TELECOM
ParisTech

— o3 1l

Institut
Mines-Télécom

Chaine de compilation

Genese et autopsie des executables

_ Licence de droits d'usage

23/09/2018 © Alexis Polti SE203

Contexte académique } sans modification

Ed

Par le téléchargement ou la consultation de ce document, I'utilisateur accepte la licence d’utilisation qui y est
attachée, telle que détaillée dans les dispositions suivantes, et s’engage a la respecter intégralement.

La licence confére a l'utilisateur un droit d'usage sur le document consulté ou télécharge, totalement ou en partie, dans
les conditions définies ci-aprés, et a I'exclusion de toute utilisation commerciale.

Le droit d’'usage défini par la licence autorise un usage dans un cadre académique, par un utilisateur donnant des cours
dans un établissement d’enseignement secondaire ou supérieur et a I'exclusion expresse des formations commerciales
et notamment de formation continue. Ce droit comprend :

* e droit de reproduire tout ou partie du document sur support informatique ou papier,
* le droit de diffuser tout ou partie du document a destination des éléves ou étudiants.

Aucune modification du document dans son contenu, sa forme ou sa présentation n’est autorisé.
Les mentions relatives a la source du document et/ou a son auteur doivent étre conservées dans leur intégralite.

Le droit d’'usage défini par la licence est personnel, non exclusif et non transmissible.
Tout autre usage que ceux prévus par la licence est soumis a autorisation préalable et expresse de l'auteur :
alexis.polti@telecom-paristech.fr

TELE

COM

sTech

tl;dr

@ Ce qu'on va apprendre :
@ ecrire du C propre
@ ce que fait un compilateur
@ ce que fait un éditeur de lien

@ comment sont construits les exécutables,
a l'octet pres

@ Au passage, on va dégommer beaucoup
de mythes urbains comme :

@ "un char fait 8 bits"

@ "GCC est un compilateur"
‘ @ ..

TELECOM

. ParisTech
23/09/2018 © Alexis Polti SE203 .

I Avant tout

» Installer votre chaine de cross-compilation
> GCC ARM Embedded, maintenue par ARM.

@ https://developer.arm.com/open-source/gnu-toolchain/gnu-rm/downloads
» L'installer ou vous voulez (/opt par exemple).

» Pensez a mettre a jour votre SPATH !

‘ TELECOM

| ParisTech
age 4 23/09/2018 © Alexis Polti SE203 =
- osos 0 omedspomistes v

https://developer.arm.com/open-source/gnu-toolchain/gnu-rm/downloads

_ Compléments de C

» Taille des entiers

» Sur combien de bits sont codes les types suivants ?
» char
» short
» int
» long
» long long

‘ TELECOM

ParisTech
page 5 23/09/2018 © Alexis Polti SE203 =
e

_ Compléments de C

» Taille des entiers

» Sur combien de bits sont codes les types suivants ?
» char : au moins 8
» short : au moins 16
» int : au moins 16
» long : au moins 32
» long long :au moins 64

» En C99, on dispose dans stdint.h de:
»int8 t / uint8 t
»intl6 t / uintlé t
»int32 t / uint32 t
»int64 t / uint64 t

‘ TELECOM

. ParisTech
23/09/2018 © Alexis Polti SE203 .

_ Compléments de C

» Taille des entiers
» Qu'est-ce qu'un octet / byte ?
» Qu'affiche le programme suivant ?

#include <stdio.h>
#include <stdint.h>

int main()

{
uint32 t a= 0x44332211;

uint8 t *p = (uint8 t *) &a;
printf("premier octet de a = %$x\n", *p);

return 0;

‘ TELECOM

ParisTech
23/09/2018 © Alexis Polti SE203 .

2°™ commandement de I'UE

@ int est le type "naturel" du processeur,

celui dont les manipulations sont les plus
rapides. On I'emploiera quand on n'a pas
spécifiquement besoin d'un autre type.
Exemples : indice de boucles, fd, ...

* Quand on a besoin de connaitre la taille
de stockage d'une variable, on utilisera

les type exacts de C99: 1nt8_t,
uint8_t, etc. Rien d'autre !

! TELECOM

ParisTech
23/09/2018 © Alexis Polti SE203 .

3" commandement de I'UE

@ On utilisera au moins le standard C99 avec
les extensions GNU de GCC :

gcc -std=gnu99

‘ TELECOM

ParisTech
23/09/2018 © Alexis Polti SE203 .

_ Compléments de C

» Inclusions réciproques

» si deux headers se référencent mutuellement,

comment les écrire ?
° exemple :

/* a.h */
#include "b.h"

/* b.h */
#include "a.h"

‘ TELECOM

ParisTech
page 10 23/09/2018 © Alexis Polti SE203 =
e

_ Compléments de C

» Inclusions réciproques

» si deux headers se référencent mutuellement,

comment les écrire ?
° exemple :

/* a.h */
#ifndef A H
#define A H
#include "b.h"
#fendif
/* b.h */
#ifndef B H
#define B H

#include "a.h"

#tendif

‘ TELECOM

ParisTech
page 11 23/09/2018 © Alexis Polti SE203 .

4°™ commandement de I'UE

® Les headers seront toujours protégés
contre les inclusions cycliques.

‘ TELECOM

ParisTech
page 12 23/09/2018 © Alexis Polti SE203 .

_ Compléments de C

» Les goto existent !

> comme en assembleur, on peut définir des labels et
sauter a I'un de ces labels
{

start:
if (..)

goto end;
goto start;

end:

}

» attention : a consommer avec modération !
@ http://cs.sjsu.edu/~mak/CS185C/KnuthStructuredProgrammingGoTo.pdf

‘ TELECOM

. ParisTech
page 13 23/09/2018 © Alexis Polti SE203 =
e

http://cs.sjsu.edu/~mak/CS185C/KnuthStructuredProgrammingGoTo.pdf

_ Compléments de C

» Les goto existent !
» cas d'utilisation legitimes :

void foo() void foo()
{ {
if (!try A()) while (...) {
goto exit; while (...) {
if (!try B()) if (...)

goto cleanupA;
if (!try C())
goto cleanupB;

// everything succeeded
return;

cleanupB:
undoB() ;
cleanupA:
undoA() ;
exit:
return;

goto end;
// loop action

}
}

end:
// end action

}

@ gestion des erreurs 2 sortie de boucles imbriquées
‘ TELECOM

ParisTech
page 14 23/09/2018 © Alexis Polti SE203 .

_ Compléments de C

» Type de mainen C
» quel est le type de main ?
» pourquoi est-ce (tres-vraiment-tres-tres) important ?

‘ TELECOM

ParisTech
page 15 23/09/2018 © Alexis Polti SE203 =
 pagets | e

_ Compléments de C

» Type modifier : const

» const : la valeur en question est constante
» const int a:?
» const int * a:?
» int const * a:?
» int * const a:?
» const int * const a:?

» comment retenir facilement le sens ?

‘ TELECOM

. ParisTech
page 16 23/09/2018 © Alexis Polti SE203 =
e

5°Me commandement de I'UE

@ Tout ce qui est constant sera deéclare
const.

‘ TELECOM

ParisTech
page 17 23/09/2018 © Alexis Polti SE203 .

_ Compléments de C

» Type modifier volatile

s volatile:

» |a variable peut étre modifiée par autre chose que le flot
normal de code
« autre thread
« handler d'interruption
¢ quoi d'autre ?

‘ TELECOM

. ParisTech
age 18 23/09/2018 © Alexis Polti SE203 =
- osos 0 omedspomistes v

_ Compléments de C

2 Acces a des périphérigues mappés en mémoire
s deréférencer une adresse precise
» comment faire, en C ?

‘ TELECOM

. ParisTech
page 19 23/09/2018 © Alexis Polti SE203 =
| pagets | e

_ Compléments de C

2 Acces a des périphérigues mappés en mémoire
s deréférencer une adresse precise
» comment faire, en C ?

// Contrdéleur de GPIO en 0xA300020
volatile uint32 t * const gpio config = (uint32 t *) 0xA300020;

// Utilisable ainsi :
*gpio config = 20;
uint32 t value = *gpio config;

// Autre possibilité
#define GPIO REG (*(volatile uint32 t *) 0xA300020)

GPIO REG = 20;
value = GPIO_ REG;

page 20 23/09/2018 © Alexis Polti SE203

TELECOM

ParisTech

6™ commandement de I'UE

@ pour accéder a un registre mappé en memoire, on utilisera
cette construction :
#tdefine REG (*(volatile uint32 t *)0xff00££00)

@ dans d'autres UE, on verra d'autres constructions tout aussi
élegantes, notamment pour des sets de registres.

‘ TELECOM

. ParisTech
page 21 23/09/2018 © Alexis Polti SE203 =T
| pagert | e

Ou en est-on ?

20navu
@ quelques rappels importants de C

@ On va voir maintenant
@ ce que fait exactement une chaine de compilation
@ ce que fait un compilateur
@ écrire du C propre
@ a quoi sert un éditeur de lien

@ On verra plus tard
@ comment sont architecturés les exécutables

@ comment piloter I'éditeur de lien pour produire
‘ I'exécutable qu'on veut.

. ParisTech
page 22 23/09/2018 © Alexis Polti SE203 =
e

TELECOM

I Chaine de compilation

» Compilation

—» executable

pré-processeur compilateur C assembleur linker
1 1 1 1
1 1 1 1
| |
ac——+ »ai 1 »as —+»>ao
? : : 1 1
| I 1 |
a.h ! : ; :
§ I . I I
| | |
| AR ; : :
bc 1> bi—*»bs 7 »bo
4 : :
| |
b.h crt0.s > crt0.o
| |

|dscript

: fichier source
: fichier de déclarations
: unité de compilation

. script de link

page 23 23/09/2018 © Alexis Polti SE203

TELECOM

ParisTech

_ Chaine de compilation : GCC

s Exemple : GCC
» GCC : GNU Compiler Collection

» compilateurs
2 pré-processeurs
s driver (gcc -v/gcc -###)
@ binutils
» éditeur de lien (linker) : 1d / gold / collect?2
» assembleur : as
2 objcopy, objdump, gprof, strip, readelf, nm, size

» GNU Debugger : gdb

> Bibliotheque C
2 glibc, eglibc
» newlib, tinylibc, dietlibc
‘ @ klibc

. ParisTech
page 24 23/09/2018 © Alexis Polti SE203 .

TELECOM

_ Chaine de compilation : GCC

s Pre-processeur : cpp

® processeur texte

° interprete les directives de compilation
» $include

» #define
» #ifdef

-+

» produit un fichier C pre-processeé (.1, .ii pourle C++)
» on peut voir le fichier résultant avec gcc -E

» -Dname / -Dname=value : déefinit des macros

» —Uname : annule la définition de macros

‘ TELECOM

. ParisTech
page 25 23/09/2018 © Alexis Polti SE203 .

I Chaine de compilation : GCC

» Pré-processeur : fichiers .h

» user include files ; #include
» system include files : #include

» —iquote dir:
« gjoute dir a la liste ou sont cherchés les headers utilisateurs

» —isystem dir:
¢ gjoute dir a la liste ou sont cherchés les headers systemes

» =T dir:
« gjoute dir a la liste ou sont cherchés les headers

» —nostdinc:

« limite la recherche des headers a « . » et aux répertoires spécifiés par -I
‘ et —-iquote

TELECOM

. ParisTech
page 26 23/09/2018 © Alexis Polti SE203 =
e

_ Chaine de compilation : GCC

2 Compilation
@ production d'un fichier assembleur : gcc -S
@ production d'un objet : gcc -c

@ cross compilation : le compilateur produit du code pour une cible différente de la
machine ou il s'exécute

compilation du

compilateur exécution du compilateur exeécution du code nom
x86 x86 x86 natif
x86 x86 ARM Cross
x86 SH x86 crossback
x86 SH SH crossed native
x86 SH PPC canadian cross

@ un cross-compilateur se comporte comme un compilateur natif
@ certaines cibles ont des options particulieres :
gcc —--target-help pour les connaitre

TELECOM

| ParisTech
age 27 23/09/2018 © Alexis Polti SE203 =
- osos 0 omedspomistes v

Ou en est-on ?

20navu
@ quelques rappels importants de C
@ |es chaines de compilation

@ On va voir maintenant
@ ce que fait un compilateur
@ écrire du C propre
@ a quoi sert un éditeur de lien

@ On verra plus tard
@ comment sont architecturés les exécutables

@ comment piloter I'éditeur de lien pour produire
‘ I'exécutable qu'on veut.

. ParisTech
page 28 23/09/2018 © Alexis Polti SE203 =
e

TELECOM

_ Bases de compilation
» Code

s nous utiliserons la définition suivante de code :
suite d'instructions destinées a un ordinateur

» exemples de code :

» code C : programme en langage C

» code machine : suite de mots binaires directement
executables par un processeur

» pytecode : suite de mots exécutables par une machine
virtuelle

» pseudocode : suite d'instructions a effectuer, facilement
comprehensibles par des humains

‘ TELECOM

. ParisTech
page 29 23/09/2018 © Alexis Polti SE203 .

_ Bases de compilation

* Processus de compilation

Fichier source

Analyse

Exécutable

Génération de code
(étudiée ici)

Arbre sémantique

page 30 23/09/2018

© Alexis Polti SE203

TELECOM

ParisTech

i

_ Bases de compilation

» Etapes
» La definition d'un langage intermédiaire facilite la
reutilisation :

» M parties frontales et N générateurs de code permettent
d'écrire M + N + 1 fragments plutét que M N

» e génerateur de code peut produire

» soit directement du code machine

» soit de l'assembleur
« possibilité d'optimisations par I'assembleur : calcul de déplacement, etc.

‘ TELECOM

. ParisTech
page 31 23/09/2018 © Alexis Polti SE203 .

_ Bases de compilation

» Frontal (front-end)

» La partie frontale d'un compilateur

» transforme le code en un arbre syntaxique
» construit les associations sémantiques
» vérifie la syntaxe et la sémantique du code

> Elle peut egalement

» opeérer des transformations sur l'arbre (optimisations,
simplifications)

» generer des informations de haut-niveau (nombre de lignes de
code, présence de code mort, ...)

‘ TELECOM

. ParisTech
page 32 23/09/2018 © Alexis Polti SE203 .

_ Bases de compilation

s Exemple : GCC

> GCC (GNU Compiler Collection) utilise un langage
iIntermediaire : gimple

> GCC geénere un fichier assembleur temporaire

° L'optimisation se fait a chaque niveau

» || est facile de rajouter :

2 un nouveau langage
» une nouvelle cible

> GCC peut étre configuré en n'importe quelle
configuration (natif, cross, cross back, crossed native,
canadian cross)

TELECOM

; ParisTech
page 33 23/09/2018 © Alexis Polti SE203 .

_ Bases de compilation

» Génération de code

» But : permettre a chague sous-programme présent
dans l'arbre d'étre appele

> Moyens :

» pour chaque instruction, générer du code effectuant les
bonnes opeérations

» generer du code pour l'entrée (prologue) et la sortie (épilogue)
du sous-programme

‘ TELECOM

. ParisTech
page 34 23/09/2018 © Alexis Polti SE203 .

_ Bases de compilation

» Code machine
» | e code machine
» est simple : xv n'existe pas
» apeudarguments: f(u, v, w, x, y, z) estimpossible
» est peu structuré : for(i=0; i<10; i++) n'estpas
représentable simplement

o || faut transformer l'arbre en instructions élémentaires

‘ TELECOM

. ParisTech
page 35 23/09/2018 © Alexis Polti SE203 =
e

_ Bases de compilation

» Constructions ternaires

» classiquement, chaque operation est transformée en
une suite de constructions géneralement ternaires, car
cela:

» correspond aux possibilités usuelles d'un microprocesseur

» permet d'optimiser indépendamment chaque instruction
» permet d'unifier les sous-expressions communes

» certains jeux d'instructions ARM disposent de quelques
opérations plus que ternaires (MLA, STM, LDM).

TELECOM

; ParisTech
age 36 23/09/2018 © Alexis Polti SE203 =
- osos 0 omedspomistes v

_ Bases de compilation

» Constructions usuelles

s sur les architectures load / store :

» une instruction ne peut manipuler que des registres
> |'acces a la mémoire se fait par les instructions LDR et STR

® pour acceéder a une variable, il faut donc :

» d'abord stocker son adresse (connue a I'édition de lien) dans
un registre

» puis accéder a la mémoire (LDR ou STR)

‘ TELECOM

. ParisTech
page 37 23/09/2018 © Alexis Polti SE203 .

_ Bases de compilation

» Constructions usuelles (ARM)
@ avec GCC,un symbole représente

» en C : la valeur d'une variable
» en assembleur ou linker script : I'adresse de cette variable

@ ainsi, avec a entier 32 bits, a = 3; pourrait devenir :

ldr r3, [pc, #4] ; r3 « &a
mov r2, #3 r2 « 3
str r2, [r3] 3 - mem[&a]

N0 WO wNe N

.word a adresse de a
I

ldr r3, = s r3 <« &a

mov r2, #3 s r2 « 3

str r2, [r3] 3 - mem|[&a]

e

‘ TELECOM

ParisTech
page 38 23/09/2018 © Alexis Polti SE203 =
| pageds | e

_ Bases de compilation

» Constructions usuelles (ARM)
int32 t a, b;
a = b?
pourrait devenir :

ldr r3, =a s r3 « &a
ldr r2, =b s Y2 « &b
ldr r2, [r2] ; r2 « b

str r2, [r3] ; b - mem[é&a]

‘ TELECOM

ParisTech
page 39 23/09/2018 © Alexis Polti SE203 .

_ Bases de compilation

» Constructions usuelles (ARM)
int32 t a, b, c;
a = a + b¥c;
pourrait devenir :

ldr r3, =a ; r3 <« &a

ldr rl, =b ;s rl « &b

ldr r2, =c s r2 « &cC

ldr r0, [rl] ; r0 « b

ldr r2, [r2] ; 2 « C

ldr rl, [r3] ; rl « a

mla r2, rO, r2, rl ; r2 « b*c + a
str r2, [r3] ; r2 - mem[é&al]

‘ TELECOM

ParisTech
page 40 23/09/2018 © Alexis Polti SE203 .

_ Bases de compilation

» Constructions usuelles (ARM)
*ptt+ = 3;
pourrait devenir :

ldr r2, =p r2 « &p
ldr r3, [r2] r3 «p
mov rl, #3 rl « 3

str rl, [r3], #4
str r3, [r2]

3 > mem[p] puUiS r3 « p+4
p+4 - mem[&p]

e e e e o

‘ TELECOM

ParisTech
page 41 23/09/2018 © Alexis Polti SE203 .

_ Bases de compilation

» Constructions usuelles (ARM)
@ Sauts simples :

EnC: En C:
a. e o o
£();
goto aj;
devient : devient :
.o bl £
b a

‘ TELECOM

ParisTech
page 42 23/09/2018 © Alexis Polti SE203 .

_ Bases de compilation

a2 Constructions usuelles

@ Les boucles sont géneralement ré-ecrites selon la structure
suivante :

» 1 :initialisation des parametres de la boucle

» 2 : saut par-dessus l'étape 3 si le test est en fin de boucle
» 3 : test de sortie, saut aprés 6 si positif

» 4 : corps de la boucle

» 5 : execution de la partie finale de la boucle

» 6 : saut inconditionnel en 3

» 7 : suite du programme

‘ TELECOM

. ParisTech
page 43 23/09/2018 © Alexis Polti SE203 .

_ Bases de compilation

@ Constructions usuelles
@ Exemple : for (i=0;i<10;i++) {...}

2 1:1 =0

@ 2

»3:1if NOT(i < 10) goto 7
a4 ...

2 5:1 =1 +1

2 6:goto 3

2 7

‘ TELECOM

ParisTech
page 44 23/09/2018 © Alexis Polti SE203 .

_ Bases de compilation

a2 Constructions usuelles
o Exemple : while(c) {...}

»3:.if NOT(c) goto 7

2 6:.goto 3

‘ TELECOM

ParisTech
page 45 23/09/2018 © Alexis Polti SE203 .

_ Bases de compilation

@ Constructions usuelles
o Exemple:do {...} while(c)

° 1
2 2:.goto 4
»3:if NOT(c) goto 7

‘ TELECOM

ParisTech
page 46 23/09/2018 © Alexis Polti SE203 .

Chouette, des exercices !

@ A vous de travailler :
@ exercice 1 : facile
@ exercice 2 : moyen

‘ TELECOM

ParisTech
page 47 23/09/2018 © Alexis Polti SE203 .

_ Exercices de compilation

@ Exercice 1

@ Traduire en assembleur ARM le code suivant :
uint32 t a; // global variable

for (uint8 t i=0; i<=a; i++)
g();

@ Méme question si i est un unsigned int. Conclusion ?

@ Indice : pour voir ce que produit GCC pour ARM :
uint32 t a; // global variable

___attribute ((naked)) void f() {
for (uint8 t i=0; i<=a; i++)
g();

‘ Puis : arm-none-eabi-gcc -0Os -S t.c

TELECOM

ParisTech
page 48 23/09/2018 © Alexis Polti SE203 .

_ Exercices de compilation

» Exercice 2

* Traduire en assembleur ARM le code suivant :
// Global wvariables
uint32 t *a;
uint32 t *b;
uint32 t *c;

*a += *C;
‘*k) += *(:;

‘ TELECOM

ParisTech
page 49 23/09/2018 © Alexis Polti SE203 .

_ Exercices de compilation

s Exercice 2 (suite)
@ Comparez avec ce que produit GCC, ainsi :

// Global variables
uint32 t *a;
uint32 t *b;
uint32 t *c;

__attribute ((naked)) voidf() {
*a += *c;
*b += *c;

}

Puis : arm-none-eabi-gcc -02 -S t.c

@ Pourquoi GCC charge-t-il deux fois le contenu de *c au lieu d'une
seule ?

TELECOM

ParisTech
age 50 23/09/2018 © Alexis Polti SE203 =
- osos 0 omedspomistes v

Ou en est-on ?

20navu
@ quelques rappels importants de C
@ |es chaines de compilation
@ ce que fait un compilateur

@ On va voir maintenant
@ comment écrire du C propre
@ a quoi sert un éditeur de lien

@ On verra plus tard
@ comment sont architecturés les exécutables

@ comment piloter I'éditeur de lien pour produire
‘ I'exécutable qu'on veut.

. ParisTech
page 51 23/09/2018 © Alexis Polti SE203 =
| pagest | e

TELECOM

_ Compléments de C

» Déclaration vs. instanciation des variables

@ une variable possede plusieurs caractéeristiques

2 un nom (appelé symbole)
2 un type
2 et, si elle réside en mémoire, une adresse

@ déclaration :

2 association nom « type
» exemple : extern int a;
» empéche l'initialisation : extera—int—a=2+

@ jnstanciation / définition :

» déclaration + allocation de la mémoire pour stocker la variable
» exemple : int a;
» exemple : int a=3;

isTech
page 52 23/09/2018 © Alexis Polti SE203 .

TELECDM

_ Compléments de C

s Déclaration et instanciation des variables

° le compilateur peut générer du code utilisant une variable
mMEme si son adresse n'est pas encore connue
» il n'a besoin que d'en connaitre le type — la déclaration

» il lui assigne une adresse temporaire (nulle)
» cette adresse sera rectifiee lors de I'édition de lien

@ conséquence

» une variable ne doit étre instanciée qu‘une seule fois, dans un
fichier source .c
« exception : symboles weak, qu'on verra apres

» une variable exportée doit en plus :
« étre déclarée dans le header .h correspondant au fichier .c ou elle est
instanciée
¢ ce header sera inclus par tous les .c utilisant cette variable

TELECOM

| ParisTech
age 53 23/09/2018 © Alexis Polti SE203 =
- osos 0 omedspomistes v

_ Compléments de C

a Déclaration et instanciation des variables

* Exemple :

/* a.h */
extern int a;

/* a.c */
#include "a.h"
int a=3;

void foo() {
a=a+t+l;

}

/* b.c */
#include "a.

void bar() {
a=23;

}

hll

/* c.c */
#include "a.

void baz() {
g(a);
}

hll

page 54 23/09/2018 © Alexis Polti SE203

TELECOM

ParisTech

_ Compléments de C

» Déclaration et instanciation des variables

» ATTENTION PIEGE :

» avec le linker de GCC sous Linux, des variables de méme
noms instanciées dans des unités de compilation différentes
sont considérées comme une seule et méme instance, méme
si elles n'ont pas le méme type !l

» une erreur n'est émise gue si plus d'une instance est initialisée

! TELECOM

ParisTech
page 55 23/09/2018 © Alexis Polti SE203 .

_ Compléments de C

» Déclaration et instanciation des variables
> ATTENTION PIEGE : que donne le code (sale) suivant ?

/* a.c */ /* b.c */
#include <stdint.h> #include <stdint.h>
#include <stdio.h> #include <stdio.h>
void foo(); uint8 t aj;

uint32 t a=0x2f0;
void foo() {

int main() { a =a + 0x50;
foo(); printf("a=0x%x\n", a);
printf("a=0x%x\n", a); }
return 0;

}

NE JAMAIS ECRIRE CA !!!

‘ TELECOM

ParisTech
page 56 23/09/2018 © Alexis Polti SE203 .

_ Compléments de C

2 Déclaration vs. définition des fonctions
@ une fonction possede plusieurs caractéristiques :

2 un nom
» un type de retour

» une liste de parametres (type)
» un corps (la définition)

@ déclaration :

» association nom « (type de retour, types des parametres)
» exemple : int foo(int, char);

s définition :
» déclaration + code du corps de la fonction
» exemple : int foo(int a, char b) { return a+b; }

‘ TELECOM

. ParisTech
page 57 23/09/2018 © Alexis Polti SE203 .

_ Compléments de C

a Déclaration et définition des fonctions

@ le compilateur peut générer du code utilisant une fonction méme si
sa définition et/ou son adresse ne sont pas encore connues

+ il n'a besoin que de savoir
@ quels arguments lui passer
« comment récupérer la valeur de retour
« bref, connaitre seulement sa déclaration et les conventions d'appel (ABI)
» |'adresse a laquelle sauter pour executer la définition de la fonction est
prise temporairement nulle

2 et sera rectifiée a I'édition de lien

@ consequence

» une fonction ne doit étre définie qu'une seule fois, dans un fichier source
.C

» une fonction exportée doit en plus :
« étre déclarée dans le header .h correspondant au fichier ou elle est instanciée
« ce header sera inclus par tous les .c utilisant cette fonction

TELECOM

| ParisTech
age 58 23/09/2018 © Alexis Polti SE203 =
- osos 0 omedspomistes v

_ Compléments de C

a Déclaration et instanciation des fonctions
* Exemple :

/* a.h */
int foo(char, char);
int bar(char a, char b);

/* a.c */

#include "a.h" /* b.c */

#include "a.h"

int foo(char a, char b)

{

void baz()

return a+tb; {

} x = foo(a, b) + bar(e, f);

int bar(char c, char d))
{

return c+d;

‘ }

page 59 23/09/2018 © Alexis Polti SE203

_ Compléments de C

» Déclaration et instanciation des fonctions

» on souhaite parfois definir un objet par défaut que
I'utilisateur a la possibilité de remplacer s'il le souhaite

» exemple : handler d'interruption par defaut

® mais on ne peut pas avoir deux definitions conflictuelles

» pour les variables ¢a fait des choses monstrueuses
» pour les fonctions c'est interdit et ca déclenche une erreur

» solution : symboles weak

» exemple: attribute ((weak)) int a = 3;
» exemple: int attribute ((weak)) foo(int x);

TELECOM

; ParisTech
age 60 23/09/2018 © Alexis Polti SE203 =
- osos 0 omedspomistes v

_ Compléments de C

» Visibilité des objets
» en C, les objets (fonctions et variables) globaux sont
exportés par defaut

» pour les rendre privés a un fichier : static

° exemples :
» static int a;
» static void foo() { .. }

‘ TELECOM

| ParisTech
age 61 23/09/2018 © Alexis Polti SE203 =
- osos 0 omedspomistes v

_ Compléments de C

2 Fonctions inline

@ pour optimiser la vitesse d'exécution

2 @vite les prologues / épilogues / appels
» permet des optimisations entre appelant et appelé (arguments constants,

)
@ pas toujours possible

@ en C99:

s le plus simple : static inline void foo() {..}

» nécessite au moins -01 et dépend de la taille de la fonction
s forceruninline: attribute ((always inline))

2 empécheruninline: attribute ((noinline))

@ Les fonctions static inline seront dans cette UE les seules
fonctions a pouvoir étre définies dans des headers.

‘ TELECOM

. ParisTech
page 62 23/09/2018 © Alexis Polti SE203 .

7°™ commandement de I'UE

@ Les objets globaux ne seront définis / instanciés

@ qu'une seule fois
« seule exception : symboles weak

dans des fichiers sources (.c) uniqguement
« seule exception : fonctions static inline

@ Un objet global prive :
@ sera défini static
2 et ne sera donc pas déclaré dans un header (.h)

@ Un objet global exporté :

@ sera déclaré dans le header .h associé au fichier source (.c) ou il est
instancié
@ qui sera inclus par tous les . c utilisant cet objet

‘ TELECOM

. ParisTech
page 63 23/09/2018 © Alexis Polti SE203 =
| pagess | e

7™ commandement de I'UE
(suite)

@ Consequence, un header ne comporte gque :

» des déclarations d'objets globaux exportées
» des fonctions static inline

» des déclarations de types
» des macros et enum

@ RIEN D'AUTRE / AUCUNE INSTANCIATION

‘ TELECOM
. ParisTech

_ Compléments de C

» Variables locales

» auto : sont allouees / désallouées automatiquement
(généralement sur la pile)

o static : sont allouées et initialisées au lancement du

programme et durent pendant toute la duree du
programme

» par defaut, les variables locales sont de type auto

‘ TELECOM

. ParisTech
page 65 23/09/2018 © Alexis Polti SE203 .

_ Chaine de compilation / GCC
s Exemple : GCC

» gcc -0x : optimisations

-

it

wit

-+

<

-Os : taille

—-00 : aucune optimisation

-01 ... -0999 : de plus en plus d'optimisations
attention, a partir de -04 inclus, ¢a devient expérimental...
-0g : permet un debug plus simple

s gcc -g pour inclure des infos de debug

-+

influence sur la vitesse d'exécution du programme ?

TELECOM

ParisTech
page 66 23/09/2018 © Alexis Polti SE203 .

8" commandement de I'UE

o || n'y a jamais de bonnes raisons de compiler
en -00

@ On compilera toujours en
» —-01 ou -0Og : code simple a lire
» -02 : standard, mais code plus compliqué a
suivre

‘ TELECOM

. ParisTech
age 67 23/09/2018 © Alexis Polti SE203 =
- osos 0 omedspomistes v

_ Chaine de compilation / GCC

» Les warnings

° warning : quand le compilateur ne peut pas decider de
lui méme si un morceau de code est valide ou non
> pas la pour faire joli
» implique obligatoirement une intervention humaine

» |a plupart des projets serieux obligent une compilation sans
warnings

° flags :
» gcc -Wall : active tous les warnings facilement corrigeables
» gcc -Wextra : active des warnings supplementaires
» gcc -Werror : traite les warnings comme des erreurs

‘ TELECOM

. ParisTech
page 68 23/09/2018 © Alexis Polti SE203 .

9°" commandement de I'UE

@ Toutes les compilations se feront avec
-Wall -Wextra -Werror

‘ TELECOM

ParisTech
page 69 23/09/2018 © Alexis Polti SE203 .

Ou en est-on ?

@ On avu
@ quelques rappels importants de C
@ les chaines de compilation
@ comment écrire du C propre

@ On va voir maintenant
@ ce que fait un éditeur de lien

@ On verra plus tard
@ comment sont architecturés les exécutables

@ comment piloter I'éditeur de lien pour
‘ produire I'exécutable qu'on veut.

. ParisTech
page 70 23/09/2018 © Alexis Polti SE203 =
 pagero | e

TELECOM

I Edition de lien

2 Principe
@ |es fichiers objets

» peuvent contenir des références vers des symboles externes : les
adresses de ces symboles sont temporairement nulles

» ont un code loge temporairement a I'adresse 0

@ le linker se chargera de .

2 allouer a tous les symboles une adresse finale

» remplacer les reférences externes (adresses temporaires nulles) par
les adresses finales

@ pour cela, il va directement patcher le code, en s'aidant
d'informations indiquant comment procéder

» ces informations sont appelées "informations de relocation”

2 les symboles disposant de ces informations de relocation sont dit
"relogeables”

TELECOM

| ParisTech
age 71 23/09/2018 © Alexis Polti SE203 =
- osos 0 omedspomistes v

I Edition de lien

» Exemple

#include <stdio.h>
const char *mesg = "Hello World!";

int main() {
printf (mesgqg);
return 0;

}

// objdump -x

RELOCATION RECORDS FOR [.text]:

OFFSET TYPE VALUE
0000000c R_ARM CALL printf
0000001c R_ARM ABS32 mesg

page 72 23/09/2018 © Alexis Polti SE203

(G000000D<man>s Avant link
0 €92d4008 push {r3, 1r}
4: e59£3010 ldr r3, [pc, #16] ; lc <main+0Oxlc>
8: 5930000 1dr r0, [r3]
c: Cebfffffe bl 0 <printf>>
10: e3a00000 mov ro, #0
14: e8bd4008 pop {r3, 1r}
18: el2fffle bx lx
lc: <Q0000000 .word 0x00000000
(00008210)<main>: Aprés link
T €92d4008 push {r3, 1lr}
8220: e59£3010 ldr r3, [pc, #16] ; 8238 <main+0xlc>
8224: €5930000 1dr rQ, [r3]
8228:<€b000075 bl 8404 <printf>>
822c: e3a00000 mov TO0, #0
8230: e8bd4008 pop {r3, 1lr}
8234: el2fffle bx 1r
8238:0001a624 .word 0x0001a624 >

=

COM
Tech

I Edition de lien

2 Avec GCC
@ gcc -1 pour lier des bibliotheques

@ gcc -L spécifie le chemin de recherche des bibliotheques

» ['ordre a de I'importance ! Une bibliotheque compléte les objets precédents.
2 il est parfois nécessaire d'utiliser plusieurs fois -1.

@ gcc -nostartfiles pour ne pas lier les fichiers de démarrage
@ gcc -nodefaultlibs pour ne pas lier les bibliotheques standard
@ gcc -nostdlib pour combiner les deux

@ dans ces cas la, on veut qguand méme souvent 1ibgcc :

2 gcc -lgcc

gcc -nostdlib <files>... "gcc -print-libgcc-file-name"
@ gcc —W1, pour passer des options au linker

TELECOM

; ParisTech
page 73 23/09/2018 © Alexis Polti SE203 .

I Edition de lien

a2 Linker GCC : outil natif

@ on peut invoquer directement 1d

» permet de simplifier le passage d'options
» exemple : ——start-group / --end-group pour références
circulaires

@ fichiers d'entrée :
2 *.,0
2 *_.a

» ldscript

e par défaut, le script de link et les crt sont implicites

@ |e script de link spécifie comment assembler les différents
fichiers objets et résoudre les adresses pour produire le fichier
final.

\

. ParisTech
page 74 23/09/2018 © Alexis Polti SE203 .

TELECOM

I Edition de lien

» Linker GCC : optimisations

» | 'editeur de liens peut faire des optimisations a
posteriori :

» Le fichier objet stocke le GIMPLE des fonctions compilées.

» L'editeur de lien a alors une vision d'ensemble du programme,
comme si tout avait eté compilé d'un coup, et peut optimiser le
programme globalement.

» Voir https://gcc.gnu.org/onlinedocs/gccint/LTO-Overview.html
pour plus de details.

s gcc -flto

‘ TELECOM

. ParisTech
page 75 23/09/2018 © Alexis Polti SE203 .

https://gcc.gnu.org/onlinedocs/gccint/LTO-Overview.html

Ou en est-on ?

2 On sait maintenant :
@ écrire du C propre
@ ce que fait un compilateur
@ a quoi sert un éditeur de lien

@ On va voir
@ comment sont architecturés les exécutables

@ comment piloter I'éditeur de lien pour produire
I'executable gqu'on veut.

‘ TELECOM

. ParisTech
page 76 23/09/2018 © Alexis Polti SE203 =
 pagers | e

_ Anatomie d'un exécutable

» Composantes d'un exécutable
* le code
* |les données

» nécessite de les separer :

» recopies ROM — RAM
» Instances multiples de programmes
» instances multiples de bibliothéques

J []

» découpage en segments / sections

‘ TELECOM

. ParisTech
page 77 23/09/2018 © Alexis Polti SE203 .

_ Anatomie d'un exécutable

» Sections : apercu pile

(stack)
s text : le code
, TR T emplacement défini

» data : les donneées initialiseées par0s oule linker

» rodata : les constantes e
» pss : les données non initialisées, (heap)
ou initialisées a zéro

bss

emplacement deéfini data
par le linker

text

° Tres rarement :
» stack : pile
» heap : allocation dynamique (malloc)

TELECOM

; ParisTech
page 78 23/09/2018 © Alexis Polti SE203 .

_ Anatomie d'un exécutable

» Format des exécutables

@ |les executables sont destinés a étre exécutés

» soit directement
» soit a travers un loader

° les loaders ont besoin d'informations auxiliaires pour
charger un programme en memoire

° les images méemoire (directement exécutables) n'en ont
pas besoin.

» selon leur destination, les executables n'ont pas a
fournir les méme informations — différents formats !

TELECOM

| ParisTech
age 79 23/09/2018 © Alexis Polti SE203 =
- osos 0 omedspomistes v

_ Anatomie d'un exécutable

» Tant qu'on y est...

» [a compilation fait géneralement intervenir plusieurs
types de fichiers :

> des objets,
» des bibliotheques,

" LI I]

° les objets :

» contiennent du code

» ainsi que beaucoup d'informations auxiliaires (sections, infos de
débug, infos de relocation, ...)

° || serait bien d'avoir un méme format pour les
‘ executables et les objets

. ParisTech
page 80 23/09/2018 © Alexis Polti SE203 .

TELECOM

_ Anatomie d'un exécutable

» Format d'exécutable : image mémoire binaire
» = dump direct du contenu de la flash
» seul "format" pouvant assurer un boot
» aucune information auxiliaire
» facilement flashable
» difficile a désassembler / examiner

» variantes disponibles :
» S-REC
» |Intel HEX

page 81 23/09/2018 © Alexis Polti SE203

TELECOM
ParisTech

_ Anatomie d'un exécutable

*» Format d'exécutable : a.out
» plusieurs variantes

» organise les choses en segments :

» exec . infos sur les autres segments
» text : le code / constantes

» data : variables initialisées

» text relocations

» data relocations

» symbol table

2 string table

» abandonné pour COFF puis ELF / PE

» premier format a laisser une page vide au début de la
memoire virtuelle : pour quoi faire ?

TELECOM

; ParisTech
page 82 23/09/2018 © Alexis Polti SE203 .

_ Anatomie d'un exécutable

» Format d'exécutable : COFF
» base de PE
» partage le code en sections

s ameéliorations de a.out

» informations de débug plus compléetes (mais pas suffisantes
pour C++)

» adresses virtuelles relatives : les adresses sont des
déplacements par rapport a une adresse de base globale au
fichier.

> a ete remplace par PE (Windows) et ELF (reste du
monde)

‘ TELECOM

. ParisTech
page 83 23/09/2018 © Alexis Polti SE203 .

_ Anatomie d'un exécutable

@ Format d'exécutable : ELF
@ Executable and Linkable Format

@ quatre types d'objets :
2 objets (*.0):
« créés par l'assembleur

« contiennent des symboles non résolus / du code relogeable temporairement stockeé a I'adresse 0
« doivent passer par le linker avant de pouvoir étre exécutés.

2 exécutables :
« ont tous leurs symboles résolus (sauf bib. dynamiques)
« ont toutes les relocations faites
« destinés a un loader ELF

» bibliotheques partagées (*.so)
« contiennent des informations sur les symboles (pour le linker)
« et du code et des informations d'exécution (pour le loader)

2 core file :
« core dump

@ format universellement adopté dans le monde Unix et dans I'embarqué
(seule exception : Windows...)
‘ TELECOM

. ParisTech
page 84 23/09/2018 © Alexis Polti SE203 .

_ Anatomie d'un exécutable

» Format d'exécutable : ELF

» deux vues d'un méme fichier ELF :

» |liste de sections : destinées au linker

» |iste de segments :
« pour le loader ELF de Linux

« destinés a étre mappes en mémoire

¢« composes de sections

executables obligatoire optionnel

sections

ELF header
segments

text

.rodata

.data

Section header
table

TELECOM

ParisTech
—pTeT

ELF header

_ Anatomie d'un exécutable

page 86 23/09/2018 © Alexis Polti SE203

*» header ELF

typedef struct({

unsigned char magic[4];
char class;

char byteorder;

char hversion;

char pad[9];

E1f32 Half e type

E1f32 Half e machine;
E1f32 Word e version;
E1f32 Addr e entry;
E1f32 Off e phoff;
E1f32 Off e shoff;
E1f32 Word e flags;
E1f32 Half e ehsize;
E1f32 Half e phentsize;
E1f32 Half e phnum;
E1f32 Half e shentsize;
E1f32 Half e shnum;
E1f32 Half e shstrndx;

}E1£32_Ehdr;

segments

.rodata

» Format d'exécutable : ELF

Section header
table

sections

// magic number "\Ox7fELF..."

//
//
//

//
//
//
//
//
//
//
//
//
//
//
//
//
//

address size, 1=32 bits, 2=64 bits

1 = little-endian, 2 = big-endian

header version, always 1

file type : 1 = relocatable, 2 = executable,
3 = shared object, 4 = core file,

2 = SPARC, 3 = x86, 4 = 68k, 8 = MIPS, etc...

always 1

entry point if avalaible

file position of program header or 0

file position of section header or 0

architecture specific flags, usually 0

size of this ELF header

size of an entry in program header

number of entries in program header or 0

size of an entry in section header

number of entries in section header or 0

section number that contains section name strings

TELECOM
ParisTech

wEi

_ Anatomie d'un exécutable

ELF header
segments

.rodata

*» ELF : les sections
» Section headers
typedef struct{

E1f32 Word sh name; // name, index into the string table
E1£f32 Word sh type; // section type (PROGBITS, NOBITS, SYMTAB, ...)
E1£f32 Word sh flags; // flag bits (ALLOC, WRITE, EXECINSTR)
E1lf32 Word sh_ addr; // base memory address(VMA), if loadable, or zero
E1f32 off sh offset; // file position of beginning of section
E1f32 Word sh_size; // size in bytes
E1f32 Word sh link; // section number with related info or zero
E1f32 Word sh info; // more section-specific info
E1f32 Word sh align; // alignment granularity if section is moved
E1f32 Word sh entsize; // size of entries if section is an array

} EL£32 Shdr;

TELECOM

ParisTech
page 87 23/09/2018 © Alexis Polti SE203 1
| pagew | e

ELF header

_ Anatomie d'un exécutable

.rodata

» ELF : les sections

Section header
. .
? y p e sections
n

» PROGBITS : section contenant du code, des data, des infos de
debug et qui occupe de la place dans le fichier ELF
» NOBITS : idem, mais sans occuper de place (typiquement, bss)

» SYMTAB / DYNSYM : table des symboles
» STRTAB : table des noms de symboles
» REL / RELA :informations de relocation
» DYNAMIC / HASH : informations pour link dynamique
» flags
» WRITE : les données sont modifiables lors de I'exécution
» ALLOC : la section occupe de la memoire lors de I'execution
» EXECINSTR : la section contient du code executable

segments

TELECOM

; ParisTech
page 88 23/09/2018 © Alexis Polti SE203 .

ELF header

_ Anatomie d'un exécutable

.rodata

» ELF : les sections

Section header
table

segments

Nom Type Flags Usage sections
text PROGBITS A, EX |Code de lI'exécutable
.rodata
.rodata1 PROGBITS A Données non modifiables
.sdata2
.data
.data1 PROGBITS AW Données modifiables initialisées non nulles
.Sdata
.bss Données non initialisées (ou initialisées a zéro). Le systéme initialise cette zone au
NOBITS AW S . ; o .
.sbss lancement de I'exécution avec des zéros. Peut aussi servir a la pile et au tas
.heap AW Le tas.

La pile, généralement aprés .heap. Peut étre combiné avec .heap pour former une

.stack .
section .bss stack
.|p|j[PROGBITS A, EX Inlfu.all’satlon dy processus. !_e systemeiexecute cette section avant d'appeler main.
.ini Utilisé par la libC pour initialiser des variables globales.
fini PROGBITS A, EX Terrr)lngls:on du processus. Le s.yg,teme exécute cette section a la fin du processus si
celui-ci s'est correctement terminé.
.ctors PROGBITS AW Pointeurs vers des fonctions a appeler au démarrage du programme
.dtors PROGBITS AW Pointeurs vers des fonctions a appeler a la fin du programme

got/ .got2 |PROGBITS A W (?Jcr)]t;erlrhigjfes:t Table : permet de référencer les variables globales des bibliothéques

plt PROGBITS A, EX Proced_ure Linkage _Tat?le : permet de référencer les fonctions des bibliothéques
dynamiques (lazy binding)

rela.text none
rela.data REL (sauf bib (Informations de relocations pour le code, les données et les constantes
‘ rela.rodata dyn)

page 89 23/09/2018 © Alexis Polti SE203

ELF header

_ Anatomie d'un exécutable

.rodata

» ELF : les sections

Section header

#include <stdint.h> e
. . sections
#include <stdio.h>

segments

int32 t x = 34;
int32 t y;
const char mesg[] = "Hello World!";

int main() {
static uint8 t z;
uintlé t t;

y = 12;
z =z + 1;
t = ytz;

printf (mesqg);
printf("x = &d, v = %d, z = %d, t = %d\n",
Xy Yr 2, t);

return 0;

‘ ’ TELECOM

ParisTech
page 90 23/09/2018 © Alexis Polti SE203 ;

ELF header

_ Anatomie d'un exécutable

.rodata

» ELF : les sections

Section header
table

segments

sections

alexis@plop> arm-none-eabi-gcc -c t.c
alexis@plop> arm-none-eabi-objdump -f t.o
t.o: file format elf32-littlearm
architecture: armv4t, flags 0x00000011:

HAS_RELOC ’ HAS_S YMS
start address 0x00000000

‘ TELECOM

ParisTech
page 91 23/09/2018 © Alexis Polti SE203 .

_ Anatomie d'un exécutable

» ELF : les sections

alexis@plop> arm-none-eabi-objdump -h t.o

t.o: file format elf32-littlearm
Sections:
Idx Name Size VMA LMA
0 .text 000000b8 00000000 00000O0O0O
CONTENTS, ALLOC, LOAD, RELOC,
1 .data 00000004 00000000 000OOOOOO
CONTENTS, ALLOC, LOAD, DATA
2 .bss 00000001 00000000 0O0OOOOOO
ALLOC
3 .rodata 00000032 00000000 000OOOOOO

File off
00000034
READONLY,
000000ec

000000£0

000000£0

CONTENTS, ALLOC, LOAD, READONLY, DATA

4 .comment 0000001e 00000000 00OOOOOQO
CONTENTS, READONLY

5 .ARM.attributes 0000002a 00000000 00000000
CONTENTS, READONLY

00000130

0000014e

Algn
2%%2
CODE
2% %2
2%%(
2% %2
2%%(

2% %0

sections

ELF header

text

segments

.rodata

.data

Section header

table

page 92 23/09/2018 © Alexis Polti SE203

TELECOM

ParisTech

i

_ Anatomie d'un exécutable

» Ou vont les variables ?

sections

ELF header

segments

text

.rodata

.data

Section header

table

text .rodata .data .bss stack
initialisée X
globale non initialisee X
const X X
. initialisée X
static non initialisée X
locale non static initialisée X
non initialisée X
const X X
valeur immédiate X X

TELECOM

ParisTech

ELF header

_ Anatomie d'un exécutable

.rodata

» Que fait le programme suivant ?

table

segments

#include <stdio.h>
char *p = "Jello World!\n";

int main()

{
p[0] = 'H';
printf("%s", p);

return 0;

}

‘ TELECOM

ParisTech
page 94 23/09/2018 © Alexis Polti SE203 .

_ Anatomie d'un exécutable

» ELF : les sections

alexis@plop> arm-none-eabi-objdump -t t.o

t.o:

SYMBOL TABLE:

00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000004
00000000
00000000
00000000

file format elf32-littlearm

1

Q HHFHRKHKFH

Q «Q

df *ABS*
.text
.data
.bss
.rodata
.bss
.comment
.data
COM
.rodata
.text
UND

0 0 9 a

M O OO0 Q

00000000
00000000
00000000
00000000
00000000
00000001
00000000
00000004
00000004
0000000d
000000b8
00000000

t.c
.text
.data
.bss
.rodata
z.5152
.comment
X
Y
mesg
main
printf

sections

ELF header

text

segments

.rodata

.data

Section header

table

page 95 23/09/2018 © Alexis Polti SE203

TELECOM

i".‘al 1 ,—T{'Ch

i

ELF header

_ Anatomie d'un exécutable

.rodata

» ELF : les sections

Section header
table

segments

sections

alexis@plop> arm-none-eabi-objdump -t t.o

t.o: file format elf32-littlearm
adresse
MBOL TABLE:

00000000 1 df *ABS* 00000000 t.c
00®0000 1 d .text 00000000 .text
00000000 1 d .data 00000000 .data
00000000 1 d .bss 00000000 .bss taille
00000000 1 d .rodata 00000000 .rodata
00000000 1 .bss 00000001 =z.5
00000000 1 d 00000000 mment
00000000 g 0] 00000004 x
00000004 0] 00000004 vy
00000000 g o) 0000000d mesg
00000000 g F 000000b8 main
00000000 00000000 printf

local /

global section TELECDM

isTech
page 96 23/09/2018 © Alexis Polti SE203 ;

ELF header

_ Anatomie d'un exécutable

.rodata

» ELF : les sections

Section header
table

segments

sections

» *UND* : un symbole pour l'instant non défini, qui sera
resolu plus tard - du moins on l'espere.

» *COM* : des symboles dont on ne sait pas encore s'ils
seront places dans bss ou dans data apres link.
Seront placés dans le bss apres link si aucune autre
unité ne les définit en les initialisant a une valeur non
nulle.

‘ TELECOM

. ParisTech
page 97 23/09/2018 © Alexis Polti SE203 .

_ Anatomie d'un exécutable

» ELF : les sections
» est-ce cohérent ?

alexis@plop> arm-none-eabi-objdump -h t.o

t.o: file format elf32-littlearm
Sections:
Idx Name Size VMA LMA File off
0 .text 0000008 00000000 00000000 00000034
CONTENTS, ALLOC, LOAD, RELOC, READONLY,
1 .data 00000004 00000000 00000000 o0O0OOOOOec
CONTENTS, ALLOC, LOAD, DATA
2 .bss 00000001 00000000 00000000 0OOOOOfO
ALLOC
3 .rodata 00000032 00000000 00000000 0OOOOOfO
CONTENTS, ALLOC, LOAD, READONLY, DATA
4 .comment 0000001e 00000000 00000000 00000130
CONTENTS, READONLY
5 .ARM.attributes 00000030 00000000 00000000 0000014e

CONTENTS, READONLY

Algn
2% %2
CODE
2% %2
2*%*(
2% %2
2*%*(

2**(

sections

ELF header

text

segments

.rodata

.data

Section header

table

page 98 23/09/2018 © Alexis Polti SE203

TELECOM

ParisTech

i

ELF header

_ Anatomie d'un exécutable

.rodata

*» ELF : les segments

s un segment est composé de sections partageant les
mémes attributs d'exécution (protection mémoire)
° les segments sont

» mappes en memoire par le loader
» ou bien transformeés en images memoire par objcopy

segments

° généralement peu de segments

» un read-only exécutable pour le code
> un read-only non executable pour les constantes
> un read/write non exécutable pour les données normales
» de facon a mapper le processus en memoire le plus vite
possible

TELECOM

; ParisTech
age 99 23/09/2018 © Alexis Polti SE203 =
- osos 0 omedspomistes v

_ Anatomie d'un exécutable

ELF header
segments

.rodata

» ELF : les segments
» Program headers
typedef struct{
E1f32 Word type; // loadable code or data, dynamic linking info, etc.
E1f32 off offset; // file offset of segment
E1f32_Addr virtaddr; // virtual address to map segment (VMA)
E1f32_Addr physaddr; // physical address (LMA)
E1f32 Word filesize; // size of segment in file
E1£f32 Word memsize; // size of segment in memory (bigger if contains bss)
E1£32 Word flags; // Read, Write, Execute bits
E1f32 Word align; // required alignment, invariably hardware page size

} E1£32 Phdr;

TELECOM

ParisTech
—pTeT

ELF header

_ Anatomie d'un exécutable

.rodata

*» ELF : les segments

. type
» PT LOAD : le segment est mappable en mémoire
» PT DYNAMIC : le segment est dynamiquement partageable
» PT INTERP : spécifie un interpréteur / loader

segments

» LMA / adresse physique :
» adresse de stockage avant recopie
> VMA / adresse virtuelle :
» adresse en mémoire apres recopie par crt0

° rappel : rien a voir avec les adresse physiques /
virtuelles des MMU

‘ TELECOM

. ParisTech
page 101 23/09/2018 © Alexis Polti SE203 .

_ Anatomie d'un exécutable

ELF : les segments

alexis@plop> arm-none-eabi-gcc t.o stubs.c -o t
alexis@plop> arm-none-eabi-readelf -1 t

E1lf file type is EXEC (Executable file)
Entry point 0x80e8

There are 3 program headers, starting at offset

Program Headers:

Type Offset VirtAddr PhysAddr

EXIDX 0x012488 0x00012488 0x00012488
LOAD 0x000000 0x00000000 0x00000000
LOAD 0x012494 0x00022494 0x00022494

Section to Segment mapping:
Segment Sections...

00 .ARM.exidx
01 .init .text .fini .rodata .ARM.exidx
02 .init array .fini array .data .bss

ELF header
segments

text

.rodata

.data

Section header
table

sections

52

FileSiz MemSiz Flg Align
0x00008 0x00008 R 0x4
0x12494 0x12494 R E 0x10000
0x009c0 0x00a20 RW 0x10000

.eh_frame

TELECOM

ParisTech
age 102 23/09/2018 © Alexis Polti SE203 =
- osos 0 omedspomistes v

ELF header

_ Anatomie d'un exécutable

.rodata

» Qutils ELF

» objdump : examen du contenu d'objets
» objdump -f :infos générales
» objdump -h :les section
» objdump -p :les segments
» objdump -t :latable des symboles
» objdump -x :tous les headers
» objdump -d:désassemble les sections de code

» objdump -S :déesassemble les sections de code en

mixant avec le source C (s'il contient des
informations de débug)

segments

‘ TELECOM

. ParisTech
page 103 23/09/2018 © Alexis Polti SE203 .

ELF header

_ Anatomie d'un exécutable

.rodata

» Qutils ELF

» readelf : idem, mais que pour ELF

» readelf -h:infos générales

» readelf -S:les section

» readelf -1:les segments

» readelf -s:latable des symboles

» readelf -d:les sections dynamiques

segments

» complementaire d'objdump

‘ TELECOM

. ParisTech
page 104 23/09/2018 © Alexis Polti SE203 =
e

Ou en est-on ?

2 On sait maintenant :
@ écrire du C propre
@ ce que fait un compilateur
@ a quoi sert un éditeur de lien
@ comment sont architecturés les exécutables

@ On va voir

@ comment piloter I'éditeur de lien pour produire
I'executable gqu'on veut.

‘ TELECOM

. ParisTech
page 105 23/09/2018 © Alexis Polti SE203 =
| pagetos | e

_ Linkers et linker scripts

» Quel mapping pour les pile
P 5 (stack)
executables * dafini par
» le plan d'adressage est défini par e
I'OS ainsi que le linker
tas
(heap)
> quand il n'y a pas d'OS, c'est a e
I'executable lui-méme de créer sa o
pile / le tas (si nécessaire) aefmparie data
text

TELECOM

; ParisTech
page 106 23/09/2018 © Alexis Polti SE203 .

_ Linkers et linker scripts

a.o
» Link
n [] Y 4 [] n data
° |e script de link définit :
» comment sont rassemblées les bss

sections exécutable

» |le point d'entree
» d'éventuels symboles additionnels text data
b.o bss
* |_es segments sont creés data -
automatiquement apres avoir =
rassemblé les sections. bss
text

‘ TELECOM

. ParisTech
page 107 23/09/2018 © Alexis Polti SE203 .

I Linkers et linker scripts

text data

» MEMORY =

» permet de décrire le layout de la mémoire. Optionnel.
» chaque entree est appelée « région »
° exemple :

MEMORY
{
rom (rx) : ORIGIN 0, LENGTH = 256K
ram (wx) : ORIGIN = 0x40000, LENGTH = 4M

}

‘ TELECOM

. ParisTech
age 108 23/09/2018 © Alexis Polti SE203 =
- osos 0 omedspomistes v

I Linkers et linker scripts -

e: data
b

» permet de décrire comment fusionner les sections des
objets d'entrée :

section [VMA address] : [AT(LMA address)[ALIGN(section align)]
{

output-section-command
output-section-command

} [>VMA region] [AT>LMA region]

‘ TELECOM

. ParisTech
page 109 23/09/2018 © Alexis Polti SE203 =
e

_ Linkers et linker scripts

// LDSCRIPT
SECTIONS
{
.text : {

} > rom

.rodata : AT

}

.data 0x2000
*(.data)
} AT> rom

.bss 0x3000
*(.bss)

*(.text)

(ADDR(.text) + SIZEOF(.text))({

*(.rodata)

{

{
* (COMMON)

page 110 23/09/2018 © Alexis Polti SE203

exécutable

data

bss

text

TELECOM

ParisTech

exécutable

=1
_ Linkers et linker scripts :

ﬂ data

Fas

» Commandes : .
@ ENTRY (symbol) : |
» définit "symbol" comme étant le point d'entrée du programme

» usuellement: start

» symboles et affectations :

» crée un symbole et lui donne une valeur
» exemple : etext = 0x1000;

° les symboles sont accessibles depuis le C, mais :

2 ils ne contiennent pas de valeur
» iIs ont seulement une adresse !!!

‘ TELECOM

. ParisTech
page 111 23/09/2018 © Alexis Polti SE203 .

I Linkers et linker scripts -

4 data
» Exemple : = -

// LDSCRIPT

start of RAM = 0x1000;

start of TEXT .text;

sizeof of TEXT sizeof (.text);

// init.c
extern uint8 t start of RAM, end of TEXT,
sizeof of TEXT;

memcpy (&start of RAM, &start of TEXT, &sizeof of TEXT);

‘ TELECOM

ParisTech
page 112 23/09/2018 © Alexis Polti SE203 .

I Linkers et linker scripts

ﬂ data
@ -
. =
@ location counter
» modification : SECTI?NS
» a l'interieur d'une section : offset . = 0x100;
par rapport au debut de la section .text: {
*(.text)
> 3 l'extérieur d'une section : } = 0x200;
adresse (VMA) absolue P,
.data: {
» affecté a un symbole : *(.data)
symbole = VMA(.) . += 0x6007
}
® ne peut jamais revenir en

‘ arriere

. ParisTech
page 113 23/09/2018 © Alexis Polti SE203 .

TELECOM

I Linkers et linker scripts

// LDSCRIPT

MEMORY {
rom (rx) ORIGIN =
ram (!rx): ORIGIN
}

0x00000000, LENGTH =
0x00200000, LENGTH

SECTIONS {
.text : {
*(.text)
_etext = .
} > rom

~e

.data : AT (ADDR(.text)+SIZEOF(.text)) {
_data = . ;
*(.data)
_edata = . ;
} > ram

bss : {
_bstart = . ;
*(.bss) *(COMMON)
_bend = . ;
} > ram

256K
1M

text data
b.o bss

data
text

text

page 114 23/09/2018 © Alexis Polti SE203

// init.c

extern char etext, data,
_edata, bstart, bend;

uint8 t *src = & etext;

uint8 t *dst = & data;

// ROM has placed .data at end of .text.
// Copy .data to RAM
while (dst < & edata)

*dst++ = *grc++;

// Zero out bss
for (dst = & bstart; dst < & bend; dst++)
*dst = 0;

exécutable

_ Linkers et linker scripts

» Autres commandes pratiques: a
@ ORIGIN(region) : =
» renvoie l'adresse de début d'une région

data

o o - o aQ
g gjg L% g gJ?

* LENGTH (region) :
» renvoie la longueur d'une région

® ADDR(section) :
» renvoie la VMA d'une section

» LOADADDR(section) :
» renvoie la LMA d'une section

@ STZEOF (section) :
‘ » renvoie la taille d'une section

. ParisTech
page 115 23/09/2018 © Alexis Polti SE203 .

TELECOM

_ Derniers détails

» crt0.s

» en charge de préparer I'espace d'execution

» prépare la pile et positionne le pointeur de pile
> met le bss a zéro

» recopie les données de la ROM vers la RAM

» en utilisant les symboles exportes par le linker

exécutable

data

7 NEN- | g | 7 BEN:
o |'g |© | &8 | o | @ |©°

 si on est sUr que data et/ou bss sont vides, ce n'est pas
la peine de les initialiser

» symboles speciaux : etext, edata, end

‘ TELECOM

. ParisTech
page 116 23/09/2018 © Alexis Polti SE203 .

_ Derniers détails = .

2 Conversion de formats

e j| est préférable de garder le plus de details sur un exécutable, le
plus longtemps possible : travailler en ELF

@ mais un fichier ELF n'est pas bootable tel quel (pas mappable en
memoire sans un loader)

o || faut d'abord le transformer en une image mémoire avant de le
flasher comme code de boot dans une ROM

@ objcopy -0 binary bootloader.elf bootloader.bin

@ manipule les sections selon leur LMA lors de la génération d'une
iImage binaire
@ peut modifier des sections au passage :

@ strip
2 relocations

TELECOM

| ParisTech
age 117 23/09/2018 © Alexis Polti SE203 =T
- osos 0 omedspomistes v

_ Derniers détails

text data

» Conversion de formats

@ inversement, il est possible de transformer un fichier =
binaire quelconque en une section ELF (.data par defaut)

objcopy -I binary -0 elf64-little -B 1386 input file output file

@ objcopy -B crée aussi trois symboles :
» binary input file start
binary input file end
binary input file size

‘ TELECDM

| risTech
page 118 23/09/2018 © Alexis Polti SE203 .

Cooool, encore des exercices !

@ A vous de travailler :
@ exercice 1 : facile
@ exercice 2 : moyen
@ exercice 3 : complique

‘ TELECOM

ParisTech
page 119 23/09/2018 © Alexis Polti SE203 .

_ Exercices

» Exercice 1

> Slide 96 : poury, l'adresse est "4", ce qui est tres
bizarre !

En vous aidant du manuel d'objdump et en
experimentant avec, pour y, des types de tailles
differentes (plus et moins grandes), corrigez le slide. On
compilera pour ARM.

N'oubliez pas de fournir le code des expéerimentations
gue vous avez faites.

TELECOM
ParisTech

page 120 23/09/2018 © Alexis Polti SE203

_ Exercices

» Exercice 2 :

1) Sur un PC Linux x86 64 actuel et par adresses
croissantes, dans quel ordre sont stockees les sections
suivantes : text, data*, rodata*, bss, pile et tas ?

2) Dans quel sens croit la pile ?

Remarqgue : ce n'est pas le résultat qui m'interesse (je
le connais deja), mais la fagon dont vous y étes arrive.
Justifiez-donc en détail vos reponses.

TELECOM

| ParisTech
age 121 23/09/2018 © Alexis Polti SE203 =
- osos 0 omedspomistes v

_ Exercices

@ Exercice 3:

1) Compilez sans édition de lien ce code-ci (http://bit.ly/2ApXoDI)
pour ARM avec une chaine réecente, et avec les optimisations
suivantes : Os, 00, 01 et 02.

Pour chaque niveau d'optimisation, justifiez la taille des sections de
donnees que vous obtenez.

2) Remplacez const char mesg[] par static const char
mesg[]. Expliquez les différences dans les sections de données par

rapport a la question préecédente (elles dependent ici aussi des
optimisations).

3) Remplacez const char mesg[] par const char *mesg. puis
par const char * const mesg. EXpliquez les différences dans

le code genére et les sections de données par rapport a la question
2.

TELECOM

| ParisTech
age 122 23/09/2018 © Alexis Polti SE203 =
- osos 0 omedspomistes v

http://bit.ly/2ApXoDl

_ Exercices

» Exercice 3 : indications

» Cet exercice est destine a vous faire manipuler gcc et
objdump. Il a I'air simple, mais c'est un véritable jeu de

piste, complexe, et qui prend du temps. Vous devrez
avancer pas a pas, compiler, examiner a la loupe les
différentes sections, tester, recommencer. N'hésitez pas
a poser des questions au fur et a mesure par mail.

» Si vous devez faire une édition de lien pour produire un
executable, il vous faudra fournir certaines fonctions
(une version bidon suffira) : vous pouvez soit les écrire
vous méme, soit les trouver ici : http://bit.ly/2Bv1 TMr

TELECOM

. ParisTech
age 123 23/09/2018 © Alexis Polti SE203 =
- osos 0 omedspomistes v

http://bit.ly/2Bv1TMr

_ Exercices

@ Pour ceux qui sont perdus :

» Commencez par -00, et examinez le contenu de .rodata (objdump -s).
Pourquoi contient-elle deux fois la méme chaine ? D'ailleurs est-ce bien la
méme chaine ?

» Regardez le code généré (objdump toujours, a vous de trouver la bonne

option) : quelle chaine est utilisée ? A quelle fonction est-elle passée ?
Pourquoi n'est-ce pas la méme fonction que celle spécifiée dans le code
C ? Quel est l'intérét ? (le man de cette fonction pourra vous aider). La suite

va permettre de comprendre a quoi sert I'autre chaine.

» Compilez en -O1. Regardez les sections de données et leur contenu. Que
remarquez-vous ? Une recherche sur google du nom de la section de
donneées nouvellement apparue vous indiquera son utilité. Avec une edition
de lien, vous trouverez quelle chaine est véritablement utilisée. A vous de
faire la suite.

Attention : stackoverflow n'est pas votre ami !

TELECOM

| ParisTech
age 124 23/09/2018 © Alexis Polti SE203 =
- osos 0 omedspomistes v

_ Licence de droits d'usage

page 125 23/09/2018 © Alexis Polti SE203

Contexte académique } sans modification

Ed

Par le téléchargement ou la consultation de ce document, I'utilisateur accepte la licence d’utilisation qui y est
attachée, telle que détaillée dans les dispositions suivantes, et s’engage a la respecter intégralement.

La licence confére a l'utilisateur un droit d'usage sur le document consulté ou télécharge, totalement ou en partie, dans
les conditions définies ci-aprés, et a I'exclusion de toute utilisation commerciale.

Le droit d’'usage défini par la licence autorise un usage dans un cadre académique, par un utilisateur donnant des cours
dans un établissement d’enseignement secondaire ou supérieur et a I'exclusion expresse des formations commerciales
et notamment de formation continue. Ce droit comprend :

* e droit de reproduire tout ou partie du document sur support informatique ou papier,
* le droit de diffuser tout ou partie du document a destination des éléves ou étudiants.

Aucune modification du document dans son contenu, sa forme ou sa présentation n’est autorisé.
Les mentions relatives a la source du document et/ou a son auteur doivent étre conservées dans leur intégralite.

Le droit d’'usage défini par la licence est personnel, non exclusif et non transmissible.
Tout autre usage que ceux prévus par la licence est soumis a autorisation préalable et expresse de l'auteur :
alexis.polti@telecom-paristech.fr

TELE

COM

sTech

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43
	Diapo 44
	Diapo 45
	Diapo 46
	Diapo 47
	Diapo 48
	Diapo 49
	Diapo 50
	Diapo 51
	Diapo 52
	Diapo 53
	Diapo 54
	Diapo 55
	Diapo 56
	Diapo 57
	Diapo 58
	Diapo 59
	Diapo 60
	Diapo 61
	Diapo 62
	Diapo 63
	Diapo 64
	Diapo 65
	Diapo 66
	Diapo 67
	Diapo 68
	Diapo 69
	Diapo 70
	Diapo 71
	Diapo 72
	Diapo 73
	Diapo 74
	Diapo 75
	Diapo 76
	Diapo 77
	Diapo 78
	Diapo 79
	Diapo 80
	Diapo 81
	Diapo 82
	Diapo 83
	Diapo 84
	Diapo 85
	Diapo 86
	Diapo 87
	Diapo 88
	Diapo 89
	Diapo 90
	Diapo 91
	Diapo 92
	Diapo 93
	Diapo 94
	Diapo 95
	Diapo 96
	Diapo 97
	Diapo 98
	Diapo 99
	Diapo 100
	Diapo 101
	Diapo 102
	Diapo 103
	Diapo 104
	Diapo 105
	Diapo 106
	Diapo 107
	Diapo 108
	Diapo 109
	Diapo 110
	Diapo 111
	Diapo 112
	Diapo 113
	Diapo 114
	Diapo 115
	Diapo 116
	Diapo 117
	Diapo 118
	Diapo 119
	Diapo 120
	Diapo 121
	Diapo 122
	Diapo 123
	Diapo 124
	Diapo 125

