes et la génération d’aléa

Les assertions

Analyse de couverture

9/66 SE303 Tarik Graba 2019/2020

Simulation évènementielle
Rappel

T = 0;

While(Event) {

While(Event at t=T) {

RunProcess

ApplyDelayedAssignment

}

T = AdvanceToNextTime

}

End

10/66 SE303 Tarik Graba 2019/2020

Simulation évènementielle
En Verilog 2001

Pour un temps physique donné («time slot»),
l’ordonnancement est divisé en plusieurs régions.

11/66 SE303 Tarik Graba 2019/2020

Simulation évènementielle
En Verilog 2001

Active

les affectations immédiates des processus
always ou initial,

les affectations concurrentes assign,

propagation des I/O (in, out…)

l’évaluation de ce qui se trouve à droite des
affectations

11/66 SE303 Tarik Graba 2019/2020

Simulation évènementielle
En Verilog 2001

Inactive

les affectations à retard nul (#0)

11/66 SE303 Tarik Graba 2019/2020

Simulation évènementielle
En Verilog 2001

NBA : Non blocking assignment

les affectations différées sont appliquées
(<=)

11/66 SE303 Tarik Graba 2019/2020

Simulation évènementielle
En Verilog 2001

Postponed

pour la fonction système $monitor

11/66 SE303 Tarik Graba 2019/2020

Simulation évènementielle
En SystemVerilog

Ajouts de régions (non blanches dans le
diagramme) pour permettre de nouvelles
fonctionnalités.

12/66 SE303 Tarik Graba 2019/2020

Simulation évènementielle
En SystemVerilog

Preponed

permet de lire les valeurs (échantillonner)
avant le début du time slot.

12/66 SE303 Tarik Graba 2019/2020

Simulation évènementielle
En SystemVerilog

Les régions actives

celles de Verilog,

destinées au RTL

12/66 SE303 Tarik Graba 2019/2020

Simulation évènementielle
En SystemVerilog

Observed

permet d’observer le résultat de la région
active

destinée aux assertions

12/66 SE303 Tarik Graba 2019/2020

Simulation évènementielle
En SystemVerilog

Les régions réactives

permet d’exécuter des processus liés à la
simulation

les mêmes régions que la zone active

12/66 SE303 Tarik Graba 2019/2020

Simulation évènementielle
Pourquoi cette complexité?

Pour séparer le Design du testbench

Des constructions différentes (program)
On évite les problèmes de concurrence (race conditions)

Ajouter des fonctionnalités

Des assertions concurrentes (concurrent assertions)
Simplifier la simulation de designs synchrones (clocking blocs)

13/66 SE303 Tarik Graba 2019/2020

Plan

Introduction

Le scheduler

Les «program»

Les «clocking block»

Les classes et la génération d’aléa

Les assertions

Analyse de couverture

14/66 SE303 Tarik Graba 2019/2020

Les «program»
Un module pour la simulation

+ Se déclare comme un module

+ Comme un module, il a une interface

+ On peut l’instancier dans un autre module

- Ne peut pas contenir de sous modules ni de
sous-programmes

- Ne doit pas contenir de processus always,
always_comb, always_ff, … seulement des
processus initial (ou final)

program tester (...);

initial

begin

// générer des stimuli

...

end

initial

begin

// observer les sorties

...

end

endprogram

module testbench;

// déclaration des signaux

...

module_a_tester DUT(.*);

tester TESTER_i(.*);

endmodule

15/66 SE303 Tarik Graba 2019/2020

Les «program»
Un module pour la simulation

16/66 SE303 Tarik Graba 2019/2020

Les «program»
Un module pour la simulation

Pourquoi?

Isoler/séparer le «design» matériel du «testbench»
Ses processus sont exécutés dans la région réactive

• moins de problèmes de concurrence

Remarque : La simulation s’arrête automatiquement quand tous les processus des
programmes se finissent.

17/66 SE303 Tarik Graba 2019/2020

Les «program»
Exemple : Un protocole

Le protocole de l’interface foo permet au maitre d’écrire une donnée et d’en récupérer une
autre.

clk

master valid

master data(m) à écrire

slave ready

slave data(s) à lire

Échange au rdv
valid et ready

18/66 SE303 Tarik Graba 2019/2020

Les «program»
Exemple : Une interface

une entrée d’horloge clk et de reset
nrst

2 modport pour un maitre et un esclave

interface foo (input bit clk,

input logic nrst

);

logic [7:0] m;

logic [7:0] s;

logic valid;

logic ready;

modport M (

input clk,

input nrst,

output m,

input s,

output valid,

input ready

);

modport S (

input clk,

input nrst,

input m,

output s,

input valid,

output ready

);

endinterface:foo

19/66 SE303 Tarik Graba 2019/2020

Les «program»
Exemple : Un esclave

module slave(foo.S I);

localparam [7:0] Sec = 8'b1111_0000;

logic[7:0] R;

always_ff@(posedge I.clk or negedge I.nrst)

if (!I.nrst)

begin

R <= '0;

I.ready <= 1'b1;

end

else

begin

I.ready <= 1'b1;

if(I.valid & I.ready)

begin

R <= I.m;

I.ready <= 1'b0;

end

end

assign I.s = R ^ Sec;

endmodule

Renvoie valeur précédemment
écrite sur laquelle un calcul est
effectué

ready par défaut

insère un cycle d’attente après
chaque requête valide

20/66 SE303 Tarik Graba 2019/2020

Les «program»
Exemple : testbench de base

Un module sans entrée ni sortie

Les signaux et interfaces

Une instance de l’esclave (DUT :
Design Under Test)

Une instance du testeur

Générer l’horloge

module testbench();

bit clk;

logic nrst;

foo I(.*);

tester tester_i(.*);

slave DUT(.*);

always #10ns clk = !clk;

endmodule

21/66 SE303 Tarik Graba 2019/2020

Les «program»
Exemple : program pour un test de base

program tester(foo.M I , output logic nrst);

bit[7:0] data;

initial

begin:main

I.m <= '0;

I.valid <= 0;

nrst <= 0;

// Attendre 2 cycles d'horloge

repeat(2) @(negedge I.clk);

nrst <= 1;

repeat(2) @(negedge I.clk);

repeat(10)

begin

I.valid <= 1;

I.m <= data;

while(!I.ready) @(posedge I.clk);

$display("w %0h & r %0h",data, I.s);

data++;

@(negedge I.clk);

I.valid <= 0;

repeat(1+$random%3)@(negedge I.clk);

end

end:main

endprogram

contrôle le signal de reset

génère des séquences vers l’esclave

récupère les sorties de l’esclave

On aurait pu déclarer le program à l’intérieur
du testbench pour qu’il ait directement accès
à ses signaux

22/66 SE303 Tarik Graba 2019/2020

Les «program»
Est-ce suffisant?

Quand on simule de la logique synchrone :
Comment être sûr du synchronisme?
Comment le garantir quand le testbench se complexifie?
Comment le garantir quand :

• quand l’horloge change?
• quand les fronts utilisés changent?
• quand on a des temps de propagation?

23/66 SE303 Tarik Graba 2019/2020

Plan

Introduction

Le scheduler

Les «program»

Les «clocking block»

Les classes et la génération d’aléa

Les assertions

Analyse de couverture

24/66 SE303 Tarik Graba 2019/2020

Les «clocking block»

Un «clocking block» est une construction qui permet dans un testbench de :
déclarer l’évènement de synchronisation (le front de l’horloge)
les entrées à capturer au front d’horloge
les sorties à modifier après le front

Un «clocking block» est déclaré entre les mots clés clocking et enclocking dans
un module, program ou interface.

25/66 SE303 Tarik Graba 2019/2020

Les «clocking block»
La syntaxe

clocking foo @(posedge clk);

input sig1;

input sig2;

output sig3;

output sig4;

....

endclocking

// avec I/O skews

clocking bar @(negedge clk);

default input 1ns output 2ns;

input sig1;

input sig2;

output sig3;

output sig4;

....

endclocking

...

foo.sig3 <= x;

y <= bar.sig1;

...

@(foo) ...

foo est un «clocking block» déclenché par le
front montant de clk

bar est un «clocking block» déclenché par le
front descendant de clk

on peut optionnel ment définir des «skews»

On accède aux signaux à travers le «clocking
block» par des affectations differées.

@(foo) fait référence au front qui déclenche
«clocking block»

26/66 SE303 Tarik Graba 2019/2020

Les «clocking block»
Les skews

Par défaut :
en entrée 1 cycle du simulateur (1step)
en sortie un temps de 0

27/66 SE303 Tarik Graba 2019/2020

Les «clocking block»
Comment est-ce fait par le simulateur

sorties

échantillonnage

28/66 SE303 Tarik Graba 2019/2020

Les «clocking block»
Exemple : améliorons notre interface

Clocking block dans l’interface

Nouveau modport pour le testbench

On peut y ajouter le reset

interface foo (input bit clk);

logic nrst;

logic [7:0] m;

logic [7:0] s;

logic valid;

logic ready;

// ici rien ne change

modport M (...);

modport S (...);

clocking tb_cb @(posedge clk);

output nrst;

output m;

input s;

output valid;

input ready;

endclocking

// Le testeur est synchrone

modport TB (clocking tb_cb);

endinterface:foo

29/66 SE303 Tarik Graba 2019/2020

Les «clocking block»
Exemple : améliorons notre program

On a la garantie que les sorties
changeront après le front d’horloge

On a la garantie que les entrées sont
correctement échantillonnées

program tester(foo.TB I);

bit[7:0] data;

initial

begin:main

I.tb_cb.m <= '0;

I.tb_cb.valid <= 0;

I.tb_cb.nrst <= 0;

// Attendre que les affectations se fassent

@(I.tb_cb);

// Attendre 2 cycles d'horloge

repeat(2) @(I.tb_cb);

I.tb_cb.nrst <= 1;

repeat(2) @(I.tb_cb);

repeat(10)

begin

I.tb_cb.valid <= 1;

I.tb_cb.m <= data;

@(I.tb_cb);

// ready ne change qu'au front d'horloge

wait(I.tb_cb.ready==1);

$display("w %0h & r %0h",data, I.tb_cb.s);

data++;

I.tb_cb.valid <= 0;

repeat(1+$random%3)@(I.tb_cb);

end

end:main

endprogram

30/66 SE303 Tarik Graba 2019/2020

Les «clocking block»
Exemple : simplifions notre testbench

Plus besoin de déclarer le signal de
reset

Le reset fait aussi partie du «clocking
block»

Comment faire si on veut simuler un
reset asynchrone?

• On l’ajoute au modport

module testbench();

bit clk;

foo I(.*);

tester tester_i(.*);

slave DUT(.*);

always #10ns clk = !clk;

endmodule

31/66 SE303 Tarik Graba 2019/2020

Autre choses?
Que pouvons-nous ajouter dans une interface?

Presque comme un module :

des tâches (task)

des fonctions (function)

des processus (always, assign)

…

Par exemple :

interface foo (input bit clk);

...

function void init();

nrst = 0;

valid = 0;

m = $random();

endfunction

...

// fonction visible dans le modport

modport TB (clocking tb_cb,

import init

);

...

endinterface:foo

La fonction init permet d’initialiser de façon
asynchrone les signaux du maitre.

32/66 SE303 Tarik Graba 2019/2020

Plan

Introduction

Le scheduler

Les «program»

Les «clocking block»

Les classes et la génération d’aléa

Les assertions

Analyse de couverture

33/66 SE303 Tarik Graba 2019/2020

Les classes en SystemVerilog
Orienté objet

class Message;

byte text[];

int id;

logic[31:0] address;

function void dump();

$diplay("%p",this);

endfunction

endclass

...

// On déclare une référence (handle)

Message m;

// on alloue l'objet

m = new;

m.text = "hello world";

...

xx = m.id;

...

m.dump();

SystemVerilog les classes sont réservées a la
simulation.

définition entre les mots clés class et endclass

contient des «propriétés» (les données) et des
«méthodes» (function ou task)

le constructeur s’appelle toujours new (implicite si
par défaut)

un «garbage collector»

peut avoir des paramètres (parameter)

34/66 SE303 Tarik Graba 2019/2020

Les classes en SystemVerilog
Orienté objet

Les classes SystemVerilog supporte
l’héritage simple

on doit utiliser le mot clé extends

super fait référence à la classe père
certains champs peuvent être marqués :

• local (private en C++)
• protected

program foo;

class A;

int i;

function new (int i);

this.i = i;

endfunction

function void dump();

$display("%p", this);

endfunction

endclass

class B extends A;

int j = 0;

function new();

super.new(33);

endfunction

endclass

A a;

initial

begin

a = new(44);

a.dump();

a = B::new;

a.dump();

end

endprogram

35/66 SE303 Tarik Graba 2019/2020

Les classes en SystemVerilog
La génération d’aléa

Certaines propriétés d’une classe peuvent être
tirées aléatoirement en y ajoutant l’attribut :

rand : uniformément distribuées

randc : cyclique (une valeur ne reviendra
pas avant la fin du cycle)

La méthode implicite randomize permet de
tirer une nouvelle valeur

• Elle renvoie la valeur 0 en cas d’échec,
1 sinon.

program foo;

class A;

rand bit[3:0] i;

randc bit[3:0] j;

function void dump();

$display("%p", this);

endfunction

endclass

A a;

initial

begin

a = new;

repeat(20) begin

if (a.randomize()) a.dump();

end

end

endprogram

36/66 SE303 Tarik Graba 2019/2020

Les classes en SystemVerilog
Contraintes à la randomisation

A la génération on peut ajouter des
contraintes en utilisant le mot clé with

program foo;

class A;

rand bit[3:0] i;

randc bit[3:0] j;

function void dump();

$display("%p", this);

endfunction

endclass

A a;

int res;

initial

begin

a = new;

repeat(20) begin

res = a.randomize()

with {i[1:0] == 0 && j%2 ==1;};

if (res) a.dump();

end

end

endprogram

37/66 SE303 Tarik Graba 2019/2020

Les classes en SystemVerilog
Contraintes à la déclaration

On peut ajouter des contraintes à la
déclaration de la classe en utilisant le
mot clé constraint

Si les contraintes ne sont pas
compatibles, la randomisation échouera.

program foo;

class A;

rand bit[3:0] i;

randc bit[3:0] j;

function void dump();

$display("%p", this);

endfunction

constraint C {i[1:0] == 0 && j%2 ==1;}

// dans un ensemble/intervalle

constraint C1 {j inside {[1:10],15} ;}

// implication

constraint C2 {i<5 -> j>5 ;};

// la distribution

constraint C3

{ i dist {0:=1, [1:10]:= 5, [11:15]:=2 }; };

endclass

A a;

int res;

initial

begin

a = new;

repeat(40) begin

if (a.randomize()) a.dump();

end

end

endprogram

38/66 SE303 Tarik Graba 2019/2020

Les classes en SystemVerilog
Comment faire évoluer notre TB

On peut utiliser les classes pour les générer des requêtes aléatoires.

program tester(foo.TB I);

// classe de base pour les requêtes

class BaseRequest;

rand bit[7:0] data;

rand int delay;

endclass

// Spécialisation des requêtes en fonction du délai

typedef enum {nodelay, shortdelay, longdelay} delay_t;

class Request extends BaseRequest;

rand delay_t dtype;

constraint delay_range {

(dtype == nodelay) -> delay == 0;

(dtype == shortdelay) -> delay inside {[1:4]};

(dtype == longdelay) -> delay inside {[5:15]};

}

endclass

...

39/66 SE303 Tarik Graba 2019/2020

Les classes en SystemVerilog
Comment faire évoluer notre TB

On peut utiliser les classes pour les générer des requêtes aléatoires.
...

// des tâches pour cacher les détails

task reset();

I.tb_cb.m <= '0;

I.tb_cb.valid <= 0;

I.tb_cb.nrst <= 0;

@(I.tb_cb);

endtask

task unreset();

I.tb_cb.nrst <= 1;

@(I.tb_cb);

endtask

task buswrite(input BaseRequest req, output [7:0] sdata);

I.tb_cb.valid <= 1;

I.tb_cb.m <= req.data;

@(I.tb_cb);

wait(I.tb_cb.ready==1);

sdata = I.tb_cb.s;

I.tb_cb.valid <= 0;

repeat(req.delay)@(I.tb_cb);

endtask

initial

I.init();

...

39/66 SE303 Tarik Graba 2019/2020

Les classes en SystemVerilog
Comment faire évoluer notre TB

On peut utiliser les classes pour les générer des requêtes aléatoires.
...

Request req = new;

int res;

bit[7:0] sdata;

delay_t c_delay;

initial

begin:main

reset();

unreset();

// On itère sur les différents type de délais

c_delay = c_delay.first;

do begin

$display("Test with %p",c_delay);

repeat(10) begin

res = req.randomize() with {dtype == c_delay;};

if (res == 1) buswrite(req, sdata);

else $fatal(1,"Rondomistion failed");

$display("w %02h & r %02h",req.data, sdata);

end

c_delay = c_delay.next;

end

while(c_delay != c_delay.first);

end:main

endprogram

39/66 SE303 Tarik Graba 2019/2020

Les classes en SystemVerilog
Comment faire évoluer notre TB

On peut aussi augmenter l’abstraction en séparant la génération des séquences de test
de leur application.

Une classe «générateur de séquences»

Une classe «driver» qui accède au bus

Une fifo entre les deux pour les découpler temporellement

40/66 SE303 Tarik Graba 2019/2020

Les classes en SystemVerilog
Comment faire évoluer notre TB

Pour la file de requêtes on peut utiliser les mailbox :
méthodes d’accès bloquantes (put, get)
méthodes d’accès non-bloquantes (try_put,
try_get)
pas de contraintes de type
par défaut de taille infinie

program babar;

class A;

rand bit[3:0]x;

function void dump();

$info("%p", this);

endfunction

endclass

A a, b;

mailbox m = new(5);

initial

begin

fork begin

repeat(10) begin

a = new; void'(a.randomize());

m.put(a);

#10ns;

end

end

begin

#200ns;

forever begin

m.get(b); b.dump();

#3ns;

end

end

join_any

end

endprogram

41/66 SE303 Tarik Graba 2019/2020

Les classes en SystemVerilog
Comment faire évoluer notre TB

class Driver;

virtual foo.TB I;

mailbox req_mbx;

BaseRequest req;

// références vers l'interface et la mailbox

function new(virtual foo.TB I, mailbox m);

this.I = I;

this.req_mbx = m;

endfunction

// manipulation de l'interface

task reset ... endtask

task unreset ... endtask

task buswrite ... endtask

task run();

logic[7:0] sdata = 'x;

reset();

unreset();

forever

begin

req_mbx.get(req);

buswrite(req, sdata);

$display("w %02h & r %02h",

req.data, sdata);

end

endtask

endclass

class SequenceGenerator;

mailbox req_mbx;

Request req;

// référence vers une mailbox

function new(mailbox req_mbx);

this.req_mbx = req_mbx;

endfunction

task run();

int res;

delay_t c_delay;

c_delay = c_delay.first;

do begin

repeat(10)

begin

req = new;

res = req.randomize()

with {dtype == c_delay;};

if (res == 1)

req_mbx.put(req);

else

$fatal(1,"Rondomistion failed");

end

c_delay = c_delay.next;

end

while(c_delay != c_delay.first);

endtask

endclass

42/66 SE303 Tarik Graba 2019/2020

Les classes en SystemVerilog
Comment faire évoluer notre TB

Le testeur devient :

program tester(foo.TB I);

mailbox req_mbx;

Driver driver;

SequenceGenerator gene;

initial

I.init();

initial

begin:main

req_mbx = new;

driver = new (I, req_mbx);

gene = new (req_mbx);

fork

driver.run();

gene.run();

join_any

end:main

endprogram

43/66 SE303 Tarik Graba 2019/2020

Plan

Introduction

Le scheduler

Les «program»

Les «clocking block»

Les classes et la génération d’aléa

Les assertions

Analyse de couverture

44/66 SE303 Tarik Graba 2019/2020

Les assertions

Les assertions sont des constructions qui permettent :
de vérifier (ou de prouver) des propriétés (au sens logique)

En SystemVerilog, ces propriétés peuvent être
statiques ou
des séquences temporelles.

Elles permettent de définir un objectif de couverture des simulations effectuées.

45/66 SE303 Tarik Graba 2019/2020

Langage dédié
PSL : Property Specification Language

PSL : existe et est standard depuis plus longtemps.
Compatible avec d’autres langages RTL (VHDL, Verilog)
En fonction des outils :

fichiers indépendants
commentaires magiques

Les SVA sont intégrées aux langage SystemVerilog

46/66 SE303 Tarik Graba 2019/2020

Langage dédié
PSL : Property Specification Language

PSL : existe et est standard depuis plus longtemps.
Compatible avec d’autres langages RTL (VHDL, Verilog)
En fonction des outils :

fichiers indépendants
commentaires magiques

Les SVA sont intégrées aux langage SystemVerilog

46/66 SE303 Tarik Graba 2019/2020

Les assertions
Les assertions procédurales

Dans un processus, elles sont évaluées au moment de son exécution.

initial/always

begin

...

assert(xx == aa) else $info("au fait");

...

assert(xx == yy) else $error("pas bien!");

...

assert(xx == zz) else $fatal(1,"vraiment pas bien!");

...

Sans else génère une erreur avec un message générique.

Normalement, ignorées par les outils de synthèse.

47/66 SE303 Tarik Graba 2019/2020

Les assertions
Les assertions concurrentes

Permettent de vérifier en permanence des règles dans un module, un program ou
une interface.

On définit des propriétés (property)
Les propriétés sont forcément liées à un évènement déclencheur.

• Les simulateur imposent qu’il soit lié à une horloge
On définit ensuite une assertion (assert) sur cette propriété.

48/66 SE303 Tarik Graba 2019/2020

Les assertions
Les assertions concurrentes

Exemple

// au front d'horloge

// a ou b doit être vrai

property P0;

@(posedge clk)

a || b;
endproperty

assrt_p0: assert property(P0) else $info("Est-ce normal?");

49/66 SE303 Tarik Graba 2019/2020

Les assertions
Les assertions concurrentes

capure

évaluation

actions

50/66 SE303 Tarik Graba 2019/2020

Les assertions
Les assertions concurrentes

Implication (|->)

// au front d'horloge si a est vrai

// alor b doit être faux

property P1;

@(posedge clk)

a |-> !b;

endproperty

assrt_p1: assert property(P1) else $error("pas bien");

Dans la norme, «Overlapped implication»
L’évaluation de b se fait sur l’évènement pour lequel a est vrai.

51/66 SE303 Tarik Graba 2019/2020

Les assertions
Les assertions concurrentes

Implication (|=>)

// au front d'horloge si a

// alors au prochain front

// c doit être faux

property P2;

@(posedge clk)

a |=> !c;

endproperty

assrt_p2: assert property(P2) else $error("vraiment pas bien");

Dans la norme, «Nonverlapped implication»
L’évaluation de c se fait l’évènement suivant l’évènement pour lequel a est vrai.

52/66 SE303 Tarik Graba 2019/2020

Les assertions
Les assertions concurrentes

Capture

// au front d'horloge si req et !ack

// on capture la donnée

// on vérifie quelle reste stable au coup suivant

property P3;

bit [7:0] s;

@(posedge clk)

(req && !ack , s = bus) |=> s == bus;

endproperty

assrt_p3: assert property(P3) else $error("Ça a changé!");

Dans l’exemple, la variable locale s permet de capturer la valeur de bus si la condition (req && !ack) est
vérifiée. Au cycle suivant on vérifie que bus n’a pas changé de valeur.
À chaque fois que la propriété est déclenché, une nouvelle capture est faite.

53/66 SE303 Tarik Graba 2019/2020

Les assertions
Les assertions concurrentes

Les séquences

// au front d'horloge si stb

// alors ack doit être vrai au cycle suivant

// ou dans les 5 cycles

property P4;

@(posedge clk)

stb |-> ##[1:5] ack;

endproperty

assrt_p4: assert property(P4) else $error("Trop tard");

Si stb alors ack doit arriver au cycle suivant ou dans les 5 cycles.
Attention ce code n’est pas efficace.

54/66 SE303 Tarik Graba 2019/2020

Les assertions
Les assertions concurrentes

Les séquences

property P5;

@(posedge clk)

(a ##1 b) |-> (c ##2 d);

endproperty

assrt_p5: assert property(P5) else $error("Trop tard");

a suivi de b au cycle suivant, implique, c suivi de d deux cycles plus tard.
Détecter le changement d’état d’un signal peut alors être écrit (!stb ##1 stb)
On peut avoir des séquences infinies. Par exemple, ##[1:$]x veut dire x vrai à partir du cycle suivant.

55/66 SE303 Tarik Graba 2019/2020

Les assertions
Les assertions concurrentes

Des raccourcis

$rose le signal est passé de 0 à 1

$fell le signal est passé de 1 à 0

$stable la valeur du signal n’a pas changée
$changed la valeur du signal a changée
…

56/66 SE303 Tarik Graba 2019/2020

Les assertions
Comment faire évoluer notre TB

Ajouter des assertions :
- dans le testeur (ce n’est pas son rôle)
+ dans l’interface,
+ dans un module observateur qui espionne l’interface (c’est souvent ce qui est

fait)

57/66 SE303 Tarik Graba 2019/2020

Les assertions
Comment faire évoluer notre TB

module testbench();

bit clk;

foo I(.*);

tester tester_i(.*);

slave DUT(.*);

monitor monitor_i (.*);

always #10ns clk = !clk;

endmodule

58/66 SE303 Tarik Graba 2019/2020

Les assertions
Comment faire évoluer notre TB

module monitor(foo.MONITOR I);

property slave_data_notunknown_when_ready;

@(posedge I.clk)

I.ready |-> $isunknown(I.s) == 0;

endproperty

assert_slave_data_notunknown_when_ready: assert property (slave_data_notunknown_when_ready)

else $error("%m: ready is asserted but data from slave is non valid");

property slave_ready_until_valid;

@(posedge I.clk)

$rose(I.ready) |-> I.ready throughout I.valid [->1]; //ou I.ready [*0:$] ##1 I.valid;

endproperty

assert_slave_ready_until_valid: assert property(slave_ready_until_valid)

else $error("%m:slave's ready must be held until valid is set");

property slave_data_held_when_ready;

bit [7:0] s;

@(posedge I.clk) disable iff (I.nrst == 0)

(I.ready && !I.valid , s = I.s) |=> s == I.s; //ou $stable(I.s);

endproperty

assert_slave_data_held_when_ready: assert property(slave_data_held_when_ready)

else $error("%m: data must be held stable when slave is ready");

endmodule

58/66 SE303 Tarik Graba 2019/2020

Plan

Introduction

Le scheduler

Les «program»

Les «clocking block»

Les classes et la génération d’aléa

Les assertions

Analyse de couverture

59/66 SE303 Tarik Graba 2019/2020

coverpoint/covergroup

covergroup : groupe les éléments pour lesquels on veut une analyse.
On precise quel évènement déclenche l’enregistrement.

coverpoint : l’élément qu’on veut analyser.

60/66 SE303 Tarik Graba 2019/2020

coverpoint/covergroup
Exemple

module ALUCovMonitor(

input clk,

input [4:0] opcode,

input bypass

);

covergroup ALUCov @(posedge clk);

coverpoint opcode;

coverpoint bypass;

endgroup

...

ALUCov cov_i = new;

...

endmodule

l’enregistrement est déclenché à chaque
front de clk

on obtient l’histogramme de opcode et
bypass

peut être déclaré dans un module, une
classe ou une interface.
on doit l’instancier (et dans une classe le
déclencher)

61/66 SE303 Tarik Graba 2019/2020

coverpoint/covergroup
Exemple 2

module ALUCovMonitor(

input clk,

input [4:0] opcode,

input bypass

);

covergroup ALUCov @(posedge clk);

coverpoint opcode {

bins group0 = {5'h0};

bins group1 = {[5'h1:5'h1e]};

ignore_bins notused = {5'h1f};

}

coverpoint bypass {

bins active = {0};

bins inactive = {1};

}

endgroup

...

ALUCov cov_i = new;

...

endmodule

préciser les catégories que l’on veut tester
ignorer/interdire certaines catégories
plein d’autres choses…

62/66 SE303 Tarik Graba 2019/2020

coverpoint/covergroup
Exemple 3

module tb();

bit clk;

logic [4:0] opcode;

logic bypass;

ALUCovMonitor2 mon(.*);

always #10ns clk = !clk;

initial

begin

repeat(100)

begin

@(negedge clk);

opcode = $random();

bypass = $random();

end

$display("Coverage %P", mon.cov_i);

$display("Coverage %d%%",

mon.cov_i.get_inst_coverage());

$finish();

end

endmodule

On peut demander aux outils le taux de
couverture
il peut aussi être obtenu durant la simulation

63/66 SE303 Tarik Graba 2019/2020

coverpoint/covergroup
Exemple dans une interface

interface foo (input bit clk);

logic nrst;

logic [7:0] m;

logic [7:0] s;

logic valid;

logic ready;

...

covergroup foo_itf_cov @(tb_cb iff nrst);

master_data: coverpoint m iff (valid && ready){

bins ZERO = {8'h00};

bins VAL[4] = {[8'h01:8'hfe]};

bins FFFF = {8'hff};

}

slave_data: coverpoint s iff (valid && ready);

endgroup

foo_itf_cov foo_cov = new;

endinterface:foo

64/66 SE303 Tarik Graba 2019/2020

Travail à faire

Reprendre les slides et complétez le testbench pour que tout fonctionne.

65/66 SE303 Tarik Graba 2019/2020

	Introduction
	Le scheduler
	Les «program»
	Les «clocking block»
	Les classes et la génération d'aléa
	Les assertions
	Analyse de couverture

