
ELECINF102
Processeurs et Architectures Numériques

Contrôle de connaissances

15 juin 2016 à 8h30

Document autorisé : une feuille recto-verso

Durée: 1h30 minutes

Ce contrôle comporte 4 parties indépendantes :
1. Fonction "LUT"
2. Représentation en CA2 des nombres décimaux.
3. Filtre transposé
4. Decodeur Huffman

Consignes importantes : Si des schémas sont demandés dans les différents exercices, ils doivent être
impérativement clairs, lisibles et sans ambiguïté. Les dimensions des bus doivent être indiquées. Si nécessaire
le sens des signaux doit être précisé. Pour la logique synchrone, les signaux d’horloge et d’initialisation
asynchrone (reset_n) ne seront pas représentés dans ces schémas.

N’oubliez pas d’inscrire nom, prénom, et numéro de casier sur votre copie.

Bon courage !

1

Télécom ParisTech, ELECINF102, 2015–2016

1 Fonction "LUT"
La figure 1 représente une "Look Up Table" (LUT) à 2 entrées A et B, elle est composée d’un arbre

de 3 multiplexeurs. Une LUT à 2 entrées permet de réaliser une fonction programmable à 2 entrées. La
programmation consiste à fixer une valeur constante sur les entrées w,x,y,z.

1. Si on fixe les entrées w,x,y,z à 4’b0001, quelle est la fonction logique S=f(A,B) implantée ?
2. Si on fixe les entrées w,x,y,z à 4’b1001, quelle est la fonction logique S=f(A,B) implantée ?
3. Combien de fonctions logiques peut on générer avec cette LUT à 2 entrées ?
4. Combien faut-il de LUT à 2 entrées pour réaliser une LUT à 4 entrées ? Faites un schéma.

0

1
0

1
0

1

S

z

y

x

w

A

A

B

Figure 1 – Fonction LUT

2

Télécom ParisTech, ELECINF102, 2015–2016

2 Représentation en CA2 des nombres décimaux
Vous avez appris en cours comment coder en CA2 des entiers relatifs, et comment coder en binaire une

approximation des nombre décimaux non signés. Voyons maintenant comment coder en CA2 une approxi-
mation des nombres décimaux signés.

On rappelle qu’un nombre décimal positif D peut être approximé en base 2 par un vecteur

(an−1, an−2, . . . , a1, a0, a−m . . . a−m)

tel que :
D = an−1 · 2n−1 + . . . + a1 · 21 + a0 · 20 + a−1 · 2−1 + . . . a−m · 2−m

Où :
• (an−1, . . . a0) est la partie entière de D (sur n bits).
• (a−1, . . . a−m) est la partie fractionnaire de D (sur m bits).
• 2−m représente la précision de cette approximation.
• Cette représentation est nommée “n.m”.

Dans la suite de l’exercice, on chercher à représenter −5, 32 sur 4.3 bits.

2.1 Première méthode.

Question 1 : en remarquant que −5, 32 = −6 + 0, 68, donnez une représentation de −5, 32 sur 4.3 bits.
Détaillez votre calcul.

2.2 Deuxième méthode.

Question 2 : Montrez que sur n bits, X + X + 1 = 0.
Question 3 : Que devient cette équation si X est un nombre décimal relatif codé sur 4.3 bits ?
Question 4 : Utilisez le résultat précédent pour une donner une représentation de −5, 32 sur 4.3 bits.

2.3 Analyse.

Question 5 : Pourquoi ne trouve-t-on pas forcément les mêmes résultats avec les deux méthodes ? Expliquez
ce que donne l’une et ce que donne l’autre .

3

Télécom ParisTech, ELECINF102, 2015–2016

3 Filtre transposé
Soit le code SystemVerilog suivant :

module transFIR (input logic clk,
input logic [7:0] coefO, coefT, coefZ, // Coefficients
input logic [15:0] sigIn, // Signal d’entrée
output logic [15:0] sigOut); // Signal de sortie

// Signaux internes
logic [PARAM:0] prodO, prodT, prodZ;
logic [25:0] intO, intT;

always @(*) sigOut <= intT[25:10];

always @(*) begin
intT <= prodT + intO;
prodT <= coefT * sigIn;
prodO <= coefO * sigIn;

end

always @(posedge clk) begin
intO <= prodO + prodZ;
prodZ <= coefZ * sigIn;

end

endmodule

L’entrée sigIn correspond au signal sur lequel on applique le filtre. Les échantillons de ce signal arrivent
à la cadence de l’horloge clk.

Les entrées coefO, coefT et coefZ correspondent aux coefficients du filtre. Ces coefficients restent
constants durant l’utilisation du filtre.

PARAM est une valeur entière constante.

Question 3.1 Dessinez le schéma structurel équivalent à ce code en utilisant des registres et des opérateurs
d’addition et de multiplication.

Question 3.2 Déterminez, en fonction du cycle d’horloge courant n et des cycles précédents, les équations
des signaux internes intO et prodZ (intOn = ??, prodZn = ??). En déduire l’équation du filtre complet,
c’est-à-dire du signal de sortie sigOut en fonction du signal d’entrée sigIn.

Question 3.3 En justifiant votre réponse, proposez une valeur pour la constante PARAM.

Question 3.4 Justifiez le nombre de bits utilisés pour les signaux internes intO et intT. Est-il possible de
modifier la taille de ces signaux sans perdre en dynamique ?

4

Télécom ParisTech, ELECINF102, 2015–2016

4 Décodeur Huffman
Soit le module decode_huff dont le squelette en SystemVerilog est le suivant :

module decode_huff(input logic clk,
input logic reset_n,
input logic data_in,
output logic [7:0] data_out);

// ...
endmodule

Ce module reçoit en entrée sur data_in une série de bits codant des symboles pouvant prendre 8 valeurs
(de 0 à 7) selon le codage suivant :

Code Symbole
0 0 0 0 0 0
0 0 0 0 1 1
0 0 0 1 2
0 1 0 3
0 1 1 4
0 0 1 5
1 0 6
1 1 7

• Le signal reset_n est actif à l’état bas.
• Les bits du code reçu arrivent de façon synchrone avec l’horloge clk.
• Le premier bit du premier code est reçu au premier cycle suivant la fin du reset.
• Les bits se succèdent cycle après cycle en commençant par le plus à gauche dans la table ci-dessus.
• Lorsqu’ un symbole est décodé, le bit de data_out d’indice correspondant au symbole doit passer à
1 pendant un cycle d’horloge.

• Les symboles sont reçus les uns après les autres sans interruption.

Question 1
Donnez le code (ou le schéma) du module decode_huff permettant d’effectuer le décodage.
Exemple : si le module reçoit sur data_in 0 puis au front d’horloge suivant 1 puis 1, le bit numéro 4 de

data_out doit passer à 1 pendant une période d’horloge avant de repasser à 0.

Question 2
L’émetteur, auquel est connecté notre module, n’a pas tout le temps des données à nous transmettre.

Un signal d’entrée data_in_valid est donc ajouté à notre module. La valeur data_in n’est à prendre en
compte que lorsque data_in_valid vaut 1. L’interruption de la transmission peut intervenir au milieu de la
transmission d’un symbole (auquel cas elle ne doit être considérée que comme une simple pause et non pas
l’arrêt de la transmission de ce symbole).

Donnez le code (ou le schéma) de la nouvelle version de votre module.

5

	Fonction "LUT"
	Représentation en CA2 des nombres décimaux
	Première méthode.
	Deuxième méthode.
	Analyse.

	Filtre transposé
	Décodeur Huffman

