
Chaîne de compilation

Genèse et autopsie des exécutables

Alexis Polti

23/09/2018 © Alexis Polti SE203page 2

Licence de droits d'usage

Par le téléchargement ou la consultation de ce document, l’utilisateur accepte la licence d’utilisation qui y est
attachée, telle que détaillée dans les dispositions suivantes, et s’engage à la respecter intégralement.

La licence confère à l'utilisateur un droit d'usage sur le document consulté ou téléchargé, totalement ou en partie, dans
les conditions définies ci-après, et à l’exclusion de toute utilisation commerciale.

Le droit d’usage défini par la licence autorise un usage dans un cadre académique, par un utilisateur donnant des cours
dans un établissement d’enseignement secondaire ou supérieur et à l’exclusion expresse des formations commerciales
et notamment de formation continue. Ce droit comprend :

● le droit de reproduire tout ou partie du document sur support informatique ou papier,
● le droit de diffuser tout ou partie du document à destination des élèves ou étudiants.

Aucune modification du document dans son contenu, sa forme ou sa présentation n’est autorisé.

Les mentions relatives à la source du document et/ou à son auteur doivent être conservées dans leur intégralité.

Le droit d’usage défini par la licence est personnel, non exclusif et non transmissible.

Tout autre usage que ceux prévus par la licence est soumis à autorisation préalable et expresse de l’auteur :

alexis.polti@telecom-paristech.fr

Contexte académique } sans modification

23/09/2018 © Alexis Polti SE203page 3

tl;dr

Ce qu'on va apprendre :
écrire du C propre
ce que fait un compilateur
ce que fait un éditeur de lien
comment sont construits les exécutables,
à l'octet près

Au passage, on va dégommer beaucoup
de mythes urbains comme :

"un char fait 8 bits"
"GCC est un compilateur"
…

23/09/2018 © Alexis Polti SE203page 4

Avant tout

Installer votre chaîne de cross-compilation
GCC ARM Embedded, maintenue par ARM.

https://developer.arm.com/open-source/gnu-toolchain/gnu-rm/downloads

L'installer où vous voulez (/opt par exemple).
Pensez à mettre à jour votre $PATH !

https://developer.arm.com/open-source/gnu-toolchain/gnu-rm/downloads

23/09/2018 © Alexis Polti SE203page 5

Compléments de C

Taille des entiers
Sur combien de bits sont codés les types suivants ?
char
short
int
long
long long

23/09/2018 © Alexis Polti SE203page 6

Compléments de C

Taille des entiers
Sur combien de bits sont codés les types suivants ?
char : au moins 8
short : au moins 16
int : au moins 16
long : au moins 32
long long : au moins 64

En C99, on dispose dans stdint.h de :
int8_t / uint8_t
int16_t / uint16_t
int32_t / uint32_t
int64_t / uint64_t

23/09/2018 © Alexis Polti SE203page 7

Compléments de C

Taille des entiers
Qu'est-ce qu'un octet / byte ?
Qu'affiche le programme suivant ?

#include <stdio.h>
#include <stdint.h>

int main()
{
 uint32_t a= 0x44332211;
 uint8_t *p = (uint8_t *) &a;
 printf("premier octet de a = %x\n", *p);

 return 0;
}

23/09/2018 © Alexis Polti SE203page 8

2ème commandement de l'UE

int est le type "naturel" du processeur,
celui dont les manipulations sont les plus
rapides. On l'emploiera quand on n'a pas
spécifiquement besoin d'un autre type.
Exemples : indice de boucles, fd, …

Quand on a besoin de connaître la taille
de stockage d'une variable, on utilisera
les type exacts de C99 : int8_t,
uint8_t, etc. Rien d'autre !

23/09/2018 © Alexis Polti SE203page 9

3ème commandement de l'UE

On utilisera au moins le standard C99 avec
les extensions GNU de GCC :

gcc -std=gnu99

23/09/2018 © Alexis Polti SE203page 10

Compléments de C

Inclusions réciproques
si deux headers se référencent mutuellement,
comment les écrire ?
exemple :

/* a.h */
#include "b.h"

/* b.h */
#include "a.h"

23/09/2018 © Alexis Polti SE203page 11

Compléments de C

Inclusions réciproques
si deux headers se référencent mutuellement,
comment les écrire ?
exemple :

/* a.h */
#ifndef A_H
#define A_H

#include "b.h"

#endif

/* b.h */
#ifndef B_H
#define B_H

#include "a.h"

#endif

23/09/2018 © Alexis Polti SE203page 12

4ème commandement de l'UE

Les headers seront toujours protégés
contre les inclusions cycliques.

23/09/2018 © Alexis Polti SE203page 13

Compléments de C

Les goto existent !
comme en assembleur, on peut définir des labels et
sauter à l'un de ces labels

attention : à consommer avec modération !
http://cs.sjsu.edu/~mak/CS185C/KnuthStructuredProgrammingGoTo.pdf

{
 …
start:
 …
 if (…)
 goto end;
 goto start;
 …
end:
 …
}

http://cs.sjsu.edu/~mak/CS185C/KnuthStructuredProgrammingGoTo.pdf

23/09/2018 © Alexis Polti SE203page 14

Compléments de C

Les goto existent !
cas d'utilisation légitimes :

void foo()
{
 if (!try_A())
 goto exit;
 if (!try_B())
 goto cleanupA;
 if (!try_C())
 goto cleanupB;

 // everything succeeded
 return;

 cleanupB:
 undoB();
 cleanupA:
 undoA();
 exit:
 return;
}

gestion des erreurs

void foo()
{
 while (...) {
 while (...) {
 if (...)
 goto end;
 // loop action
 }
 }
 end:
 // end action
 ...
}

sortie de boucles imbriquées

23/09/2018 © Alexis Polti SE203page 15

Compléments de C

Type de main en C
quel est le type de main ?

pourquoi est-ce (très-vraiment-très-très) important ?

23/09/2018 © Alexis Polti SE203page 16

Compléments de C

Type modifier : const
const : la valeur en question est constante
const int a : ?
const int * a : ?
int const * a : ?
int * const a : ?
const int * const a : ?

comment retenir facilement le sens ?

23/09/2018 © Alexis Polti SE203page 17

5ème commandement de l'UE

Tout ce qui est constant sera déclaré
const.

23/09/2018 © Alexis Polti SE203page 18

Compléments de C

Type modifier volatile
volatile :

la variable peut être modifiée par autre chose que le flot
normal de code

autre thread
handler d'interruption
quoi d'autre ?

23/09/2018 © Alexis Polti SE203page 19

Compléments de C

Accès à des périphériques mappés en mémoire
déréférencer une adresse précise
comment faire, en C ?

23/09/2018 © Alexis Polti SE203page 20

Compléments de C

Accès à des périphériques mappés en mémoire
déréférencer une adresse précise
comment faire, en C ?

// Contrôleur de GPIO en 0xA300020
volatile uint32_t * const gpio_config = (uint32_t *) 0xA300020;

// Utilisable ainsi :
*gpio_config = 20;
uint32_t value = *gpio_config;

// Autre possibilité
#define GPIO_REG (*(volatile uint32_t *) 0xA300020)

GPIO_REG = 20;
value = GPIO_REG;

23/09/2018 © Alexis Polti SE203page 21

6ème commandement de l'UE

pour accéder à un registre mappé en mémoire, on utilisera
cette construction :

#define REG (*(volatile uint32_t *)0xff00ff00)

dans d'autres UE, on verra d'autres constructions tout aussi
élégantes, notamment pour des sets de registres.

23/09/2018 © Alexis Polti SE203page 22

Où en est-on ?

On a vu
quelques rappels importants de C

On va voir maintenant
ce que fait exactement une chaîne de compilation
ce que fait un compilateur
écrire du C propre
à quoi sert un éditeur de lien

On verra plus tard
comment sont architecturés les exécutables
comment piloter l'éditeur de lien pour produire
l'exécutable qu'on veut.

23/09/2018 © Alexis Polti SE203page 23

Chaîne de compilation

Compilation

a.c

a.h

b.c

b.h

a.i

b.i

a.s

b.s

a.o

b.o

exécutable

pré-processeur compilateur C assembleur linker

ldscript

crt0.ocrt0.s

: unité de compilation

: fichier source

: fichier de déclarations

: script de link

23/09/2018 © Alexis Polti SE203page 24

Chaîne de compilation : GCC

Exemple : GCC
GCC : GNU Compiler Collection

compilateurs
pré-processeurs
driver (gcc -v / gcc -###)

binutils
éditeur de lien (linker) : ld / gold / collect2
assembleur : as
objcopy, objdump, gprof, strip, readelf, nm, size

GNU Debugger : gdb
Bibliothèque C

glibc, eglibc
newlib, tinylibc, dietlibc
klibc

23/09/2018 © Alexis Polti SE203page 25

Chaîne de compilation : GCC

Pré-processeur : cpp
processeur texte
interprète les directives de compilation
#include
#define
#ifdef
...

produit un fichier C pré-processé (.i, .ii pour le C++)

on peut voir le fichier résultant avec gcc -E
-Dname / -Dname=value : définit des macros

-Uname : annule la définition de macros

23/09/2018 © Alexis Polti SE203page 26

Chaîne de compilation : GCC

Pré-processeur : fichiers .h
user include files : #include "file.h"
system include files : #include <file.h>

-iquote dir :
ajoute dir à la liste où sont cherchés les headers utilisateurs

-isystem dir :
ajoute dir à la liste où sont cherchés les headers systèmes

-I dir :
ajoute dir à la liste où sont cherchés les headers

-nostdinc :
limite la recherche des headers à « . » et aux répertoires spécifiés par -I
et -iquote

23/09/2018 © Alexis Polti SE203page 27

Chaîne de compilation : GCC

Compilation
production d'un fichier assembleur : gcc -S
production d'un objet : gcc -c

cross compilation : le compilateur produit du code pour une cible différente de la
machine où il s'exécute

un cross-compilateur se comporte comme un compilateur natif
certaines cibles ont des options particulières :
 gcc --target-help pour les connaître

compilation du
compilateur

exécution du compilateur exécution du code nom

x86 x86 x86 natif

x86 x86 ARM cross

x86 SH x86 crossback

x86 SH SH crossed native

x86 SH PPC canadian cross

23/09/2018 © Alexis Polti SE203page 28

Où en est-on ?

On a vu
quelques rappels importants de C
les chaînes de compilation

On va voir maintenant
ce que fait un compilateur
écrire du C propre
à quoi sert un éditeur de lien

On verra plus tard
comment sont architecturés les exécutables
comment piloter l'éditeur de lien pour produire
l'exécutable qu'on veut.

23/09/2018 © Alexis Polti SE203page 29

Bases de compilation

Code
nous utiliserons la définition suivante de code :
 suite d'instructions destinées à un ordinateur

exemples de code :
code C : programme en langage C
code machine : suite de mots binaires directement
exécutables par un processeur
bytecode : suite de mots exécutables par une machine
virtuelle
pseudocode : suite d'instructions à effectuer, facilement
compréhensibles par des humains

23/09/2018 © Alexis Polti SE203page 30

Bases de compilation

Processus de compilation

Fichier source

Arbre sémantique

Exécutable

Génération de code
(étudiée ici)

Analyse

23/09/2018 © Alexis Polti SE203page 31

Bases de compilation

Étapes
La définition d'un langage intermédiaire facilite la
réutilisation :

M parties frontales et N générateurs de code permettent
d'écrire M + N + 1 fragments plutôt que M N

Le générateur de code peut produire
soit directement du code machine
soit de l'assembleur

possibilité d'optimisations par l'assembleur : calcul de déplacement, etc.

23/09/2018 © Alexis Polti SE203page 32

Bases de compilation

Frontal (front-end)
La partie frontale d'un compilateur

transforme le code en un arbre syntaxique
construit les associations sémantiques
vérifie la syntaxe et la sémantique du code

Elle peut également
opérer des transformations sur l'arbre (optimisations,
simplifications)
générer des informations de haut-niveau (nombre de lignes de
code, présence de code mort, …)

23/09/2018 © Alexis Polti SE203page 33

Bases de compilation

Exemple : GCC
GCC (GNU Compiler Collection) utilise un langage
intermédiaire : gimple
GCC génère un fichier assembleur temporaire
L'optimisation se fait à chaque niveau
Il est facile de rajouter :

un nouveau langage
une nouvelle cible

GCC peut être configuré en n'importe quelle
configuration (natif, cross, cross back, crossed native,
canadian cross)

23/09/2018 © Alexis Polti SE203page 34

Bases de compilation

Génération de code
But : permettre à chaque sous-programme présent
dans l'arbre d'être appelé

Moyens :
pour chaque instruction, générer du code effectuant les
bonnes opérations
générer du code pour l'entrée (prologue) et la sortie (épilogue)
du sous-programme

23/09/2018 © Alexis Polti SE203page 35

Bases de compilation

Code machine
Le code machine

est simple : xy n'existe pas
a peu d'arguments : f(u, v, w, x, y, z) est impossible
est peu structuré : for(i=0; i<10; i++) n'est pas
représentable simplement

Il faut transformer l'arbre en instructions élémentaires

23/09/2018 © Alexis Polti SE203page 36

Bases de compilation

Constructions ternaires
classiquement, chaque opération est transformée en
une suite de constructions généralement ternaires, car
cela :

correspond aux possibilités usuelles d'un microprocesseur
permet d'optimiser indépendamment chaque instruction
permet d'unifier les sous-expressions communes

certains jeux d'instructions ARM disposent de quelques
opérations plus que ternaires (MLA, STM, LDM).

23/09/2018 © Alexis Polti SE203page 37

Bases de compilation

Constructions usuelles
sur les architectures load / store :

une instruction ne peut manipuler que des registres
l'accès à la mémoire se fait par les instructions LDR et STR

pour accéder à une variable, il faut donc :
d'abord stocker son adresse (connue à l'édition de lien) dans
un registre
puis accéder à la mémoire (LDR ou STR)

23/09/2018 © Alexis Polti SE203page 38

Bases de compilation

Constructions usuelles (ARM)
avec GCC,un symbole représente

en C : la valeur d'une variable
en assembleur ou linker script : l'adresse de cette variable

ainsi, avec a entier 32 bits, a = 3; pourrait devenir :

 0: ldr r3, [pc, #4] ; r3 &a←
 4: mov r2, #3 ; r2 3←
 8: str r2, [r3] ; 3 mem[&a]→
 c: .word a ; adresse de a

 0: ldr r3, =a ; r3 &a←
 4: mov r2, #3 ; r2 3←
 8: str r2, [r3] ; 3 mem[&a]→

23/09/2018 © Alexis Polti SE203page 39

Bases de compilation

Constructions usuelles (ARM)
 int32_t a, b;
 a = b;
 pourrait devenir :

 0: ldr r3, =a ; r3 &a←
 4: ldr r2, =b ; r2 &b←
 8: ldr r2, [r2] ; r2 b←
 c: str r2, [r3] ; b mem[&a]→

23/09/2018 © Alexis Polti SE203page 40

Bases de compilation

Constructions usuelles (ARM)
 int32_t a, b, c;
 a = a + b*c;
 pourrait devenir :

 0: ldr r3, =a ; r3 &a←
 4: ldr r1, =b ; r1 &b←
 8: ldr r2, =c ; r2 &c←
 c: ldr r0, [r1] ; r0 b←
10: ldr r2, [r2] ; r2 c←
14: ldr r1, [r3] ; r1 a←
18: mla r2, r0, r2, r1 ; r2 b*c + a←
1c: str r2, [r3] ; r2 mem[&a]→

23/09/2018 © Alexis Polti SE203page 41

Bases de compilation

Constructions usuelles (ARM)
 *p++ = 3;

 pourrait devenir :

 0: ldr r2, =p ; r2 &p←
 4: ldr r3, [r2] ; r3 p←
 8: mov r1, #3 ; r1 3←
 c: str r1, [r3], #4 ; 3 mem[p] → puis r3 p+4←
10: str r3, [r2] ; p+4 mem[&p]→

23/09/2018 © Alexis Polti SE203page 42

Bases de compilation

Constructions usuelles (ARM)
Sauts simples :

En C :

a:
 ...
 goto a;

devient :

a:
 ...
 b a

En C :

 ...
 f();
 ...

devient :

 ...
 bl f
 ...

23/09/2018 © Alexis Polti SE203page 43

Bases de compilation

Constructions usuelles
Les boucles sont généralement ré-écrites selon la structure
suivante :

1 : initialisation des paramètres de la boucle
2 : saut par-dessus l'étape 3 si le test est en fin de boucle
3 : test de sortie, saut après 6 si positif
4 : corps de la boucle
5 : exécution de la partie finale de la boucle
6 : saut inconditionnel en 3
7 : suite du programme

23/09/2018 © Alexis Polti SE203page 44

Bases de compilation

Constructions usuelles
Exemple : for (i=0;i<10;i++) {...}

1 : i = 0
2 :
3 : if NOT(i < 10) goto 7
4 : ...
5 : i = i + 1
6 : goto 3
7 :

23/09/2018 © Alexis Polti SE203page 45

Bases de compilation

Constructions usuelles
Exemple : while(c) {...}

1 :
2 :
3 : if NOT(c) goto 7
4 : ...
5 :
6 : goto 3
7 :

23/09/2018 © Alexis Polti SE203page 46

Bases de compilation

Constructions usuelles
Exemple : do {...} while(c)

1 :
2 : goto 4
3 : if NOT(c) goto 7
4 : ...
5 :
6 : goto 3
7 :

23/09/2018 © Alexis Polti SE203page 47

Chouette, des exercices !

À vous de travailler :
exercice 1 : facile
exercice 2 : moyen

23/09/2018 © Alexis Polti SE203page 48

Exercices de compilation

Exercice 1
Traduire en assembleur ARM le code suivant :
uint32_t a; // global variable
...
for (uint8_t i=0; i<=a; i++)
 g();

Même question si i est un unsigned int. Conclusion ?

Indice : pour voir ce que produit GCC pour ARM :
uint32_t a; // global variable

__attribute__((naked)) void f() {
 for (uint8_t i=0; i<=a; i++)
 g();
}

Puis : arm-none-eabi-gcc -Os -S t.c

23/09/2018 © Alexis Polti SE203page 49

Exercices de compilation

Exercice 2
Traduire en assembleur ARM le code suivant :
// Global variables
uint32_t *a;
uint32_t *b;
uint32_t *c;
…
*a += *c;
*b += *c;

23/09/2018 © Alexis Polti SE203page 50

Exercices de compilation

Exercice 2 (suite)
Comparez avec ce que produit GCC, ainsi :
// Global variables
uint32_t *a;
uint32_t *b;
uint32_t *c;

__attribute__((naked)) void f() {
 *a += *c;
 *b += *c;
}

Puis : arm-none-eabi-gcc -O2 -S t.c

Pourquoi GCC charge-t-il deux fois le contenu de *c au lieu d'une
seule ?

23/09/2018 © Alexis Polti SE203page 51

Où en est-on ?

On a vu
quelques rappels importants de C
les chaînes de compilation
ce que fait un compilateur

On va voir maintenant
comment écrire du C propre
à quoi sert un éditeur de lien

On verra plus tard
comment sont architecturés les exécutables
comment piloter l'éditeur de lien pour produire
l'exécutable qu'on veut.

23/09/2018 © Alexis Polti SE203page 52

Compléments de C

Déclaration vs. instanciation des variables
une variable possède plusieurs caractéristiques :

un nom (appelé symbole)
un type
et, si elle réside en mémoire, une adresse

déclaration :
association nom ↔ type
exemple : extern int a;
empêche l'initialisation : extern int a=2;

instanciation / définition :
déclaration + allocation de la mémoire pour stocker la variable
exemple : int a;
exemple : int a=3;

23/09/2018 © Alexis Polti SE203page 53

Compléments de C

Déclaration et instanciation des variables
le compilateur peut générer du code utilisant une variable
même si son adresse n'est pas encore connue

il n'a besoin que d'en connaître le type → la déclaration
il lui assigne une adresse temporaire (nulle)
cette adresse sera rectifiée lors de l'édition de lien

conséquence :
une variable ne doit être instanciée qu'une seule fois, dans un
fichier source .c

exception : symboles weak, qu'on verra après

une variable exportée doit en plus :
être déclarée dans le header .h correspondant au fichier .c où elle est
instanciée
ce header sera inclus par tous les .c utilisant cette variable

23/09/2018 © Alexis Polti SE203page 54

Compléments de C

Déclaration et instanciation des variables
Exemple :

/* a.h */
extern int a;

/* a.c */
#include "a.h"
int a=3;

void foo() {
 a=a+1;
}

/* b.c */
#include "a.h"

void bar() {
 a=23;
}

/* c.c */
#include "a.h"

void baz() {
 g(a);
}

23/09/2018 © Alexis Polti SE203page 55

Compléments de C

Déclaration et instanciation des variables
ATTENTION PIÈGE :

avec le linker de GCC sous Linux, des variables de même
noms instanciées dans des unités de compilation différentes
sont considérées comme une seule et même instance, même
si elles n'ont pas le même type !!!

une erreur n'est émise que si plus d'une instance est initialisée

23/09/2018 © Alexis Polti SE203page 56

Compléments de C

Déclaration et instanciation des variables
ATTENTION PIÈGE : que donne le code (sale) suivant ?

/* a.c */
#include <stdint.h>
#include <stdio.h>

void foo();
uint32_t a=0x2f0;

int main() {
 foo();
 printf("a=0x%x\n", a);
 return 0;
}

/* b.c */
#include <stdint.h>
#include <stdio.h>

uint8_t a;

void foo() {
 a = a + 0x50;
 printf("a=0x%x\n", a);
}

NE JAMAIS ÉCRIRE ÇA !!!

23/09/2018 © Alexis Polti SE203page 57

Compléments de C

Déclaration vs. définition des fonctions
une fonction possède plusieurs caractéristiques :

un nom
un type de retour
une liste de paramètres (type)
un corps (la définition)

déclaration :
association nom ↔ (type de retour, types des paramètres)
exemple : int foo(int, char);

définition :
déclaration + code du corps de la fonction
exemple : int foo(int a, char b) { return a+b; }

23/09/2018 © Alexis Polti SE203page 58

Compléments de C

Déclaration et définition des fonctions
le compilateur peut générer du code utilisant une fonction même si
sa définition et/ou son adresse ne sont pas encore connues

il n'a besoin que de savoir
quels arguments lui passer
comment récupérer la valeur de retour
bref, connaître seulement sa déclaration et les conventions d'appel (ABI)

l'adresse à laquelle sauter pour exécuter la définition de la fonction est
prise temporairement nulle
et sera rectifiée à l'édition de lien

conséquence :
une fonction ne doit être définie qu'une seule fois, dans un fichier source
.c

une fonction exportée doit en plus :
être déclarée dans le header .h correspondant au fichier où elle est instanciée
ce header sera inclus par tous les .c utilisant cette fonction

23/09/2018 © Alexis Polti SE203page 59

Compléments de C

Déclaration et instanciation des fonctions
Exemple :

/* a.h */
int foo(char, char);
int bar(char a, char b);

/* a.c */
#include "a.h"

int foo(char a, char b)
{
 return a+b;
}

int bar(char c, char d)
{
 return c+d;
}

/* b.c */
#include "a.h"

void baz()
{
 ...
 x = foo(a, b) + bar(e, f);
 ...
}

23/09/2018 © Alexis Polti SE203page 60

Compléments de C

Déclaration et instanciation des fonctions
on souhaite parfois définir un objet par défaut que
l'utilisateur a la possibilité de remplacer s'il le souhaite

exemple : handler d'interruption par défaut

mais on ne peut pas avoir deux définitions conflictuelles
pour les variables ça fait des choses monstrueuses
pour les fonctions c'est interdit et ça déclenche une erreur

solution : symboles weak
exemple : __attribute__((weak)) int a = 3;
exemple : int __attribute__((weak)) foo(int x);

23/09/2018 © Alexis Polti SE203page 61

Compléments de C

Visibilité des objets
en C, les objets (fonctions et variables) globaux sont
exportés par défaut

pour les rendre privés à un fichier : static

exemples :
static int a;
static void foo() { … }

23/09/2018 © Alexis Polti SE203page 62

Compléments de C

Fonctions inline
pour optimiser la vitesse d'exécution

évite les prologues / épilogues / appels
permet des optimisations entre appelant et appelé (arguments constants,
…)

pas toujours possible

en C99 :
le plus simple : static inline void foo() {…}
nécessite au moins -O1 et dépend de la taille de la fonction
forcer un inline : __attribute__((always_inline))
empêcher un inline : __attribute__ ((noinline))

Les fonctions static inline seront dans cette UE les seules
fonctions à pouvoir être définies dans des headers.

23/09/2018 © Alexis Polti SE203page 63

7ème commandement de l'UE

Les objets globaux ne seront définis / instanciés
qu'une seule fois

seule exception : symboles weak

dans des fichiers sources (.c) uniquement
seule exception : fonctions static inline

Un objet global privé :
sera défini static
et ne sera donc pas déclaré dans un header (.h)

Un objet global exporté :
sera déclaré dans le header .h associé au fichier source (.c) où il est
instancié
qui sera inclus par tous les .c utilisant cet objet

23/09/2018 © Alexis Polti SE203page 64

7ème commandement de l'UE
(suite)

Conséquence, un header ne comporte que :
des déclarations d'objets globaux exportés
des fonctions static inline
des déclarations de types
des macros et enum

RIEN D'AUTRE / AUCUNE INSTANCIATION

23/09/2018 © Alexis Polti SE203page 65

Compléments de C

Variables locales
auto : sont allouées / désallouées automatiquement
(généralement sur la pile)

static : sont allouées et initialisées au lancement du
programme et durent pendant toute la durée du
programme

par défaut, les variables locales sont de type auto

23/09/2018 © Alexis Polti SE203page 66

Chaîne de compilation / GCC

Exemple : GCC
gcc -Ox : optimisations
-Os : taille
-O0 : aucune optimisation
-O1 ... -O999 : de plus en plus d'optimisations
attention, à partir de -O4 inclus, ça devient expérimental…
-Og : permet un débug plus simple

gcc -g pour inclure des infos de débug
influence sur la vitesse d'exécution du programme ?

23/09/2018 © Alexis Polti SE203page 67

8ème commandement de l'UE

Il n'y a jamais de bonnes raisons de compiler
en -O0

On compilera toujours en
-O1 ou -Og : code simple à lire
-O2 : standard, mais code plus compliqué à
suivre

23/09/2018 © Alexis Polti SE203page 68

Chaîne de compilation / GCC

Les warnings
warning : quand le compilateur ne peut pas décider de
lui même si un morceau de code est valide ou non

pas là pour faire joli
implique obligatoirement une intervention humaine
la plupart des projets sérieux obligent une compilation sans
warnings

flags :
gcc -Wall : active tous les warnings facilement corrigeables
gcc -Wextra : active des warnings supplémentaires
gcc -Werror : traite les warnings comme des erreurs

23/09/2018 © Alexis Polti SE203page 69

9ème commandement de l'UE

Toutes les compilations se feront avec
 -Wall -Wextra -Werror

23/09/2018 © Alexis Polti SE203page 70

Où en est-on ?

On a vu
quelques rappels importants de C
les chaînes de compilation
comment écrire du C propre

On va voir maintenant
ce que fait un éditeur de lien

On verra plus tard
comment sont architecturés les exécutables
comment piloter l'éditeur de lien pour
produire l'exécutable qu'on veut.

23/09/2018 © Alexis Polti SE203page 71

Édition de lien

Principe
les fichiers objets

peuvent contenir des références vers des symboles externes : les
adresses de ces symboles sont temporairement nulles
ont un code logé temporairement à l'adresse 0

le linker se chargera de :
allouer à tous les symboles une adresse finale
remplacer les références externes (adresses temporaires nulles) par
les adresses finales

pour cela, il va directement patcher le code, en s'aidant
d'informations indiquant comment procéder

ces informations sont appelées "informations de relocation"
les symboles disposant de ces informations de relocation sont dit
"relogeables"

23/09/2018 © Alexis Polti SE203page 72

Édition de lien

#include <stdio.h>

const char *mesg = "Hello World!";

int main() {
 printf(mesg);
 return 0;
}

00000000 <main>:
 0: e92d4008 push {r3, lr}
 4: e59f3010 ldr r3, [pc, #16] ; 1c <main+0x1c>
 8: e5930000 ldr r0, [r3]
 c: ebfffffe bl 0 <printf>
 10: e3a00000 mov r0, #0
 14: e8bd4008 pop {r3, lr}
 18: e12fff1e bx lr
 1c: 00000000 .word 0x00000000

0000821c <main>:
 821c: e92d4008 push {r3, lr}
 8220: e59f3010 ldr r3, [pc, #16] ; 8238 <main+0x1c>
 8224: e5930000 ldr r0, [r3]
 8228: eb000075 bl 8404 <printf>
 822c: e3a00000 mov r0, #0
 8230: e8bd4008 pop {r3, lr}
 8234: e12fff1e bx lr
 8238: 0001a624 .word 0x0001a624

Avant link

Après link// objdump -x

RELOCATION RECORDS FOR [.text]:
OFFSET TYPE VALUE
0000000c R_ARM_CALL printf
0000001c R_ARM_ABS32 mesg

Exemple

23/09/2018 © Alexis Polti SE203page 73

Édition de lien

Avec GCC
gcc -l pour lier des bibliothèques

gcc -L spécifie le chemin de recherche des bibliothèques
l'ordre a de l'importance ! Une bibliothèque complète les objets précédents.
il est parfois nécessaire d'utiliser plusieurs fois -l.

gcc -nostartfiles pour ne pas lier les fichiers de démarrage

gcc -nodefaultlibs pour ne pas lier les bibliothèques standard

gcc -nostdlib pour combiner les deux

dans ces cas là, on veut quand même souvent libgcc :
gcc -lgcc
gcc -nostdlib <files>... `gcc -print-libgcc-file-name`

gcc –Wl, pour passer des options au linker

23/09/2018 © Alexis Polti SE203page 74

Édition de lien

Linker GCC : outil natif
on peut invoquer directement ld

permet de simplifier le passage d'options
exemple : --start-group / --end-group pour références
circulaires

fichiers d'entrée :
*.o
*.a
ldscript

par défaut, le script de link et les crt sont implicites

le script de link spécifie comment assembler les différents
fichiers objets et résoudre les adresses pour produire le fichier
final.

23/09/2018 © Alexis Polti SE203page 75

Édition de lien

Linker GCC : optimisations
L'éditeur de liens peut faire des optimisations a
posteriori :

Le fichier objet stocke le GIMPLE des fonctions compilées.
L'éditeur de lien a alors une vision d'ensemble du programme,
comme si tout avait été compilé d'un coup, et peut optimiser le
programme globalement.
Voir https://gcc.gnu.org/onlinedocs/gccint/LTO-Overview.html
pour plus de détails.

gcc -flto

https://gcc.gnu.org/onlinedocs/gccint/LTO-Overview.html

23/09/2018 © Alexis Polti SE203page 76

Où en est-on ?

On sait maintenant :
écrire du C propre
ce que fait un compilateur
à quoi sert un éditeur de lien

On va voir
comment sont architecturés les exécutables
comment piloter l'éditeur de lien pour produire
l'exécutable qu'on veut.

23/09/2018 © Alexis Polti SE203page 77

Anatomie d'un exécutable

Composantes d'un exécutable
le code
les données
nécessité de les séparer :

recopies ROM – RAM
instances multiples de programmes
instances multiples de bibliothèques
...

découpage en segments / sections

23/09/2018 © Alexis Polti SE203page 78

Anatomie d'un exécutable

Sections : aperçu
text : le code
data : les données initialisées
rodata : les constantes
bss : les données non initialisées,
 ou initialisées à zéro

Très rarement :
stack : pile
heap : allocation dynamique (malloc)

bss

pile
(stack)

tas
(heap)

data

text

emplacement défini
par l'OS ou le linker

emplacement défini
par le linker

23/09/2018 © Alexis Polti SE203page 79

Anatomie d'un exécutable

Format des exécutables
les exécutables sont destinés à être exécutés

soit directement
soit à travers un loader

les loaders ont besoin d'informations auxiliaires pour
charger un programme en mémoire

les images mémoire (directement exécutables) n'en ont
pas besoin.

selon leur destination, les exécutables n'ont pas à
fournir les même informations → différents formats !

23/09/2018 © Alexis Polti SE203page 80

Anatomie d'un exécutable

Tant qu'on y est...
la compilation fait généralement intervenir plusieurs
types de fichiers :

des objets,
des bibliothèques,
…

les objets :
contiennent du code
ainsi que beaucoup d'informations auxiliaires (sections, infos de
débug, infos de relocation, …)

Il serait bien d'avoir un même format pour les
exécutables et les objets

23/09/2018 © Alexis Polti SE203page 81

Anatomie d'un exécutable

Format d'exécutable : image mémoire binaire
= dump direct du contenu de la flash
seul "format" pouvant assurer un boot
aucune information auxiliaire
facilement flashable
difficile à désassembler / examiner
variantes disponibles :

S-REC
Intel HEX

23/09/2018 © Alexis Polti SE203page 82

Anatomie d'un exécutable

Format d'exécutable : a.out
plusieurs variantes
organise les choses en segments :

exec : infos sur les autres segments
text : le code / constantes
data : variables initialisées
text relocations
data relocations
symbol table
string table

abandonné pour COFF puis ELF / PE
premier format à laisser une page vide au début de la
mémoire virtuelle : pour quoi faire ?

23/09/2018 © Alexis Polti SE203page 83

Anatomie d'un exécutable

Format d'exécutable : COFF
base de PE
partage le code en sections
améliorations de a.out

informations de débug plus complètes (mais pas suffisantes
pour C++)
adresses virtuelles relatives : les adresses sont des
déplacements par rapport à une adresse de base globale au
fichier.

a été remplacé par PE (Windows) et ELF (reste du
monde)

23/09/2018 © Alexis Polti SE203page 84

Anatomie d'un exécutable

Format d'exécutable : ELF
Executable and Linkable Format
quatre types d'objets :

objets (*.o) :
créés par l'assembleur
contiennent des symboles non résolus / du code relogeable temporairement stocké à l'adresse 0
doivent passer par le linker avant de pouvoir être exécutés.

exécutables :
ont tous leurs symboles résolus (sauf bib. dynamiques)
ont toutes les relocations faites
destinés à un loader ELF

bibliothèques partagées (*.so)
contiennent des informations sur les symboles (pour le linker)
et du code et des informations d'exécution (pour le loader)

core file :
core dump

format universellement adopté dans le monde Unix et dans l'embarqué
(seule exception : Windows...)

23/09/2018 © Alexis Polti SE203page 85

Anatomie d'un exécutable

Format d'exécutable : ELF
deux vues d'un même fichier ELF :

liste de sections : destinées au linker
liste de segments :

pour le loader ELF de Linux
destinés à être mappés en mémoire
composés de sections

Program header Section header

objets relogeables optionnel obligatoire

executables obligatoire optionnel

bibliothèques partagées obligatoire obligatoire

ELF header

.text

Program header
table

ELF header

.rodata

.data

Section header
tablesections

segments

23/09/2018 © Alexis Polti SE203page 86

Anatomie d'un exécutable

Format d'exécutable : ELF
header ELF

typedef struct{
unsigned char magic[4]; // magic number "\0x7fELF..."
char class; // address size, 1=32 bits, 2=64 bits
char byteorder; // 1 = little-endian, 2 = big-endian
char hversion; // header version, always 1
char pad[9];
Elf32_Half e_type // file type : 1 = relocatable, 2 = executable,
 // 3 = shared object, 4 = core file, ...
Elf32_Half e_machine; // 2 = SPARC, 3 = x86, 4 = 68k, 8 = MIPS, etc...
Elf32_Word e_version; // always 1
Elf32_Addr e_entry; // entry point if avalaible
Elf32_Off e_phoff; // file position of program header or 0
Elf32_Off e_shoff; // file position of section header or 0
Elf32_Word e_flags; // architecture specific flags, usually 0
Elf32_Half e_ehsize; // size of this ELF header
Elf32_Half e_phentsize; // size of an entry in program header
Elf32_Half e_phnum; // number of entries in program header or 0
Elf32_Half e_shentsize; // size of an entry in section header
Elf32_Half e_shnum; // number of entries in section header or 0
Elf32_Half e_shstrndx; // section number that contains section name strings

}Elf32_Ehdr;

23/09/2018 © Alexis Polti SE203page 87

Anatomie d'un exécutable

ELF : les sections
Section headers

typedef struct{
Elf32_Word sh_name; // name, index into the string table
Elf32_Word sh_type; // section type (PROGBITS, NOBITS, SYMTAB, ...)
Elf32_Word sh_flags; // flag bits (ALLOC, WRITE, EXECINSTR)
Elf32_Word sh_addr; // base memory address(VMA), if loadable, or zero
Elf32_off sh_offset; // file position of beginning of section
Elf32_Word sh_size; // size in bytes
Elf32_Word sh_link; // section number with related info or zero
Elf32_Word sh_info; // more section-specific info
Elf32_Word sh_align; // alignment granularity if section is moved
Elf32_Word sh_entsize; // size of entries if section is an array

} Elf32_Shdr;

23/09/2018 © Alexis Polti SE203page 88

Anatomie d'un exécutable

ELF : les sections
type :
PROGBITS : section contenant du code, des data, des infos de
debug et qui occupe de la place dans le fichier ELF
NOBITS : idem, mais sans occuper de place (typiquement, bss)
SYMTAB / DYNSYM : table des symboles
STRTAB : table des noms de symboles
REL / RELA : informations de relocation
DYNAMIC / HASH : informations pour link dynamique

flags
WRITE : les données sont modifiables lors de l'exécution
ALLOC : la section occupe de la mémoire lors de l'exécution
EXECINSTR : la section contient du code exécutable

23/09/2018 © Alexis Polti SE203page 89

Anatomie d'un exécutable

ELF : les sections
Nom Type Flags Usage

.text PROGBITS A, EX Code de l'exécutable

PROGBITS A Données non modifiables

PROGBITS A, W Données modifiables initialisées non nulles

NOBITS A, W

.heap A, W Le tas.

.stack

PROGBITS A, EX

.fini PROGBITS A, EX

.ctors PROGBITS A, W Pointeurs vers des fonctions à appeler au démarrage du programme

.dtors PROGBITS A, W Pointeurs vers des fonctions à appeler à la fin du programme

.got / .got2 PROGBITS A, W

.plt PROGBITS A, EX

REL Informations de relocations pour le code, les données et les constantes

.rodata
.rodata1
.sdata2

.data
.data1
.sdata

.bss
.sbss

Données non initialisées (ou initialisées à zéro). Le système initialise cette zone au
lancement de l'exécution avec des zéros. Peut aussi servir à la pile et au tas

La pile, généralement après .heap. Peut être combiné avec .heap pour former une
section .bss_stack

.init
.ini

Initialisation du processus. Le système exécute cette section avant d'appeler main.
Utilisé par la libC pour initialiser des variables globales.
Terminaison du processus. Le système exécute cette section à la fin du processus si
celui-ci s'est correctement terminé.

Global Offset Table : permet de référencer les variables globales des bibliothèques
dynamiques
Procedure Linkage Table : permet de référencer les fonctions des bibliothèques
dynamiques (lazy binding)

rela.text
rela.data

rela.rodata

none
(sauf bib

dyn)

23/09/2018 © Alexis Polti SE203page 90

Anatomie d'un exécutable

ELF : les sections
#include <stdint.h>
#include <stdio.h>

int32_t x = 34;
int32_t y;
const char mesg[] = "Hello World!";

int main() {
static uint8_t z;
uint16_t t;

y = 12;
z = z + 1;
t = y+z;

printf(mesg);
printf("x = %d, y = %d, z = %d, t = %d\n",
 x, y, z, t);

return 0;
}

23/09/2018 © Alexis Polti SE203page 91

Anatomie d'un exécutable

ELF : les sections

alexis@plop> arm-none-eabi-gcc -c t.c

alexis@plop> arm-none-eabi-objdump -f t.o

t.o: file format elf32-littlearm
architecture: armv4t, flags 0x00000011:
HAS_RELOC, HAS_SYMS
start address 0x00000000

23/09/2018 © Alexis Polti SE203page 92

Anatomie d'un exécutable

ELF : les sections
alexis@plop> arm-none-eabi-objdump -h t.o

t.o: file format elf32-littlearm

Sections:
Idx Name Size VMA LMA File off Algn
 0 .text 000000b8 00000000 00000000 00000034 2**2
 CONTENTS, ALLOC, LOAD, RELOC, READONLY, CODE
 1 .data 00000004 00000000 00000000 000000ec 2**2
 CONTENTS, ALLOC, LOAD, DATA
 2 .bss 00000001 00000000 00000000 000000f0 2**0
 ALLOC
 3 .rodata 00000032 00000000 00000000 000000f0 2**2
 CONTENTS, ALLOC, LOAD, READONLY, DATA
 4 .comment 0000001e 00000000 00000000 00000130 2**0
 CONTENTS, READONLY
 5 .ARM.attributes 0000002a 00000000 00000000 0000014e 2**0
 CONTENTS, READONLY

23/09/2018 © Alexis Polti SE203page 93

Anatomie d'un exécutable

Où vont les variables ?

.text .rodata .data .bss

globale
initialisée X

non initialisée X
X X

locale

initialisée X
non initialisée X

initialisée X
non initialisée X

X X
valeur immédiate X X

stack

const

static

non static

const

23/09/2018 © Alexis Polti SE203page 94

Anatomie d'un exécutable

Que fait le programme suivant ?

#include <stdio.h>

char *p = "Jello World!\n";

int main()
{
 p[0] = 'H';
 printf("%s", p);

 return 0;
}

23/09/2018 © Alexis Polti SE203page 95

Anatomie d'un exécutable

ELF : les sections

alexis@plop> arm-none-eabi-objdump -t t.o

t.o: file format elf32-littlearm

SYMBOL TABLE:
00000000 l df *ABS* 00000000 t.c
00000000 l d .text 00000000 .text
00000000 l d .data 00000000 .data
00000000 l d .bss 00000000 .bss
00000000 l d .rodata 00000000 .rodata
00000000 l .bss 00000001 z.5152
00000000 l d .comment 00000000 .comment
00000000 g O .data 00000004 x
00000004 O *COM* 00000004 y
00000000 g O .rodata 0000000d mesg
00000000 g F .text 000000b8 main
00000000 *UND* 00000000 printf

23/09/2018 © Alexis Polti SE203page 96

Anatomie d'un exécutable

ELF : les sections

alexis@plop> arm-none-eabi-objdump -t t.o

t.o: file format elf32-littlearm

SYMBOL TABLE:
00000000 l df *ABS* 00000000 t.c
00000000 l d .text 00000000 .text
00000000 l d .data 00000000 .data
00000000 l d .bss 00000000 .bss
00000000 l d .rodata 00000000 .rodata
00000000 l .bss 00000001 z.5152
00000000 l d .comment 00000000 .comment
00000000 g O .data 00000004 x
00000004 O *COM* 00000004 y
00000000 g O .rodata 0000000d mesg
00000000 g F .text 000000b8 main
00000000 *UND* 00000000 printf

local /
global section

adresse

taille

23/09/2018 © Alexis Polti SE203page 97

Anatomie d'un exécutable

ELF : les sections

UND : un symbole pour l'instant non défini, qui sera
résolu plus tard - du moins on l'espère.

COM : des symboles dont on ne sait pas encore s'ils
seront placés dans bss ou dans data après link.
Seront placés dans le bss après link si aucune autre
unité ne les définit en les initialisant à une valeur non
nulle.

23/09/2018 © Alexis Polti SE203page 98

Anatomie d'un exécutable

ELF : les sections
est-ce cohérent ?

alexis@plop> arm-none-eabi-objdump -h t.o

t.o: file format elf32-littlearm

Sections:
Idx Name Size VMA LMA File off Algn
 0 .text 000000b8 00000000 00000000 00000034 2**2
 CONTENTS, ALLOC, LOAD, RELOC, READONLY, CODE
 1 .data 00000004 00000000 00000000 000000ec 2**2
 CONTENTS, ALLOC, LOAD, DATA
 2 .bss 00000001 00000000 00000000 000000f0 2**0
 ALLOC
 3 .rodata 00000032 00000000 00000000 000000f0 2**2
 CONTENTS, ALLOC, LOAD, READONLY, DATA
 4 .comment 0000001e 00000000 00000000 00000130 2**0
 CONTENTS, READONLY
 5 .ARM.attributes 00000030 00000000 00000000 0000014e 2**0
 CONTENTS, READONLY

23/09/2018 © Alexis Polti SE203page 99

Anatomie d'un exécutable

ELF : les segments
un segment est composé de sections partageant les
mêmes attributs d'exécution (protection mémoire)
les segments sont

mappés en mémoire par le loader
ou bien transformés en images mémoire par objcopy

généralement peu de segments
un read-only exécutable pour le code
un read-only non exécutable pour les constantes
un read/write non exécutable pour les données normales

de façon à mapper le processus en mémoire le plus vite
possible

23/09/2018 © Alexis Polti SE203page 100

Anatomie d'un exécutable

ELF : les segments
Program headers

typedef struct{
Elf32_Word type; // loadable code or data, dynamic linking info, etc.
Elf32_off offset; // file offset of segment
Elf32_Addr virtaddr; // virtual address to map segment (VMA)
Elf32_Addr physaddr; // physical address (LMA)
Elf32_Word filesize; // size of segment in file
Elf32_Word memsize; // size of segment in memory (bigger if contains bss)
Elf32_Word flags; // Read, Write, Execute bits
Elf32_Word align; // required alignment, invariably hardware page size

} Elf32_Phdr;

23/09/2018 © Alexis Polti SE203page 101

Anatomie d'un exécutable

ELF : les segments
type :
PT_LOAD : le segment est mappable en mémoire
PT_DYNAMIC : le segment est dynamiquement partageable
PT_INTERP : spécifie un interpréteur / loader

LMA / adresse physique :
adresse de stockage avant recopie

VMA / adresse virtuelle :
adresse en mémoire après recopie par crt0

rappel : rien à voir avec les adresse physiques /
virtuelles des MMU

23/09/2018 © Alexis Polti SE203page 102

Anatomie d'un exécutable

ELF : les segments

alexis@plop> arm-none-eabi-gcc t.o stubs.c -o t
alexis@plop> arm-none-eabi-readelf -l t

Elf file type is EXEC (Executable file)
Entry point 0x80e8
There are 3 program headers, starting at offset 52

Program Headers:
 Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align
 EXIDX 0x012488 0x00012488 0x00012488 0x00008 0x00008 R 0x4
 LOAD 0x000000 0x00000000 0x00000000 0x12494 0x12494 R E 0x10000
 LOAD 0x012494 0x00022494 0x00022494 0x009c0 0x00a20 RW 0x10000

 Section to Segment mapping:
 Segment Sections...
 00 .ARM.exidx
 01 .init .text .fini .rodata .ARM.exidx .eh_frame
 02 .init_array .fini_array .data .bss

23/09/2018 © Alexis Polti SE203page 103

Anatomie d'un exécutable

Outils ELF
objdump : examen du contenu d'objets
objdump -f : infos générales
objdump -h : les section
objdump -p : les segments
objdump -t : la table des symboles
objdump -x : tous les headers
objdump -d : désassemble les sections de code
objdump -S : désassemble les sections de code en
 mixant avec le source C (s'il contient des
 informations de débug)

23/09/2018 © Alexis Polti SE203page 104

Anatomie d'un exécutable

Outils ELF
readelf : idem, mais que pour ELF
readelf -h : infos générales
readelf -S : les section
readelf -l : les segments
readelf -s : la table des symboles
readelf -d : les sections dynamiques

complémentaire d'objdump

23/09/2018 © Alexis Polti SE203page 105

Où en est-on ?

On sait maintenant :
écrire du C propre
ce que fait un compilateur
à quoi sert un éditeur de lien
comment sont architecturés les exécutables

On va voir
comment piloter l'éditeur de lien pour produire
l'exécutable qu'on veut.

23/09/2018 © Alexis Polti SE203page 106

Linkers et linker scripts

Quel mapping pour les
exécutables ?

le plan d'adressage est défini par
l'OS ainsi que le linker

quand il n'y a pas d'OS, c'est à
l'exécutable lui-même de créer sa
pile / le tas (si nécessaire)

bss

pile
(stack)

tas
(heap)

data

text

défini par
l'OS

ou le linker

défini par le
linker

23/09/2018 © Alexis Polti SE203page 107

Linkers et linker scripts

Link
le script de link définit :

comment sont rassemblées les
sections
le point d'entrée
d'éventuels symboles additionnels
…

Les segments sont créés
automatiquement après avoir
rassemblé les sections.

text

bss

data

text

bss

data
text

bss

data

a.o

b.o

exécutable

23/09/2018 © Alexis Polti SE203page 108

Linkers et linker scripts

MEMORY
permet de décrire le layout de la mémoire. Optionnel.
chaque entrée est appelée « région »
exemple :

 MEMORY
 {
 rom (rx) : ORIGIN = 0, LENGTH = 256K
 ram (wx) : ORIGIN = 0x40000, LENGTH = 4M
 }

23/09/2018 © Alexis Polti SE203page 109

Linkers et linker scripts

SECTION
permet de décrire comment fusionner les sections des
objets d'entrée :

section [VMA_address] : [AT(LMA_address)[ALIGN(section_align)]
 {
 output-section-command
 output-section-command
 ...
 } [>VMA_region] [AT>LMA_region]

23/09/2018 © Alexis Polti SE203page 110

Linkers et linker scripts

// LDSCRIPT

SECTIONS
 {
 .text : {

*(.text)
} > rom

 .rodata : AT (ADDR(.text) + SIZEOF(.text)){
*(.rodata)

}

 .data 0x2000 : {
*(.data)

} AT> rom

 .bss 0x3000 : {
*(.bss) *(COMMON)

}
 }

23/09/2018 © Alexis Polti SE203page 111

Linkers et linker scripts

Commandes :
ENTRY(symbol) :

définit "symbol" comme étant le point d'entrée du programme
usuellement : _start

symboles et affectations :
crée un symbole et lui donne une valeur
exemple : etext = 0x1000;

les symboles sont accessibles depuis le C, mais :
ils ne contiennent pas de valeur
ils ont seulement une adresse !!!

23/09/2018 © Alexis Polti SE203page 112

Linkers et linker scripts

Exemple :

// LDSCRIPT
start_of_RAM = 0x1000;
start_of_TEXT = .text;
sizeof_of_TEXT = sizeof (.text);

// init.c
extern uint8_t start_of_RAM, end_of_TEXT,
 sizeof_of_TEXT;

memcpy (&start_of_RAM, &start_of_TEXT, &sizeof_of_TEXT);

23/09/2018 © Alexis Polti SE203page 113

Linkers et linker scripts

.
location counter
modification :

à l'intérieur d'une section : offset
par rapport au début de la section

à l'extérieur d'une section :
adresse (VMA) absolue

affecté à un symbole :
symbole = VMA(.)

ne peut jamais revenir en
arrière

SECTIONS
 {
 . = 0x100;
 .text: {
 *(.text)
 . = 0x200;
 }
 . = 0x500
 .data: {
 *(.data)
 . += 0x600;
 }
 }

23/09/2018 © Alexis Polti SE203page 114

Linkers et linker scripts

// LDSCRIPT

MEMORY {
 rom (rx) : ORIGIN = 0x00000000, LENGTH = 256K
 ram (!rx): ORIGIN = 0x00200000, LENGTH = 1M
}

SECTIONS {
 .text : {

*(.text)
_etext = . ;

} > rom

 .data : AT (ADDR(.text)+SIZEOF(.text)) {
_data = . ;
*(.data)
_edata = . ;

} > ram

 .bss : {
_bstart = . ;
*(.bss) *(COMMON)
_bend = . ;

} > ram
}

// init.c

extern char _etext, _data,
 _edata, _bstart, _bend;

uint8_t *src = &_etext;

uint8_t *dst = &_data;

// ROM has placed .data at end of .text.
// Copy .data to RAM
while (dst < &_edata)
 *dst++ = *src++;

// Zero out bss
for (dst = &_bstart; dst < &_bend; dst++)
 *dst = 0;

23/09/2018 © Alexis Polti SE203page 115

Linkers et linker scripts

Autres commandes pratiques:
ORIGIN(region) :

renvoie l'adresse de début d'une région

LENGTH(region) :
renvoie la longueur d'une région

ADDR(section) :
renvoie la VMA d'une section

LOADADDR(section) :
renvoie la LMA d'une section

SIZEOF(section) :
renvoie la taille d'une section

23/09/2018 © Alexis Polti SE203page 116

Derniers détails

crt0.s
en charge de préparer l'espace d'exécution

prépare la pile et positionne le pointeur de pile
met le bss à zéro
recopie les données de la ROM vers la RAM
en utilisant les symboles exportés par le linker

si on est sûr que data et/ou bss sont vides, ce n'est pas
la peine de les initialiser
symboles spéciaux : etext, edata, end

23/09/2018 © Alexis Polti SE203page 117

Derniers détails

Conversion de formats
il est préférable de garder le plus de détails sur un exécutable, le
plus longtemps possible : travailler en ELF
mais un fichier ELF n'est pas bootable tel quel (pas mappable en
mémoire sans un loader)
il faut d'abord le transformer en une image mémoire avant de le
flasher comme code de boot dans une ROM

objcopy -O binary bootloader.elf bootloader.bin

manipule les sections selon leur LMA lors de la génération d'une
image binaire
peut modifier des sections au passage :

strip
relocations

23/09/2018 © Alexis Polti SE203page 118

Derniers détails

Conversion de formats
inversement, il est possible de transformer un fichier
binaire quelconque en une section ELF (.data par défaut) :

objcopy -I binary -O elf64-little -B i386 input_file output_file

objcopy -B crée aussi trois symboles :
_binary_input_file_start
_binary_input_file_end
_binary_input_file_size

23/09/2018 © Alexis Polti SE203page 119

Cooool, encore des exercices !

À vous de travailler :
exercice 1 : facile
exercice 2 : moyen
exercice 3 : compliqué

23/09/2018 © Alexis Polti SE203page 120

Exercices

Exercice 1
Slide 96 : pour y, l'adresse est "4", ce qui est très
bizarre !

En vous aidant du manuel d'objdump et en
expérimentant avec, pour y, des types de tailles
différentes (plus et moins grandes), corrigez le slide. On
compilera pour ARM.

N'oubliez pas de fournir le code des expérimentations
que vous avez faites.

23/09/2018 © Alexis Polti SE203page 121

Exercices

Exercice 2 :
1) Sur un PC Linux x86_64 actuel et par adresses

croissantes, dans quel ordre sont stockées les sections
suivantes : text, data*, rodata*, bss, pile et tas ?

2) Dans quel sens croît la pile ?

Remarque : ce n'est pas le résultat qui m'intéresse (je
le connais déjà), mais la façon dont vous y êtes arrivé.
Justifiez-donc en détail vos réponses.

23/09/2018 © Alexis Polti SE203page 122

Exercices

Exercice 3 :
1) Compilez sans édition de lien ce code-ci (http://bit.ly/2ApXoDl)

pour ARM avec une chaîne récente, et avec les optimisations
suivantes : Os, O0, O1 et O2.
Pour chaque niveau d'optimisation, justifiez la taille des sections de
données que vous obtenez.

2) Remplacez const char mesg[] par static const char
mesg[]. Expliquez les différences dans les sections de données par
rapport à la question précédente (elles dépendent ici aussi des
optimisations).

3) Remplacez const char mesg[] par const char *mesg. puis
par const char * const mesg. Expliquez les différences dans
le code généré et les sections de données par rapport à la question
2.

http://bit.ly/2ApXoDl

23/09/2018 © Alexis Polti SE203page 123

Exercices

Exercice 3 : indications
Cet exercice est destiné à vous faire manipuler gcc et
objdump. Il a l'air simple, mais c'est un véritable jeu de
piste, complexe, et qui prend du temps. Vous devrez
avancer pas à pas, compiler, examiner à la loupe les
différentes sections, tester, recommencer. N'hésitez pas
à poser des questions au fur et à mesure par mail.

Si vous devez faire une édition de lien pour produire un
exécutable, il vous faudra fournir certaines fonctions
(une version bidon suffira) : vous pouvez soit les écrire
vous même, soit les trouver ici : http://bit.ly/2Bv1TMr

http://bit.ly/2Bv1TMr

23/09/2018 © Alexis Polti SE203page 124

Exercices

Pour ceux qui sont perdus :
Commencez par -O0, et examinez le contenu de .rodata (objdump -s).
Pourquoi contient-elle deux fois la même chaîne ? D'ailleurs est-ce bien la
même chaîne ?

Regardez le code généré (objdump toujours, à vous de trouver la bonne
option) : quelle chaîne est utilisée ? À quelle fonction est-elle passée ?
Pourquoi n'est-ce pas la même fonction que celle spécifiée dans le code
C ? Quel est l'intérêt ? (le man de cette fonction pourra vous aider). La suite
va permettre de comprendre à quoi sert l'autre chaîne.

Compilez en -O1. Regardez les sections de données et leur contenu. Que
remarquez-vous ? Une recherche sur google du nom de la section de
données nouvellement apparue vous indiquera son utilité. Avec une édition
de lien, vous trouverez quelle chaîne est véritablement utilisée. À vous de
faire la suite.

Attention : stackoverflow n'est pas votre ami !

23/09/2018 © Alexis Polti SE203page 125

Licence de droits d'usage

Par le téléchargement ou la consultation de ce document, l’utilisateur accepte la licence d’utilisation qui y est
attachée, telle que détaillée dans les dispositions suivantes, et s’engage à la respecter intégralement.

La licence confère à l'utilisateur un droit d'usage sur le document consulté ou téléchargé, totalement ou en partie, dans
les conditions définies ci-après, et à l’exclusion de toute utilisation commerciale.

Le droit d’usage défini par la licence autorise un usage dans un cadre académique, par un utilisateur donnant des cours
dans un établissement d’enseignement secondaire ou supérieur et à l’exclusion expresse des formations commerciales
et notamment de formation continue. Ce droit comprend :

● le droit de reproduire tout ou partie du document sur support informatique ou papier,
● le droit de diffuser tout ou partie du document à destination des élèves ou étudiants.

Aucune modification du document dans son contenu, sa forme ou sa présentation n’est autorisé.

Les mentions relatives à la source du document et/ou à son auteur doivent être conservées dans leur intégralité.

Le droit d’usage défini par la licence est personnel, non exclusif et non transmissible.

Tout autre usage que ceux prévus par la licence est soumis à autorisation préalable et expresse de l’auteur :

alexis.polti@telecom-paristech.fr

Contexte académique } sans modification

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43
	Diapo 44
	Diapo 45
	Diapo 46
	Diapo 47
	Diapo 48
	Diapo 49
	Diapo 50
	Diapo 51
	Diapo 52
	Diapo 53
	Diapo 54
	Diapo 55
	Diapo 56
	Diapo 57
	Diapo 58
	Diapo 59
	Diapo 60
	Diapo 61
	Diapo 62
	Diapo 63
	Diapo 64
	Diapo 65
	Diapo 66
	Diapo 67
	Diapo 68
	Diapo 69
	Diapo 70
	Diapo 71
	Diapo 72
	Diapo 73
	Diapo 74
	Diapo 75
	Diapo 76
	Diapo 77
	Diapo 78
	Diapo 79
	Diapo 80
	Diapo 81
	Diapo 82
	Diapo 83
	Diapo 84
	Diapo 85
	Diapo 86
	Diapo 87
	Diapo 88
	Diapo 89
	Diapo 90
	Diapo 91
	Diapo 92
	Diapo 93
	Diapo 94
	Diapo 95
	Diapo 96
	Diapo 97
	Diapo 98
	Diapo 99
	Diapo 100
	Diapo 101
	Diapo 102
	Diapo 103
	Diapo 104
	Diapo 105
	Diapo 106
	Diapo 107
	Diapo 108
	Diapo 109
	Diapo 110
	Diapo 111
	Diapo 112
	Diapo 113
	Diapo 114
	Diapo 115
	Diapo 116
	Diapo 117
	Diapo 118
	Diapo 119
	Diapo 120
	Diapo 121
	Diapo 122
	Diapo 123
	Diapo 124
	Diapo 125

