TELECOM
Paris

e 1|
SystemVerilog pour la verification

W% IP PARIS

B rian

Introduction

TELEFDM
2aris

e

B Testbenches Verilog

TestBench

Design Under Test (DUT)

Stimuli Veérif

TELEFDM
2aris

e

B Testbenches Verilog

B Un module pour le testbench
® Une instance du module testé (DUT)

m Générer des stimuli vers les entrées du
DUT et récupérer les sorties

* initial, always...

module testbench;

// déclaration des signaux

module_a_tester DUT(.*);
initial
begin

// générer des stimuli
end
initial
begin

// observer les sorties

end

endmodule

TELECOM

Paris

e

I Plus quun simple testbench

Pourquoi?

Cette facon de faire des testsbench n’est plus suffisante :
® Complexité :
+ des fonctionnalités complexes

* des protocoles de bus complexes
+ des fournisseurs différents

m Aller au-dela du test fonctionnel :

+ détecter des bugs avant fabrication
» en dehors des spécifications

m Diviser le travail :

* qui définit les tests ?
« comment les rendre modulaires et réutilisables ?

TELECOM

Paris

e

I Plus quun simple testbench

Comment ?

®m Constrained Random Verification :
* des stimuli générés aléatoirement
— des contraintes pour cibler les cas intéressants
* des assertions
— pour détecter les cas interdits/problématiques
* analyser la couverture des tests
— a-t-on testé tous les cas intéressants

TELEFDM
2aris

e

I Vérification en SystemVerilog

Qu’apporte le langage ?

B Standardisation de I'ordonnancement du simulateur pour séparer «design» et
«testbench»
B e langage intégre des constructions pour :
* les assertions
 la génération d’aléas sous contraintes
* l'analyse de la couverture
B | e langage intégre des constructions pour construire et maintenir des tests
complexes
* classes/programmation orientée objet

TELECOM

Paris

e

I Vérification en SystemVerilog

Comment on s’en sert?

Comment ne pas réinventer la roue systématiquement!

B Des méthodologies ont été proposées et standardisées :

VMM : Verification Methodology Manual...
OVM : Open Verification Methodology
UVM : Universal Verification Methodology

m C’est UVM qui est le standard le plus utilisé actuellement.

Ce cours ne présente pas ces méthodologies mais plutét les briques du langage qui les
permettent!

TELEFDM
2aris

e

B rian

Le scheduler

TELEFDM
2aris

e

N B Simulation évéenementielle

Rappel
T=0
T=20; N
While(Event) { Evénements?
While(Event at t=T) {
RunProcess
ApplyDelayedAssignment
} Faire
avancer
T = AdvanceToNextTime le temps
} Afffactations
End différées

Evénements?

TELEFDM
2aris

=T

N B Simulation évéenementielle

En Verilog 2001

Previous Time slot
Time slot

Y

T Active

Y

] Inactive

Y

— NBA

Pour un temps physique donné («time slot»),
'ordonnancement est divisé en plusieurs régions.

Y

Postponed |———>
i Next
i Time slot

TELEFDM
2aris

e

N B Simulation évenementielle
En Verilog 2001

Previous Time slot
Time slot
‘ Y
Active T Active
B |es affectations immédiates des processus {

always ou initial, Inact
< nactive

Y

m— NBA

B |es affectations concurrentes assign,

B propagation des I/O (in, out...)

m |'évaluation de ce qui se trouve a droite des
affectations

Y

Postponed |———>
i Next
i Time slot

TELEFDM
2aris

e

N B Simulation évéenementielle

En Verilog 2001

Previous Time slot
Time slot

Y

T Active

Y

Inactive <— Inactive

B |es affectations a retard nul (#0) *

m— NBA

Y

Postponed |———>
i Next
i Time slot

TELEFDM
2aris

e

N B Simulation évéenementielle

En Verilog 2001

Previous Time slot
Time slot

Y

T Active

Y

- Inactive
B |es affectations différées sont appliquées +

(<9)

NBA : Non blocking assignment

m— NBA

Y

Postponed |———>
i Next
i Time slot

TELEFDM
2aris

e

N B Simulation évéenementielle

En Verilog 2001

Previous Time slot
Time slot

Y

T Active

Y

[Inactive

Postponed

B pour la fonction systeme $monitor {

m— NBA

Y

Postponed |———>
i Next
i Time slot

TELEFDM
2aris

=T

N B Simulation évéenementielle

En SystemVerilog

Previous Time slot
Time slot

Inactive

Ajouts de régions (non blanches dans le
diagramme) pour permettre de nouvelles ‘

fonctionnalités.
‘ Re-Active

Re-Inactive

Next
i Time slot

TELECOM

Paris

e

N B Simulation évéenementielle

En SystemVerilog

Previous Time slot
Time slot

Inactive

Preponed

B permet de lire les valeurs (échantillonner)

avant le début du time slot.

Re-Inactive

Next
i Time slot

TELECOM

Paris

e

N B Simulation évéenementielle

En SystemVerilog

Previous Time slot
Time slot

Les régions actives
|

B celles de Verilog,

Re-Active

Re-Inactive

B destinées au RTL

Next
i Time slot

TELEFDM
2aris

=T

N B Simulation évéenementielle

En SystemVerilog

Previous Time slot
Time slot

Observed

B permet d’observer le résultat de la région
active
B destinée aux assertions

Re-Inactive

Next
i Time slot

TELECOM

Paris

e

N B Simulation évéenementielle

En SystemVerilog

Previous Time slot
Time slot

Les régions réactives

B permet d’exécuter des processus liés a la
simulation

B |es mémes régions que la zone active

Re-Inactive

Next
i Time slot

TELECOM

Paris

e

N B Simulation évéenementielle

Pourquoi cette complexité ?

Pour séparer le Design du testbench

B Des constructions différentes (program)
B On évite les problémes de concurrence (race conditions)

Ajouter des fonctionnalités

B Des assertions concurrentes (concurrent assertions)
®m Simplifier la simulation de designs synchrones (clocking blocs)

TELEFDM
2aris

e

B rian

Les «program»

TELEFDM
2aris

e

N B Les «program»

Un module pour la simulation

program tester (...);

initial
, begin
+ Se déclare comme un module // générer des stimuli
+ Comme un module, il a une interface end
initial
+ On peut l'instancier dans un autre module begin .
// observer les sorties
. . d'll
- Ne peut pas contenir de sous modules ni de -
endprogram

sous-programmes
module testbench;

- Ne doit pas contenir de processus always,
always_comb, always_ff, ... seulement des
processus initial (ou final) module_a_tester DUT(.);:

// déclaration des signaux

tester TESTER_i(.x);

endmodule

TELECOM

Paris

e

] Les «program»

Un module pour la simulation

Previous Time slot
Time slot

Inactive

Observed

ext

i Time slot
;

TELEFDM
2aris

e

I Les «program»

Un module pour la simulation

Pourquoi ?

B |soler/séparer le «design» matériel du «testbench»
B Ses processus sont exécutés dans la région réactive
* moins de problemes de concurrence

Remarque : La simulation s’arréte automatiquement quand tous les processus des
programmes se finissent.

TELEFDM
2aris

e

] Les «program»

Exemple : Un protocole

Le protocole de I'interface foo permet au maitre d’écrire une donnée et d’en récupérer une
autre.

clk I LI LI L LI

master valid ______ /T N___
master data(m) DI acoire NI
slave ready [/ | __
slave data(s) DX aire) XA

Echange au rdv
valid et ready

TELEFDM
2aris

e

] Les «program»

Exemple : Une interface

interface foo (input bit clk,
input logic nrst

);

logic [7:0] m;
logic [7:0] s;
logic valid;
logic ready;

modport M (
input clk,
, input nrst,
B une entrée d’horloge clk et de reset outputm,
inpu S,
nrst output valid,
input ready
B 2 modport pour un maitre et un esclave %
modport S (
input clk,
input nrst,
input m,
output s,

input valid,
output ready
)5

endinterface:foo

TELECOM

e

N B Les «program»

Exemple : Un esclave

module slave(foo.S I);
localparam [7:0] Sec = 8'b1111_0000;
logic[7:0] R;

always_ff@(posedge I.clk or negedge I.nrst)
if (!I.nrst)

begin
R <= 'Q;
I.ready <= 1'b1;
end
else
begin

I.ready <= 1'b1;

if(I.valid & I.ready)

begin
R <=I.m;
I.ready <= 1'bo;
end
end

assign I.s = R " Sec;

endmodule

B Renvoie valeur précédemment
écrite sur laquelle un calcul est
effectué

B ready par défaut

B insere un cycle d’attente aprés
chaque requéte valide

TELEFDM
2aris

=34t |

N B Les «program»

Exemple : testbench de base

Un module sans entrée ni sortie
module testbench();

B Les signaux et interfaces bit clk;
) logic nrst;
® Une instance de I'esclave (DUT : foo 10

Design Under Test) coster testeri o).
slave DUT(4*;;

Une instance du testeur
always #10ns clk = !clk;

Générer I'horloge

endmodule

TELECOM

Paris

e

] Les «program»

Exemple : program pour un test de base

program tester(foo.M I , output logic nrst);
bit[7:0] data;

initial
begin:main
I.m <= '0;
I.valid <= 0;

nrst <= 0;
// Attendre 2 cycles d'horloge
repeat(2) @(negedge I.clk);
nrst <=1;
repeat(2) @(negedge I.clk);
repeat(10)
begin

I.valid <= 1;

I.m <= data;

while(!I.ready) @(posedge I.clk);

$display("w %0h & r %0h",data, I.s);
data++;
@(negedge I.clk);
I.valid <= 0;
repeat (1+$random%3)@(negedge I.clk);
end
end:main
endprogram

m contrble le signal de reset
B génere des séquences vers I'esclave
m récupere les sorties de I'esclave

On aurait pu déclarer le program a l'intérieur

du testbench pour qu'il ait directement accées
a ses signaux

N B Les «program»

Est-ce suffisant?

Quand on simule de la logique synchrone :
B Comment étre sr du synchronisme ?
® Comment le garantir quand le testbench se complexifie ?

® Comment le garantir quand :

+ quand I'horloge change ?
+ quand les fronts utilisés changent ?
+ quand on a des temps de propagation ?

TELECOM

Paris

e

B rian

Les «clocking block»

TELECOM
is

e

B s «clocking block»

Un «clocking block» est une construction qui permet dans un testbench de :
m déclarer I'événement de synchronisation (le front de I'horloge)
B |es entrées a capturer au front d’horloge
B |es sorties & modifier apres le front

Un «clocking block» est déclaré entre les mots clés clocking et enclocking dans
un module, program ou interface.

TELEFDM
2aris

e

I Les «clocking block»

La syntaxe

clocking foo @(posedge clk);

Input sigl; B foo est un «clocking block» déclenché par le
input sig2;
output sig3. front montant de clk
output sig4;
endclocking B bar est un «clocking block» déclenché par le

front descendant de clk

// avec I/0 skews
clocking bar @(negedge clk);

default input ns output Zns; B on peut optionnel ment définir des «skews»
inpu sigl;

input sig2; R ; X .
output sigs, ® On accéde aux signaux a travers le «clocking

output sig4;

block» par des affectations differées.
endclocking . i
B @(foo) fait référence au front qui déclenche
foo.sig3 <= x; «clocking block»

y <= bar.sigl;

ék%oo) S

TELECOM

Paris

e

I Les «clocking block»

Les skews

Front
de
I'horloge
échantilloner| les sorties
les entrées |sont visibles

output
< skew

input
skew
Par défaut :

B en entrée 1 cycle du simulateur (1step)
B en sortie un temps de @

TELEFDM
e

I Les «clocking block»

Comment est-ce fait par le simulateur

Previous Time slot

Time slot
|
Preponed

échantillonnage

Inactive

<—| Re-NBA |

sorties

Next

Posiponed |5

ime slot

TELEFDM
2aris

e

I Les «clocking block»

Exemple : améliorons notre interface

interface foo (input bit clk);

logic nrst;

logic [7:0] m;
logic [7:0] s;
logic valid;
logic ready;

// ici rien ne change

i i modport M (...);
®m Clocking block dans l'interface mebors § (9
B Nouveau modport pour le testbench clocking tb_cb @(posedge clk);
output nrst;
® On peut y ajouter le reset R

output valid;
input ready;
endclocking

// Le testeur est synchrone
modport TB (clocking tb_cb);

endinterface:foo

TELECOM

e

I Les «clocking block»

Exemple : améliorons notre program

program tester(foo.TB I);
bit[7:0] data;

initial
begin:main
I.tb_cb.m <= '0;
I.tb_cb.valid <= 0;
I.tb_cb.nrst <= 0;
// Attendre que les affectations se fassent

@(I.tb_cb);
) . // Attendre 2 cycles d'horloge
B On a la garantie que les sorties repeat(2) @(I.tb_cb);
changeront apres le front d’horloge I.tb_cb.nrst <= 1;
repeat(2) @(I.tb_cb);
B On a la garantie que les entrées sont g:‘;st“e)
correctement échantillonnées I.tb_cb.valid <= 1;
I.tb_cb.m <= data;
@(I.tb_cb);

// ready ne change qu'au front d’'horloge
wait(I.tb_cb.ready==1);
$display("w %0h & r %0h",data, I.tb_cb.s);
data++;
I.tb_cb.valid <= 0;
repeat (1+$random%3)@(I.tb_cb);
end
end:main
endprogram

I Les «clocking block»

Exemple : simplifions notre testbench

B Plus besoin de déclarer le signal de

reset module testbench();
B | e reset fait aussi partie du «clocking bit clk;
block» e
tester tester_i(.x);
B Comment faire si on veut simuler un stave DUTC.#);
reset asynchrone ? always #1ons clk = teli
, . dmodul
+ On I'ajoute au modport i

TELECOM

Paris

e

N B Autre choses ?

Que pouvons-nous ajouter dans une interface ?

Par exemple :

interface foo (input bit clk);

Presque comme un module : “function void init();
nrst = 0;
~ valid = 0;
B des taches (task) n 02 srandonO);
endfunction

B des fonctions (function .
() // fonction visible dans le modport

modport TB (clocking tb_cb,

import init

);

B des processus (always, assign)

endinterface: foo

La fonction init permet d'initialiser de fagon
asynchrone les signaux du maitre.

TELEFDM
2aris

e

B rian

Les classes et la génération d’aléa

TELECOM

Paris

e

I Les classes en SystemVerilog

Orienté objet

SystemVerilog les classes sont réservées a la

class Message;

byte text[]; simulation.
int.id;
fogicl3T:0] address; m définition entre les mots clés class et endclass
function void dump(); . L ,
Hdiplay("sp”, this); B contient des «propriétés» (les données) et des
endfunction L, .
endclass «méthodes» (function ou task)
77 on déclare une référence (handle) B |e constructeur s’appelle toujours new (implicite si
Message m; A
// on alloue 1'objet par defaUt)
m = new;

B un «garbage collector»

m.text = "hello world”;

= m.id: B peut avoir des parameétres (parameter)

5:&ump();

TELECOM

Paris

e

I Les classes en SystemVerilog

Orienté objet

Les classes SystemVerilog supporte

I'héritage simple

B on doit utiliser le mot clé extends
B super fait référence a la classe pere
B certains champs peuvent étre marqués :

* local (private en C++)
e protected

e

program foo;
class A;
int i;
function new (int i);
this.i = i;
endfunction

function void dump();
$display("%p", this);
endfunction
endclass

class B extends A;
int j = o;
function new();

super.new(33);
endfunction
endclass

A a;

initial
begin
a = new(44);
a.dump();
a = B::new;
a.dump();
end
endprogram

TELECOM

Paris

I Les classes en SystemVerilog

La génération d’aléa

Certaines propriétés d’une classe peuvent étre '
iré A H . , . program foo;

tirées aléatoirement en y ajoutant Iattribut : class A; _

rand bit[3:0] i;

i 5 istribyé dc bit[3:0] j;

B rand : uniformément distribuées rande bi j

function void dump();

B randc : cyclique (une valeur ne reviendra Ay (", this);
pas avant la fin du cycle) endclass
, A a;
B [a méthode implicite randomize permet de
. initial
tirer une nouvelle valeur b
a = new;
« Elle renvoie la valeur @ en cas d’échec, repeat(20) begin
1 R if (a.randomize()) a.dump();
sinon. end
end
endprogram

TELECOM

Paris

e

I Les classes en SystemVerilog

Contraintes a la randomisation

program foo;
class A;
rand bit[3:0] i;
randc bit[3:0] j;

function void dump();
$display("%p"”, this);
endfunction
endclass

A la génération on peut ajouter des
contraintes en utilisant le mot clé with Ae;

int res;

initial
begin
a = new;
repeat(20) begin
res = a.randomize()
with {i[1:0] == 0 && j%2 ==1;};
if (res) a.dump();
end
end
endprogram

TELEFDM
2aris

e

I Les classes en SystemVerilog

Contraintes a la déclaration

program foo;
class A;
rand bit[3:0] i;
randc bit[3:0] j;

function void dump();
$display("%p”, this);
endfunction

constraint C {i[1:0] == 0 && j%2 ==1;}

On peut ajouter des contraintes a la // dans un ensemble/intervalle
, . . constraint C1 {j inside {[1:10],15} ;}
déclaration de la classe en utilisant le /1 implication
, . constraint C2 {i<5 -> j>5 ;};
mot clé constraint // la distribution
constraint C3
H H { idist {0:=1, [1:10]:= 5, [11:15]:=2 }; };
Siles cgntramtes ne sopt pas endelies
compatibles, la randomisation échouera. i a
int‘res;
initial
begin
a = new;

repeat(40) begin
if (a.randomize()) a.dump();
end
end

endprogram
TELEFDM
2aris

e

I Les classes en SystemVerilog

Comment faire évoluer notre TB

On peut utiliser les classes pour les générer des requétes aléatoires.

program tester(foo.TB I);
// classe de base pour les requétes
class BaseRequest;
rand bit[7:0] data;
rand int delay;
endclass

// Spécialisation des requétes en fonction du délai
typedef enum {nodelay, shortdelay, longdelay} delay_t;

class Request extends BaseRequest;
rand delay_t dtype;
constraint delay_range {
(dtype == nodelay) —> delay == 0;
(dtype == shortdelay) -> delay inside {[1:41};
(dtype == longdelay) -> delay inside {[5:151};

endclass

I Les classes en SystemVerilog

Comment faire évoluer notre TB
On peut utiliser les classes pour les générer des requétes aléatoires.

// des taches pour cacher les détails
task reset();

I.tb_cb.m <='0;

I.tb_cb.valid <= 0;

I.tb_cb.nrst <= 0;

@(I.th_cb);
endtask

task unreset();
I.tb_cb.nrst <= 1;
@(I.th_cb);

endtask

task buswrite(input BaseRequest req, output [7:0] sdata);
I.tb_cb.valid <= 1;
I.tb_cb.m <= req.data;
@(I.th_cb);
wait(I.tb_cb.ready==1);
sdata = I.tb_cb.s;
I.tb_cb.valid <= 0;
repeat(req.delay)@(I.tb_cb);
endtask

initial
I.init();

:
ETE. T

I Les classes en SystemVerilog

Comment faire évoluer notre TB
On peut utiliser les classes pour les générer des requétes aléatoires.

Request req = new;
int res;

bit[7:0] sdata;
delay_t c_delay;

initial

begin:main
reset();
unreset();

// On iteére sur les différents type de délais
c_delay = c_delay.first;
do begin
$display("Test with %p",c_delay);
repeat(10) begin
res = req.randomize() with {dtype == c_delay;};
if (res == 1) buswrite(req, sdata);
else $fatal (1, "Rondomistion failed");
$display("w %02h & r %02h", req.data, sdata);
end
c_delay = c_delay.next;
end
while(c_delay != c_delay.first);
end:main
endprogram

I Les classes en SystemVerilog

Comment faire évoluer notre TB

On peut aussi augmenter I'abstraction en séparant la génération des séquences de test
de leur application.

Fifo de requétes

Générateur .
de séquences Driver =» Interface

B Une classe «générateur de séquences»
B Une classe «driver» qui accéde au bus

B Une fifo entre les deux pour les découpler temporellement

TELECOM

Paris

e

I Les classes en SystemVerilog

Comment faire évoluer notre TB

Pour la file de requétes on peut utiliser les mailbox :
B méthodes d’acces bloquantes (put, get)

B méthodes d’acces non-bloquantes (try_put,
try_get)

B pas de contraintes de type
B par défaut de taille infinie

program babar;
class A;
rand bit[3:0]x;
function void dump();
$info("%p", this);
endfunction
endclass

A a, b;
mailbox m = new(5);

initial
begin
fork begin
repeat(10) begin
a = new; void'(a.randomize());
m.put(a);
#10ns;
end
end
begin
#200ns;
forever begin
m.get(b); b.dump();
#3ns;
end
end
join_any
end
endprogram

TELECOM

=34t |

I Les classes en SystemVerilog

Comment faire évoluer notre TB

class Driver;

virtual foo.TB I;

mailbox req_mbx;

BaseRequest req;

// références vers l'interface et la mailbox

function new(virtual foo.TB I, mailbox m);
this.I = I;
this.req_mbx = m;

endfunction

// manipulation de 1'interface

task reset ... endtask
task unreset ... endtask
task buswrite ... endtask
task run();

logic[7:0] sdata = 'x;

reset();
unreset();
forever
begin
req_mbx.get(req);
buswrite(req, sdata);
$display("w %02h & r %02h",
req.data, sdata);
end
endtask
endclass

class SequenceGenerator;
mailbox req_mbx;
Request req;

// référence vers une mailbox
function new(mailbox req_mbx);

this.req_mbx = req_mbx;
endfunction

task run();
int res;

delay_t c_delay;

c_delay = c_delay.first;

do begin
repeat(10)
begin
req = new;

res = req.randomize()
with {dtype == c_delay;};
if (res ==1)
req_mbx.put(req);
else
$fatal(1,"Rondomistion failed");
end
c_delay = c_delay.next;
end
while(c_delay != c_delay.first);
endtask
endclass

I Les classes en SystemVerilog

Comment faire évoluer notre TB

Le testeur devient :

program tester(foo.TB I);
mailbox req_mbx;
Driver driver;
SequenceGenerator gene;
initial
I.init();
initial
begin:main
req_mbx = new;
driver = new (I, req_mbx);
gene = new (req_mbx);
fork
driver.run();
gene.run();
join_any
end:main
endprogram

TELEFDM

e

B rian

Les assertions

TELEFDM
2aris

e

I | cs assertions

Les assertions sont des constructions qui permettent :
B de vérifier (ou de prouver) des propriétés (au sens logique)
En SystemVerilog, ces propriétés peuvent étre
B statiques ou
B des séquences temporelles.
Elles permettent de définir un objectif de couverture des simulations effectuées.

TELEFDM
2aris

e

I Langage dedie

PSL : Property Specification Language

PSL : existe et est standard depuis plus longtemps.
Compatible avec d’autres langages RTL (VHDL, Verilog)
En fonction des outils :

B fichiers indépendants
B commentaires magiques

Les SVA sont intégrées aux langage SystemVerilog

TELEFDM
2aris

e

I Langage dedie

PSL : Property Specification Language

PSL : existe et est standard depuis plus longtemps.
Compatible avec d’autres langages RTL (VHDL, Verilog)
En fonction des outils :

B fichiers indépendants
B commentaires magiques

Les SVA sont intégrées aux langage SystemVerilog

TELEFDM
2aris

e

_ Les assertions

Les assertions procédurales

Dans un processus, elles sont évaluées au moment de son exécution.

initial/always
begin

assert(xx == aa) else $info("au fait");

assert(xx == yy) else $error(”pas bien!");

assert(xx == zz) else $fatal(1,"vraiment pas bien!");

Sans else génére une erreur avec un message générique.

Normalement, ignorées par les outils de synthése.

TELEFDM
2aris

e

_ Les assertions

Les assertions concurrentes

Permettent de vérifier en permanence des régles dans un module, un program ou
une interface.
B On définit des propriétés (property)
B | es propriétés sont forcément liées a un événement déclencheur.
 Les simulateur imposent qu’il soit lié a une horloge

® On définit ensuite une assertion (assert) sur cette propriété.

TELEFDM
2aris

e

_ Les assertions

Les assertions concurrentes

Exemple

// au front d'horloge
// aou b doit étre vrai
property PO;

@(posedge clk)

allb;
endproperty

assrt_p@: assert property(Po) else $info("Est-ce normal?");

TELEFDM
STl

e

I Les assertions

Les assertions concurrentes

Previous Time slot

Time slot
|
Preponed capure

Inactive

| Observed I évaluation

| <~ Re-Active | |actions

i Next
i Time slot

TELEFDM
2aris

=T

_ Les assertions

Les assertions concurrentes

Implication (]->)

// au front d'horloge si a est vrai
// alor b doit étre faux
property P1;
@(posedge clk)
a |-> !b;
endproperty

assrt_pl1: assert property(P1) else $error(”pas bien");

Dans la norme, «Overlapped implication»
L'évaluation de b se fait sur 'évenement pour lequel a est vrai.

TELEFDM
STl

e

_ Les assertions

Les assertions concurrentes

Implication (]=>)

// au front d'horloge si a
// alors au prochain front
// c doit étre faux
property P2;

@(posedge clk)

a |=> Ic;
endproperty

assrt_p2: assert property(P2) else $error("vraiment pas bien");

Dans la norme, «Nonverlapped implication»

L'évaluation de c se fait 'événement suivant I'évenement pour lequel a est vrai.

_ Les assertions

Les assertions concurrentes

Capture

// au front d'horloge si req et !ack
// on capture la donnée
// on vérifie quelle reste stable au coup suivant
property P3;
bit [7:0] s;
@(posedge clk)
(req &% 'ack , s = bus) |=> s == bus;
endproperty

assrt_p3: assert property(P3) else $error(”"Ca a changé!");

Dans 'exemple, la variable locale s permet de capturer la valeur de bus si la condition (req && !ack) est
vérifiée. Au cycle suivant on vérifie que bus n’a pas changé de valeur.

A chaque fois que la propriété est déclenché, une nouvelle capture est faite.

_ Les assertions

Les assertions concurrentes

Les séquences

// au front d'horloge si stb
// alors ack doit étre vrai au cycle suivant
// ou dans les 5 cycles
property P4;
@(posedge clk)
stb |[-> ##[1:5] ack;
endproperty

assrt_p4: assert property(P4) else $error("Trop tard”);

Si stb alors ack doit arriver au cycle suivant ou dans les 5 cycles.

Attention ce code n’est pas efficace.

_ Les assertions

Les assertions concurrentes

Les séquences

property P5;
@(posedge clk)
(a ##1 b) |-> (c ##2 d);
endproperty

assrt_p5: assert property(P5) else $error("Trop tard");

a suivi de b au cycle suivant, implique, ¢ suivi de d deux cycles plus tard.
Détecter le changement d’état d’un signal peut alors étre écrit (!stb ##1 stb)

On peut avoir des séquences infinies. Par exemple, ##[1: $1x veut dire x vrai a partir du cycle suivant.

TELEFDM
2aris

e

_ Les assertions

Les assertions concurrentes

Des raccourcis

$rose le signal est passé de 0 a 1
$fell le signal est passé de 120
$stable la valeur du signal n’a pas changée
$changed la valeur du signal a changée

TELECOM

Paris
e

N B Les assertions

Comment faire évoluer notre TB

Ajouter des assertions :
- dans le testeur (ce n'est pas son réle)
+ dans l'interface,

+ dans un module observateur qui espionne l'interface (c’est souvent ce qui est
fait)

TELEFDM
2aris

e

_ Les assertions

Comment faire évoluer notre TB

module testbench();
bit clk;

foo I(.%x);

tester tester_i(.x);
slave DUT(.%);

monitor monitor_i (.%);

always #10ns clk = !clk;

endmodule

TELECOM
is

e

_ Les assertions

Comment faire évoluer notre TB

module monitor(foo.MONITOR I);

property slave_data_notunknown_when_ready;
@(posedge I.clk)
I.ready |-> $isunknown(I.s) == 0;
endproperty

assert_slave_data_notunknown_when_ready: assert property (slave_data_notunknown_when_ready)
else $error("%m: ready is asserted but data from slave is non valid");

property slave_ready_until_valid;

@(posedge I.clk)

$rose(I.ready) |-> I.ready throughout I.valid [->1]; //ou I.ready [*0:$] ##1 I.valid;
endproperty

assert_slave_ready_until_valid: assert property(slave_ready_until_valid)
else $error("%m:slave’s ready must be held until valid is set”);

property slave_data_held_when_ready;

bit [7:0] s;

@(posedge I.clk) disable iff (I.nrst == 0)

(I.ready && !I.valid , s = I.s) |[=> s == I.s; //ou $stable(I.s);
endproperty

assert_slave_data_held_when_ready: assert property(slave_data_held_when_ready)
else $error("%m: data must be held stable when slave is ready");

endmodule

B rian

Analyse de couverture

TELECOM
is

e

N coverpoint/covergroup

covergroup : groupe les éléments pour lesquels on veut une analyse.
On precise quel évenement déclenche I'enregistrement.

coverpoint :[I'élément qu’on veut analyser.

TELEFDM
2aris

e

N B coverpoint/covergroup

Exemple

B I'enregistrement est déclenché a chaque

module ALUCovMonitor(

input clk, front de clk
input [4:0] opcode,) s

| nout bypass B on obtient I'histogramme de opcode et
covergroup ALUCov @(posedge clk); bypass

Coverboin: pocode! B peut étre déclaré dans un module, une

endgroup classe ou une interface.
ALUCov cov_i = new; B on doit I'instancier (et dans une classe le
déclencher)

endmodule

TELEFDM
2aris

e

N B coverpoint/covergroup

Exemple 2

module ALUCovMonitor(
input clk,

input [4:0] opcode,
input bypass

)5

covergroup ALUCov @(posedge clk);

Coinegroums = (s'hay, ® préciser les catégories que I'on veut tester
bins groupl = {[5'h1:5"h1el}; , .
ignore_bins notused = {5'h1f}; L Ignorel’/lntel’dll’e Cel’talneS CategorIeS
}
int b { i ’
coyerpoint bypass € B plein d'autres choses...
bins inactive = {1};
}
endgroup

ALUCov cov_i = new;

endmodule

TELECOM

Paris

e

N B coverpoint/covergroup

Exemple 3

module tb();

bit clk;

logic [4:0] opcode;
logic bypass;

ALUCovMonitor2 mon(.*);
always #10ns clk = !clk;

initial
begin
repeat(100)
begin
@(negedge clk);
opcode = $random();
bypass = $random();
end

$display("Coverage %P", mon.cov_i);
$display("Coverage %d%%",
mon.cov_i.get_inst_coverage());
$finish();
end
endmodule

® On peut demander aux outils le taux de
couverture

B j| peut aussi étre obtenu durant la simulation

TELEFDM
2aris

e

N B coverpoint/covergroup

Exemple dans une interface

interface foo (input bit clk);

logic nrst;

logic [7:0] m;
logic [7:0] s;
logic wvalid;
logic ready;

covergroup foo_itf_cov @(tb_cb iff nrst);
master_data: coverpoint m iff (valid && ready){
bins ZERO = {8'h00};
bins VAL[4] = {[8'h01:8"hfel};
bins FFFF = {8'hff};

slave_data: coverpoint s iff (valid && ready);
endgroup

foo_itf_cov foo_cov = new;

endinterface:foo

B T1ravail A faire

Reprendre les slides et complétez le testbench pour que tout fonctionne.

TELEFDM
2aris

e

	Introduction
	Le scheduler
	Les «program»
	Les «clocking block»
	Les classes et la génération d'aléa
	Les assertions
	Analyse de couverture

