TELECOM
ParisTech

e Hiif
ELECINF102
Processeurs et Architectures Numériques

Controéle de connaissances
30 juin 2016
Document autorisé : une feuille recto-verso

Durée: 1h30 minutes

Ce contrdle comporte 3 parties indépendantes :
1. Logique CMOS
2. Décodeur vidéo

3. NanoProcesseur et interruptions

Consignes importantes : Si des schémas sont demandés dans les différents exercices, ils doivent étre
impérativement clairs, lisibles et sans ambiguité. Les dimensions des bus doivent étre indiquées. Si nécessaire
le sens des signaux doit étre précisé. Pour la logique synchrone, les signaux d’horloge et d’initialisation
asynchrone (reset_n) ne seront pas représentés dans ces schémas.

N’oubliez pas d’inscrire nom, prénom, et numéro de casier sur votre copie.

Bon courage !

Télécom ParisTech, ELECINF102, 2015-2016

1 Logique CMOS

Soit le circuit suivant a base de transistors MOS. Les entrées correspondent aux signaux A et B, les
sorties correspondent au signaux S et Ss.

Vad

Vid

A

Bd T Tp3
_q Sl -

A—e A Tp2 Th2

_| A } { » S,

Tn3 Tnl _B

Ves] i

Question 1.1 : Déterminez I’état (passant ou bloqué) des différents transistors de la structure générant S;
et Sy en fonction des signaux A et B (faites un tableau avec les signaux d’entrée et les états des transistors).

Question 1.2 : En déduire les équation logiques des fonctions S7 et Ss.

Question 1.3 : Quel est I'intéret d’une telle structure par rapport a un assemblage de portes simples de
type

e INV : inverseur

e NAND?2 : porte non-et a 2 entrées

e NOR2 : porte non-ou a 2 entrées

Télécom ParisTech, ELECINF102, 2015-2016

2 Décodeur vidéo de Canal+

Peu avant les années 2000, une célebre chaine de télévision cryptée, excédée par le nombre de décodeurs
pirates en circulation, décidait de changer radicalement son processus de cryptage. Malheureusement, les
FPGA étaient déja inventés... L’objectif de cet exercice est de réaliser la partie vidéo de ces nouveaux
décodeurs pirates.

En télévision les pixels sont transmis les uns apres les autres, ligne par ligne. L’algorithme de chiffrement
(un peu simplifié) découpait 'image en blocs de 32 lignes. Dans chaque bloc de 32 lignes, les lignes étaient
ensuite mélangées selon un ordre déterminé par une clef secrete. Mais la premiere ligne de chaque bloc était
toujours au bon endroit : transmise en premier. L’attaque consistait a faire de la force brute : acquérir les
32 lignes d’un bloc et les ré-ordonner en considérant que deux lignes consécutives ont une corrélation forte,
en commencant par la premiere ligne du bloc.

Chaque ligne est une suite de 722 pixels, chaque pixel représentant une luminosité sur 8 bits non signés (on
travaille ici en noir et blanc, la version couleur n’étant pas plus complexe). Un nouveau pixel arrive au
décodeur a chaque cycle d'horloge. Les lignes sont transmises les unes a la suite des autres sans pause.
On considere dans la suite de I'exercice qu’on ne traite qu'un seul bloc de 32 lignes.

Question 2.1 : Créez le schéma d’un systéme permettant de stocker une ligne de pixels. On pourra
utiliser des “..." pour éviter d’avoir a tracer des schémas trop larges.

Question 2.2 : Créez le schéma d’un systeme basé sur le précédent permettant de stocker un bloc de 32
lignes complet.

En appelant P;(n) le n-ieme pixel de la ligne i, la corrélation entre deux lignes i et j est donnée par

721

3" |P(n) — Pj(n)]
n=0

Question 2.3 : Créez un schéma, a partir de toutes les portes logiques vues en cours, de 'opérateur “valeur
absolue”.

Question 2.4 : Créez le schéma d’un systeme calculant au fur et a mesure de 'arrivée des pixels d’une ligne
la corrélation entre cette ligne et une ligne arbitraire déja stockée. Précisez le nombre de bits sur lequel doit
étre stockée cette corrélation.

On consideére maintenant que toutes les lignes sont arrivées, stockées dans le systeme de la question2, et que
pour chacune d’entre elle, on dispose de sa corrélation avec les 31 autres grace au systeme de la question 4.

Question 2.5 : Créez le schéma d’un systéme séquentiel prenant en entrée 31 nombres non signés et pro-
duisant au bout de 31 cycles d’horloge le plus grand d’entre eux.

Question 2.6 : Modifiez votre schéma précédent pour qu’il prenne en entrée un ensemble de 31 valeurs de
corrélation (appelées Cy a C3g) et qu’il produise, toujours au bout de 31 cycles, le numéro de la corrélation
la plus grande.

Question 2.7 BONUS : Sachant que la premiere ligne est & la bonne place, expliquez en mots simples
comment vous envisagez la suite du systeme pour sortir les 31 autres lignes de fagon ré-ordonnée.

Télécom ParisTech, ELECINF102, 2015-2016

3 NanoProcesseur et interruptions

Les microprocesseurs courants disposent de la possibilité de réagir a des "interruptions" en provenance
du monde extérieur. Il s’agit en général :
e de détecter une demande d’interruption via un signal spécifique (dit signal d’interruption)
e de quitter le programme en cours pour exécuter un code spécifique (dit code d’interruption)
e de conclure 'exécution de ce code spécifique en retournant dans le programme en cours.

Nous désirons modifier le NanoProcesseur pour prendre en charge des interruptions.

Nous rappelons que le microprocesseur est piloté par un automate en 3 cycles nommés IF, AF et EX pour
"Instruction Fetch", "Address Fetch" et "Execute".

3.1 Détection de ’interruption

e Nous ajoutons un signal entrant nommé IRQ : pour "Interrupt Request'.
e Si ce signal change d’état alors une interruption est demandée.

Nous désirons générer un nouveau signal IRQ_event dont les caractéristiques sont les suivantes :
e Au repos, le signal IRQ_event est égal & 1'b0;
e A chaque changement d’état du signal IRQ le signal IRQ_event passe a I’état 1'b1l pendant exactement
3 cycles de I'horloge du systeme puis repasse a 1’b0.

Question 3.1 Définissez un code SystemVerilog ou un shéma d’une structure générant le signal IRQ_event.

Question 3.2 Quelles sont les raisons, d’apres vous, pour lesquelles :
e d’un part nous transformons le signal IRQ en une impulsion.
e d’autre part la durée de I'impulsion est de 3 cycles.

3.2 Traitement de l’'interruption

e Nous réservons 'adresse 240 de la mémoire pour stocker le début du code d’interruption.
e Si une interruption est détectée, alors le NanoProcesseur doit :
— terminer I'exécution de 'instruction en cours;
— sauvegarder l'adresse de la prochaine instruction prévue dans le programme en cours;
— sauter de maniere inconditionnelle a I’adresse 240.
e Nous ajoutons une instruction RTI (ReTurn from Interrupt) a la liste des intructions.
e L[’exécution de l'instruction RTI doit forcer le microprocesseur a reprendre le programme en cours.

Vous trouverez en fin de sujet, un schéma du NanoProcesseur ainsi que les codes du compteur de
programme et du controleur de base.

Question 3.3 : Pendant quel cycle de 'automate du NanoProcesseur la gestion des interruptions doit
elle étre prise en compte (justifiez).

Question 3.4 : Proposez une modification des codes et/ou une modification du schéma permettant
d’implémenter la gestion des interruptions.

Question 3.5 : L’adresse du code d’interruption est fixe. Quelles nouvelles évolutions faudrait-il mettre
en ceuvre pour que cette adresse puisse étre définie par le programme en cours d’exécution (nous attendons
une simple explication des principes).

Télécom ParisTech, ELECINF102, 2015-2016

Code du PC "de base" :

always @(posedge clk or negedge reset_n)
if('reset_n)
PC <= 0 ;
else
if(Load_PC)
PC <=Q ;
else
PC <= PC + Inc_PC ;

Code du Controleur "de base" : Seuls les codes utiles pour les questions posées sont indiqués.

always @(*)
begin
Inc_PC <= (Etat == IF) || (Etat == AF) ;
Load_PC <= (Etat == AF) && ((I == JMP || (I==INC && !C) || (I==INZ && 'Z)) ;
Load_Add <= (Etat == AF) ;
Sel_Add <= (Etat == EX) ;
Load_I <= (Etat == IF) ;
Load_AZC <= ...
WRITE <= (Etat == EX) && (I == STA) ;
end

Télécom ParisTech, ELECINF102, 2015-2016

Schéma du NanoProcesseur :
Vous pouvez, si vous le voulez, inclure ce schéma "modifié par vos soins" dans votre copie. N’oubliez pas
d’indiquer vos noms et prénoms sur le shéma.
e Nom :
e Prénom :
e Casier :

Load_PC

—]

Load_Add

ADDR[7:0]

Q[7:0]

Load_AZC

D[7:0]

5 Inc_PC

s Load_PC
—— |.oad_Add

— > Sel_Add
—— Load_1I
—— Load_AZC

IRQ — CTRL

WRITE
r

Télécom ParisTech, ELECINF102, 2015-2016

4 QCM

1. Quelle fonction est implémentée par ce module System Verilog :

module func(input logic signed [31:0] x,
output logic signed [32:0] y);

always @(x*)
y <= 33'hOFFFFFFFF & ((-(!x[31]) & x) | (-x[31] & (~x+1'bl1)));

endmodule
(a) y=ux
(b) y =2z
(c) y =21
(d) y=|z|

(e) Ce code ne compile pas.

2. Lequel des chronogrammes (Fig. 1) décrit un comportement correspondant au code suivant ?

module test(input logic clk,
input logic sw,
output logic led);

logic val;

always @(posedge clk) begin
if(sw) val <= 1'bl;
if(val) led <= 1’'bl;

end

endmodule

(a
(b
(c
(d) (iv)

(e) Ce code ne compile pas.

(i)
(ii
(

iii)

~—

)
)
)
)

3. Considerez le module suivant. Si la valeur de —32 est présentée a l'entrée de ce module (i.e. v = —32),
quelle sera la valeur de la sortie ?

module func(input logic signed [31:0] x,
output logic signed [31:0] y);

always @(x*)
y <= x/2 - (x > 1);
endmodule

Télécom ParisTech, ELECINF102, 2015-2016

SW

_
LED

SW
LED

SW
LED

SW
LED

(@iv)

Figure 1 — Figure pour probléme 2.

A[0] All] A[2] A[3]

P 1o e

CLK
S .

Figure 2 — Figure pour probleme 4.

(e) Ce code ne compile pas.

4. Dans le circuit de la figure 2, quelle est la valeur de la sortie A[3 :0] apres 12 cycles de CLK. Supposons
que tous les bascules D sont idéales.

(a) 3

(b) 5

(c) 7

(d) 10

Télécom ParisTech, ELECINF102, 2015-2016

(e) 12
S[]
pQ 9ns @
A[3] D Q a Cout
& —ins s3]
10ns s D Q 8 ns
B[3] .
® —Ins voe b__cin
Af2) b Q a Cout
2 ns S[2]
10ns 8 D Q 7 ns L]
B[2] b ¢
® ——2ns e Cin
All] D Q a Cout
® ——3ns s[1]
10ns s D Q 6 ns L]
B[] R b @ b e
® —3ns
FA
Af0] D Q Cout
® —4ns a (0]
10ns s D Q 5ns L]
B[0] b @ b .
& 4ns ‘

1'b0

Figure 3 — Figure pour probleme 4.

5. Considerez le circuit de la figure 3. C’est un additioneur synchrone 4 bit a propagation de retenu.
Les entrées A et B sont présentées a une cadence de fq.. = 25 MHz. Les délais des blocs et des
connections sont marqués en rouge. La fonction de transfert de ce circuit est

S(n+2)=A(n) + B(n) (1)

ou n est le temps discret, en unité de cycle d’horloge. La fréquence maximale d’opération de ce circuit
est 25 MHz, a cause du chemin critique de I’additioneur. Nous voulons pipeliner cet additionneur pour
qu’il fonctionne a 50 MHz. Combien de bascules D (minimum) devons-nous ajouter dans ce circuit
pour avoir un débit d’au moins 50 MHz et un fonctionnement correct a part la latence introduit par
le pipeline 7 C’est-a-dire

S(n+2+L)=A(n)+ B(n) (2)
ol L est la latence, en unité de cycle d’horloge.
(a) 2
(b) 4
(c) 7
(d) 8
(e) 16

~—

6. Dans le circuit de la figure 4, les bascules D sont initialisées avec une valeur x aléatoire, i.e.

Télécom ParisTech, ELECINF102, 2015-2016

Quelle est la valeur apres 150 cycles d’horloge ?

A(n = 150) =77
oA | Tam | Tam T Tan
CLK |7 |7 |7 |7

Figure 4 — Figure pour probléme 5.

10

	Logique CMOS
	Décodeur vidéo de Canal+
	NanoProcesseur et interruptions
	Détection de l'interruption
	Traitement de l'interruption

	QCM

