
SystemVerilog : Bus,
protocoles et interfaces . . .
Techniques de codage, étude d’une
norme

Yves Mathieu

Plan

Introduction

SystemVerilog : les interfaces

Le bus Wishbone

2/34 TELECOM ParisTech Yves Mathieu

Introduction (1)
Interconnection de blocs

Utilisation de bus de communication génériques

Source: edn

3/34 TELECOM ParisTech Yves Mathieu

Introduction (2)
Rôle des normes de bus

Unifier les interfaces entre blocs:
• Faciliter le design des blocs
• Faciliter le test des blocs (programmes de tests génériques)
• Un système = un lego de blocs
• Permettre la création d’outils de génération "Système"

(Qsys...)

Organiser l’arbitrage
Quelle norme de bus utiliser ?

• De nombreuses normes anciennes ou récentes (VCI,
Ocp,Amba AHB,Amba APB,Amba AXI,Avallon,...)

• Pour nous Wishbone, norme libre, simple et éventuellement
boguée...

4/34 TELECOM ParisTech Yves Mathieu

Introduction (2)
Rôle des normes de bus

Unifier les interfaces entre blocs:
• Faciliter le design des blocs
• Faciliter le test des blocs (programmes de tests génériques)
• Un système = un lego de blocs
• Permettre la création d’outils de génération "Système"

(Qsys...)

Organiser l’arbitrage
Quelle norme de bus utiliser ?

• De nombreuses normes anciennes ou récentes (VCI,
Ocp,Amba AHB,Amba APB,Amba AXI,Avallon,...)

• Pour nous Wishbone, norme libre, simple et éventuellement
boguée...

4/34 TELECOM ParisTech Yves Mathieu

Introduction (2)
Rôle des normes de bus

Unifier les interfaces entre blocs:
• Faciliter le design des blocs
• Faciliter le test des blocs (programmes de tests génériques)
• Un système = un lego de blocs
• Permettre la création d’outils de génération "Système"

(Qsys...)

Organiser l’arbitrage
Quelle norme de bus utiliser ?

• De nombreuses normes anciennes ou récentes (VCI,
Ocp,Amba AHB,Amba APB,Amba AXI,Avallon,...)

• Pour nous Wishbone, norme libre, simple et éventuellement
boguée...

4/34 TELECOM ParisTech Yves Mathieu

Introduction (3)
Point de vue du concepteur

L’interconnection est un bloc de logique à part entière, qui contient au minimum:

De la logique de multiplexage pour la connection du contrôle et des données

De la logique d’arbitrage pour piloter la logique de multiplexage

Source: www.systemcentroid.com

Attention : la norme ne décrit que l’interconnection point à point.

5/34 TELECOM ParisTech Yves Mathieu

Introduction (4)
Le problème. . .

Beaucoup de déclarations à répéter dans les entêtes de
modules.
Beaucoup de code de protocole de communication a
dupliquer dans les modules
Des erreurs potentielles : tailles, directions des E/S
Rapidement des centaines de signaux à déclarer dans les
interconnections
On aimerait

• Regrouper les signaux par ensembles cohérents (bus PCI,
bus USB,...)

• Ne pas se soucier du sens des signaux dans
l’interconnection

• Définir de façon unique ces blocs d’interconnection
• Propager les changements de définitions

6/34 TELECOM ParisTech Yves Mathieu

Introduction (4)
Le problème. . .

Beaucoup de déclarations à répéter dans les entêtes de
modules.
Beaucoup de code de protocole de communication a
dupliquer dans les modules
Des erreurs potentielles : tailles, directions des E/S
Rapidement des centaines de signaux à déclarer dans les
interconnections
On aimerait

• Regrouper les signaux par ensembles cohérents (bus PCI,
bus USB,...)

• Ne pas se soucier du sens des signaux dans
l’interconnection

• Définir de façon unique ces blocs d’interconnection
• Propager les changements de définitions

6/34 TELECOM ParisTech Yves Mathieu

Introduction (4)
Le problème. . .

Beaucoup de déclarations à répéter dans les entêtes de
modules.
Beaucoup de code de protocole de communication a
dupliquer dans les modules
Des erreurs potentielles : tailles, directions des E/S
Rapidement des centaines de signaux à déclarer dans les
interconnections
On aimerait

• Regrouper les signaux par ensembles cohérents (bus PCI,
bus USB,...)

• Ne pas se soucier du sens des signaux dans
l’interconnection

• Définir de façon unique ces blocs d’interconnection
• Propager les changements de définitions

6/34 TELECOM ParisTech Yves Mathieu

Introduction (4)
Le problème. . .

Beaucoup de déclarations à répéter dans les entêtes de
modules.
Beaucoup de code de protocole de communication a
dupliquer dans les modules
Des erreurs potentielles : tailles, directions des E/S
Rapidement des centaines de signaux à déclarer dans les
interconnections
On aimerait

• Regrouper les signaux par ensembles cohérents (bus PCI,
bus USB,...)

• Ne pas se soucier du sens des signaux dans
l’interconnection

• Définir de façon unique ces blocs d’interconnection
• Propager les changements de définitions

6/34 TELECOM ParisTech Yves Mathieu

Introduction (4)
Le problème. . .

Beaucoup de déclarations à répéter dans les entêtes de
modules.
Beaucoup de code de protocole de communication a
dupliquer dans les modules
Des erreurs potentielles : tailles, directions des E/S
Rapidement des centaines de signaux à déclarer dans les
interconnections
On aimerait

• Regrouper les signaux par ensembles cohérents (bus PCI,
bus USB,...)

• Ne pas se soucier du sens des signaux dans
l’interconnection

• Définir de façon unique ces blocs d’interconnection
• Propager les changements de définitions

6/34 TELECOM ParisTech Yves Mathieu

Plan

Introduction

SystemVerilog : les interfaces

Le bus Wishbone

7/34 TELECOM ParisTech Yves Mathieu

L’ interface systemVerilog

Regrouper des signaux et représenter par un port unique.
Ne déclarer les signaux internes qu’un seule fois.
Un module connecté à une interface n’est connecté qu’à
un seul port.
Des function et task peuvent être déclarés dans une
interface:

• Pas de duplication de codes identiques dans les modules.
• Inclure du code de vérification dans la définition de

l’interface

8/34 TELECOM ParisTech Yves Mathieu

L’ interface systemVerilog

Regrouper des signaux et représenter par un port unique.
Ne déclarer les signaux internes qu’un seule fois.
Un module connecté à une interface n’est connecté qu’à
un seul port.
Des function et task peuvent être déclarés dans une
interface:

• Pas de duplication de codes identiques dans les modules.
• Inclure du code de vérification dans la définition de

l’interface

8/34 TELECOM ParisTech Yves Mathieu

L’ interface systemVerilog

Regrouper des signaux et représenter par un port unique.
Ne déclarer les signaux internes qu’un seule fois.
Un module connecté à une interface n’est connecté qu’à
un seul port.
Des function et task peuvent être déclarés dans une
interface:

• Pas de duplication de codes identiques dans les modules.
• Inclure du code de vérification dans la définition de

l’interface

8/34 TELECOM ParisTech Yves Mathieu

L’ interface systemVerilog

Regrouper des signaux et représenter par un port unique.
Ne déclarer les signaux internes qu’un seule fois.
Un module connecté à une interface n’est connecté qu’à
un seul port.
Des function et task peuvent être déclarés dans une
interface:

• Pas de duplication de codes identiques dans les modules.
• Inclure du code de vérification dans la définition de

l’interface

8/34 TELECOM ParisTech Yves Mathieu

L’ interface systemVerilog
Exemple sans interface

9/34 TELECOM ParisTech Yves Mathieu

L’ interface systemVerilog
Exemple avec interface

10/34 TELECOM ParisTech Yves Mathieu

L’ interface systemVerilog

Element hiérarchique au même titre qu’un module, mais...
• Une interface ne peut contenir de module ou de primitives.
• Une interface peut être utilisée comme port d’un module.
• Une interface peut contenir des alternatives (modport).

11/34 TELECOM ParisTech Yves Mathieu

L’ interface systemVerilog
La déclaration

Définition de signaux
globaux (clk, rst)
Définition de signaux
propres à l’interface (Data,
Sel)
Définition de vues
différentes de l’interface
(modport)
Attention : Une interface
peut être paramétrée
(comme un module)

interface monInterface (
input logic clk, rst

);

logic [7:0] Data ;
logic Sel ;

modport master (
input clk, rst, Data,
output Sel

);

modport slave (
input clk, rst, Sel,
output Data

);
endinterface

Mise en pratique: Créez un fichier monInterface.sv , compilez le en vue d’une future
simulation.

12/34 TELECOM ParisTech Yves Mathieu

L’ interface systemVerilog
La déclaration

Définition de signaux
globaux (clk, rst)
Définition de signaux
propres à l’interface (Data,
Sel)
Définition de vues
différentes de l’interface
(modport)
Attention : Une interface
peut être paramétrée
(comme un module)

interface monInterface (
input logic clk, rst

);

logic [7:0] Data ;
logic Sel ;

modport master (
input clk, rst, Data,
output Sel

);

modport slave (
input clk, rst, Sel,
output Data

);
endinterface

Mise en pratique: Créez un fichier monInterface.sv , compilez le en vue d’une future
simulation.

12/34 TELECOM ParisTech Yves Mathieu

L’ interface systemVerilog
La déclaration

Définition de signaux
globaux (clk, rst)
Définition de signaux
propres à l’interface (Data,
Sel)
Définition de vues
différentes de l’interface
(modport)
Attention : Une interface
peut être paramétrée
(comme un module)

interface monInterface (
input logic clk, rst

);

logic [7:0] Data ;
logic Sel ;

modport master (
input clk, rst, Data,
output Sel

);

modport slave (
input clk, rst, Sel,
output Data

);
endinterface

Mise en pratique: Créez un fichier monInterface.sv , compilez le en vue d’une future
simulation.

12/34 TELECOM ParisTech Yves Mathieu

L’ interface systemVerilog
La déclaration

Définition de signaux
globaux (clk, rst)
Définition de signaux
propres à l’interface (Data,
Sel)
Définition de vues
différentes de l’interface
(modport)
Attention : Une interface
peut être paramétrée
(comme un module)

interface monInterface (
input logic clk, rst

);

logic [7:0] Data ;
logic Sel ;

modport master (
input clk, rst, Data,
output Sel

);

modport slave (
input clk, rst, Sel,
output Data

);
endinterface

Mise en pratique: Créez un fichier monInterface.sv , compilez le en vue d’une future
simulation.

12/34 TELECOM ParisTech Yves Mathieu

L’ interface systemVerilog
L’instanciation

On instancie une interface
comme un module.
Les signaux globaux clk et
rst seront accessibles via
l’interface
Les autres signaux de
l’interface sont internes à
l’interface

module topModule(
input logic clk,
input logic rst,
input logic [7:0] datain,
output logic [7:0] dataout) ;

monInterface itf_0(
.clk(clk),
.rst(rst)
) ;

// Suite de la description

endmodule

13/34 TELECOM ParisTech Yves Mathieu

L’ interface systemVerilog
L’instanciation

On instancie une interface
comme un module.
Les signaux globaux clk et
rst seront accessibles via
l’interface
Les autres signaux de
l’interface sont internes à
l’interface

module topModule(
input logic clk,
input logic rst,
input logic [7:0] datain,
output logic [7:0] dataout) ;

monInterface itf_0(
.clk(clk),
.rst(rst)
) ;

// Suite de la description

endmodule

13/34 TELECOM ParisTech Yves Mathieu

L’ interface systemVerilog
L’instanciation

On instancie une interface
comme un module.
Les signaux globaux clk et
rst seront accessibles via
l’interface
Les autres signaux de
l’interface sont internes à
l’interface

module topModule(
input logic clk,
input logic rst,
input logic [7:0] datain,
output logic [7:0] dataout) ;

monInterface itf_0(
.clk(clk),
.rst(rst)
) ;

// Suite de la description

endmodule

13/34 TELECOM ParisTech Yves Mathieu

L’ interface systemVerilog
Accès à une interface via le port d’un module

Le port if_mst est un
modport master d’une
interface de type
monInterface.
On aurait pu juste indiquer
monInterface if_mst.
Ou interface if_mst
Choix du degré de
vérification à la compilation
On accède aux signaux de
l’interface par un nom
hiérarchique.

module receiver(
monInterface.master if_mst,
output logic[7:0] data);
logic [1:0] cmpt ;

always_ff @(posedge if_mst.clk
or posedge if_mst.rst)

if(if_mst.rst)
cmpt <= ’0 ;

else
cmpt <= cmpt+1 ;

assign if_mst.Sel = cmpt[1] ;
assign data = if_mst.Data ;

endmodule

Mise en pratique : Créez un fichier receiver.sv , compilez le en vue d’une future
simulation.

14/34 TELECOM ParisTech Yves Mathieu

L’ interface systemVerilog
Accès à une interface via le port d’un module

Le port if_mst est un
modport master d’une
interface de type
monInterface.
On aurait pu juste indiquer
monInterface if_mst.
Ou interface if_mst
Choix du degré de
vérification à la compilation
On accède aux signaux de
l’interface par un nom
hiérarchique.

module receiver(
monInterface.master if_mst,
output logic[7:0] data);
logic [1:0] cmpt ;

always_ff @(posedge if_mst.clk
or posedge if_mst.rst)

if(if_mst.rst)
cmpt <= ’0 ;

else
cmpt <= cmpt+1 ;

assign if_mst.Sel = cmpt[1] ;
assign data = if_mst.Data ;

endmodule

Mise en pratique : Créez un fichier receiver.sv , compilez le en vue d’une future
simulation.

14/34 TELECOM ParisTech Yves Mathieu

L’ interface systemVerilog
Accès à une interface via le port d’un module

Le port if_mst est un
modport master d’une
interface de type
monInterface.
On aurait pu juste indiquer
monInterface if_mst.
Ou interface if_mst
Choix du degré de
vérification à la compilation
On accède aux signaux de
l’interface par un nom
hiérarchique.

module receiver(
monInterface.master if_mst,
output logic[7:0] data);
logic [1:0] cmpt ;

always_ff @(posedge if_mst.clk
or posedge if_mst.rst)

if(if_mst.rst)
cmpt <= ’0 ;

else
cmpt <= cmpt+1 ;

assign if_mst.Sel = cmpt[1] ;
assign data = if_mst.Data ;

endmodule

Mise en pratique : Créez un fichier receiver.sv , compilez le en vue d’une future
simulation.

14/34 TELECOM ParisTech Yves Mathieu

L’ interface systemVerilog
Accès à une interface via le port d’un module

Le port if_mst est un
modport master d’une
interface de type
monInterface.
On aurait pu juste indiquer
monInterface if_mst.
Ou interface if_mst
Choix du degré de
vérification à la compilation
On accède aux signaux de
l’interface par un nom
hiérarchique.

module receiver(
monInterface.master if_mst,
output logic[7:0] data);
logic [1:0] cmpt ;

always_ff @(posedge if_mst.clk
or posedge if_mst.rst)

if(if_mst.rst)
cmpt <= ’0 ;

else
cmpt <= cmpt+1 ;

assign if_mst.Sel = cmpt[1] ;
assign data = if_mst.Data ;

endmodule

Mise en pratique : Créez un fichier receiver.sv , compilez le en vue d’une future
simulation.

14/34 TELECOM ParisTech Yves Mathieu

L’ interface systemVerilog
Accès à une interface via le port d’un module

Le port if_mst est un
modport master d’une
interface de type
monInterface.
On aurait pu juste indiquer
monInterface if_mst.
Ou interface if_mst
Choix du degré de
vérification à la compilation
On accède aux signaux de
l’interface par un nom
hiérarchique.

module receiver(
monInterface.master if_mst,
output logic[7:0] data);
logic [1:0] cmpt ;

always_ff @(posedge if_mst.clk
or posedge if_mst.rst)

if(if_mst.rst)
cmpt <= ’0 ;

else
cmpt <= cmpt+1 ;

assign if_mst.Sel = cmpt[1] ;
assign data = if_mst.Data ;

endmodule

Mise en pratique : Créez un fichier receiver.sv , compilez le en vue d’une future
simulation.

14/34 TELECOM ParisTech Yves Mathieu

L’ interface systemVerilog
Utilisation d’une interface comme port d’un module

module sender(
monInterface.slave if_slv,
input logic[7:0] data) ;

always_ff @(posedge if_slv.clk)
if (if_slv.Sel)

if_slv.Data <= data ;
else

if_slv.Data <= ’0 ;
endmodule

Mise en pratique : Créez un fichier sender.sv , compilez le en vue d’une future
simulation.

15/34 TELECOM ParisTech Yves Mathieu

L’ interface systemVerilog
Instanciation et interconnection

On instancie les deux
modules sender et
receiver.
On connecte les deux
modules à l’interface itf_0
On connecte les autres
signaux des modules.

module topModule(
input logic clk,
input logic rst,
input logic [7:0] datain,
output logic [7:0] dataout) ;

monInterface itf_0(
.clk(clk),
.rst(rst)
) ;

sender snd_0(
.if_slv(itf_0.slave),
.data(datain)
) ;

receiver rcv_0(
.if_mst(itf_0.master),
.data(dataout)
) ;

endmodule

Au travail : Créez un fichier topModule.sv , compilez
16/34 TELECOM ParisTech Yves Mathieu

L’ interface systemVerilog
Instanciation et interconnection

On instancie les deux
modules sender et
receiver.
On connecte les deux
modules à l’interface itf_0
On connecte les autres
signaux des modules.

module topModule(
input logic clk,
input logic rst,
input logic [7:0] datain,
output logic [7:0] dataout) ;

monInterface itf_0(
.clk(clk),
.rst(rst)
) ;

sender snd_0(
.if_slv(itf_0.slave),
.data(datain)
) ;

receiver rcv_0(
.if_mst(itf_0.master),
.data(dataout)
) ;

endmodule

Au travail : Créez un fichier topModule.sv , compilez
16/34 TELECOM ParisTech Yves Mathieu

L’ interface systemVerilog
Instanciation et interconnection

On instancie les deux
modules sender et
receiver.
On connecte les deux
modules à l’interface itf_0
On connecte les autres
signaux des modules.

module topModule(
input logic clk,
input logic rst,
input logic [7:0] datain,
output logic [7:0] dataout) ;

monInterface itf_0(
.clk(clk),
.rst(rst)
) ;

sender snd_0(
.if_slv(itf_0.slave),
.data(datain)
) ;

receiver rcv_0(
.if_mst(itf_0.master),
.data(dataout)
) ;

endmodule

Au travail : Créez un fichier topModule.sv , compilez
16/34 TELECOM ParisTech Yves Mathieu

Au travail
Simulation et synthèse

Créez un fichier testbench.sv,
compilez le, lancez la simulation
graphique.

Observez bien la hiérarchie :
l’interface est un bloc à art entière
contenant des signaux

Les signaux des interfaces ne font
pas partie des modules...

Synthétisez avec précision le module
"receiver.sv", il y a des erreurs ,
pourquoi ?

Ajoutez au projet le module
"monInterface.sv", recommencez la
synthèse.

Examinez les entrées/sortie sur le
shéma RTL généré, qu’en pensez
vous ?

Ajoutez les modules "sender" et
"topModule", refaites la synthèse et
vérifiez le résultat.

module testbench;
logic [7:0] din ;
logic [7:0] dout ;
bit clk, rst ;

topModule tpm_0(clk,rst,din,dout) ;

initial forever #5 clk = ~clk;

initial begin
rst = 1 ; #20 ; rst = 0 ;

end

always@(posedge clk)
if(rst)

din = 0 ;
else

din = din+1 ;
endmodule

17/34 TELECOM ParisTech Yves Mathieu

Plan

Introduction

SystemVerilog : les interfaces

Le bus Wishbone

18/34 TELECOM ParisTech Yves Mathieu

Les signaux du bus Wishbone
signaux RST et CLK

Fournis par le système...
RST : signal de reset actif
à l’état haut
CLK : le bus Wishbone est
synchrone

• les signaux sont validés
par les fronts montants
de l’horloge

• les maîtres et esclaves
communiquent à la
fréquence du bus

CLK_I
ADR_O()
DAT_I()

DAT_O()
WE_O

SEL_O()
STB_O
ACK_I

CLK_I
ADR_I()
DAT_I()

DAT_O()
WE_I
SEL_I()
STB_I
ACK_O

WI
SH
BO
NE

MA
ST
ER

WI
SH
BO
NE

SL
AV
E

CYC_O CYC_I
TAGN_O TAGN_I

RST_I RST_I

TAGN_I TAGN_O
USER

DEFINED

SYSCON

19/34 TELECOM ParisTech Yves Mathieu

Les signaux du bus Wishbone
signaux RST et CLK

Fournis par le système...
RST : signal de reset actif
à l’état haut
CLK : le bus Wishbone est
synchrone

• les signaux sont validés
par les fronts montants
de l’horloge

• les maîtres et esclaves
communiquent à la
fréquence du bus

CLK_I
ADR_O()
DAT_I()

DAT_O()
WE_O

SEL_O()
STB_O
ACK_I

CLK_I
ADR_I()
DAT_I()

DAT_O()
WE_I
SEL_I()
STB_I
ACK_O

WI
SH
BO
NE

MA
ST
ER

WI
SH
BO
NE

SL
AV
E

CYC_O CYC_I
TAGN_O TAGN_I

RST_I RST_I

TAGN_I TAGN_O
USER

DEFINED

SYSCON

19/34 TELECOM ParisTech Yves Mathieu

Les signaux du bus Wishbone
signaux RST et CLK

Fournis par le système...
RST : signal de reset actif
à l’état haut
CLK : le bus Wishbone est
synchrone

• les signaux sont validés
par les fronts montants
de l’horloge

• les maîtres et esclaves
communiquent à la
fréquence du bus

CLK_I
ADR_O()
DAT_I()

DAT_O()
WE_O

SEL_O()
STB_O
ACK_I

CLK_I
ADR_I()
DAT_I()

DAT_O()
WE_I
SEL_I()
STB_I
ACK_O

WI
SH
BO
NE

MA
ST
ER

WI
SH
BO
NE

SL
AV
E

CYC_O CYC_I
TAGN_O TAGN_I

RST_I RST_I

TAGN_I TAGN_O
USER

DEFINED

SYSCON

19/34 TELECOM ParisTech Yves Mathieu

Les signaux du bus Wishbone
signaux DAT et SEL

DAT : Donnée à transférer
• Canaux IN et OUT

séparés
• N = 1,2,4 ou 8 octets.
• Largeur identique pour

Maître et Esclave.
SEL : masque de transfert

• Mot de N bits
• Validation des octets

écrits

CLK_I
ADR_O()
DAT_I()

DAT_O()
WE_O

SEL_O()
STB_O
ACK_I

CLK_I
ADR_I()
DAT_I()

DAT_O()
WE_I
SEL_I()
STB_I
ACK_O

WI
SH
BO
NE

MA
ST
ER

WI
SH
BO
NE

SL
AV
E

CYC_O CYC_I
TAGN_O TAGN_I

RST_I RST_I

TAGN_I TAGN_O
USER

DEFINED

SYSCON

Attention: Bus 32bits, masques autorisés: 0001, 0010, 0100, 1000, 0011, 1100, 1111

20/34 TELECOM ParisTech Yves Mathieu

Les signaux du bus Wishbone
signaux DAT et SEL

DAT : Donnée à transférer
• Canaux IN et OUT

séparés
• N = 1,2,4 ou 8 octets.
• Largeur identique pour

Maître et Esclave.
SEL : masque de transfert

• Mot de N bits
• Validation des octets

écrits

CLK_I
ADR_O()
DAT_I()

DAT_O()
WE_O

SEL_O()
STB_O
ACK_I

CLK_I
ADR_I()
DAT_I()

DAT_O()
WE_I
SEL_I()
STB_I
ACK_O

WI
SH
BO
NE

MA
ST
ER

WI
SH
BO
NE

SL
AV
E

CYC_O CYC_I
TAGN_O TAGN_I

RST_I RST_I

TAGN_I TAGN_O
USER

DEFINED

SYSCON

Attention: Bus 32bits, masques autorisés: 0001, 0010, 0100, 1000, 0011, 1100, 1111

20/34 TELECOM ParisTech Yves Mathieu

Les signaux du bus Wishbone
signal ADR

ADR : Adresse du transfert
Norme: adresse alignée
sur la taille du mot

• mots 32bits :
ADR[max-1:2]

Pratique: on transmet
quand même des bits de
poids faible

• 32bits : ADR[1:0] = 00
• les esclaves peuvent

ignorer les bits de poids
faible.

Attention à l’«indianité »du
bus (voir norme 3.5 DATA
organisation)

CLK_I
ADR_O()
DAT_I()

DAT_O()
WE_O

SEL_O()
STB_O
ACK_I

CLK_I
ADR_I()
DAT_I()

DAT_O()
WE_I
SEL_I()
STB_I
ACK_O

WI
SH
BO
NE

MA
ST
ER

WI
SH
BO
NE

SL
AV
E

CYC_O CYC_I
TAGN_O TAGN_I

RST_I RST_I

TAGN_I TAGN_O
USER

DEFINED

SYSCON

21/34 TELECOM ParisTech Yves Mathieu

Les signaux du bus Wishbone
signal ADR

ADR : Adresse du transfert
Norme: adresse alignée
sur la taille du mot

• mots 32bits :
ADR[max-1:2]

Pratique: on transmet
quand même des bits de
poids faible

• 32bits : ADR[1:0] = 00
• les esclaves peuvent

ignorer les bits de poids
faible.

Attention à l’«indianité »du
bus (voir norme 3.5 DATA
organisation)

CLK_I
ADR_O()
DAT_I()

DAT_O()
WE_O

SEL_O()
STB_O
ACK_I

CLK_I
ADR_I()
DAT_I()

DAT_O()
WE_I
SEL_I()
STB_I
ACK_O

WI
SH
BO
NE

MA
ST
ER

WI
SH
BO
NE

SL
AV
E

CYC_O CYC_I
TAGN_O TAGN_I

RST_I RST_I

TAGN_I TAGN_O
USER

DEFINED

SYSCON

21/34 TELECOM ParisTech Yves Mathieu

Les signaux du bus Wishbone
signal ADR

ADR : Adresse du transfert
Norme: adresse alignée
sur la taille du mot

• mots 32bits :
ADR[max-1:2]

Pratique: on transmet
quand même des bits de
poids faible

• 32bits : ADR[1:0] = 00
• les esclaves peuvent

ignorer les bits de poids
faible.

Attention à l’«indianité »du
bus (voir norme 3.5 DATA
organisation)

CLK_I
ADR_O()
DAT_I()

DAT_O()
WE_O

SEL_O()
STB_O
ACK_I

CLK_I
ADR_I()
DAT_I()

DAT_O()
WE_I
SEL_I()
STB_I
ACK_O

WI
SH
BO
NE

MA
ST
ER

WI
SH
BO
NE

SL
AV
E

CYC_O CYC_I
TAGN_O TAGN_I

RST_I RST_I

TAGN_I TAGN_O
USER

DEFINED

SYSCON

21/34 TELECOM ParisTech Yves Mathieu

Les signaux du bus Wishbone
signal ADR

ADR : Adresse du transfert
Norme: adresse alignée
sur la taille du mot

• mots 32bits :
ADR[max-1:2]

Pratique: on transmet
quand même des bits de
poids faible

• 32bits : ADR[1:0] = 00
• les esclaves peuvent

ignorer les bits de poids
faible.

Attention à l’«indianité »du
bus (voir norme 3.5 DATA
organisation)

CLK_I
ADR_O()
DAT_I()

DAT_O()
WE_O

SEL_O()
STB_O
ACK_I

CLK_I
ADR_I()
DAT_I()

DAT_O()
WE_I
SEL_I()
STB_I
ACK_O

WI
SH
BO
NE

MA
ST
ER

WI
SH
BO
NE

SL
AV
E

CYC_O CYC_I
TAGN_O TAGN_I

RST_I RST_I

TAGN_I TAGN_O
USER

DEFINED

SYSCON

21/34 TELECOM ParisTech Yves Mathieu

Les signaux du bus Wishbone
signaux de contrôle WE, STB, CYC, ACK

CYC : le maître demande
l’accès au bus
STB : le maître valide un
cycle d’accès (CYC=1)
WE : WE=1/0 le cycle
d’accès est en
écriture/lecture
ACK : l’esclave valide le
cycle d’accès:

• Ecriture effectuée
• Donnée présente en

lecture

CLK_I
ADR_O()
DAT_I()

DAT_O()
WE_O

SEL_O()
STB_O
ACK_I

CLK_I
ADR_I()
DAT_I()

DAT_O()
WE_I
SEL_I()
STB_I
ACK_O

WI
SH
BO
NE

MA
ST
ER

WI
SH
BO
NE

SL
AV
E

CYC_O CYC_I
TAGN_O TAGN_I

RST_I RST_I

TAGN_I TAGN_O
USER

DEFINED

SYSCON

22/34 TELECOM ParisTech Yves Mathieu

Les signaux du bus Wishbone
signaux de contrôle WE, STB, CYC, ACK

CYC : le maître demande
l’accès au bus
STB : le maître valide un
cycle d’accès (CYC=1)
WE : WE=1/0 le cycle
d’accès est en
écriture/lecture
ACK : l’esclave valide le
cycle d’accès:

• Ecriture effectuée
• Donnée présente en

lecture

CLK_I
ADR_O()
DAT_I()

DAT_O()
WE_O

SEL_O()
STB_O
ACK_I

CLK_I
ADR_I()
DAT_I()

DAT_O()
WE_I
SEL_I()
STB_I
ACK_O

WI
SH
BO
NE

MA
ST
ER

WI
SH
BO
NE

SL
AV
E

CYC_O CYC_I
TAGN_O TAGN_I

RST_I RST_I

TAGN_I TAGN_O
USER

DEFINED

SYSCON

22/34 TELECOM ParisTech Yves Mathieu

Les signaux du bus Wishbone
signaux de contrôle WE, STB, CYC, ACK

CYC : le maître demande
l’accès au bus
STB : le maître valide un
cycle d’accès (CYC=1)
WE : WE=1/0 le cycle
d’accès est en
écriture/lecture
ACK : l’esclave valide le
cycle d’accès:

• Ecriture effectuée
• Donnée présente en

lecture

CLK_I
ADR_O()
DAT_I()

DAT_O()
WE_O

SEL_O()
STB_O
ACK_I

CLK_I
ADR_I()
DAT_I()

DAT_O()
WE_I
SEL_I()
STB_I
ACK_O

WI
SH
BO
NE

MA
ST
ER

WI
SH
BO
NE

SL
AV
E

CYC_O CYC_I
TAGN_O TAGN_I

RST_I RST_I

TAGN_I TAGN_O
USER

DEFINED

SYSCON

22/34 TELECOM ParisTech Yves Mathieu

Les signaux du bus Wishbone
signaux de contrôle WE, STB, CYC, ACK

CYC : le maître demande
l’accès au bus
STB : le maître valide un
cycle d’accès (CYC=1)
WE : WE=1/0 le cycle
d’accès est en
écriture/lecture
ACK : l’esclave valide le
cycle d’accès:

• Ecriture effectuée
• Donnée présente en

lecture

CLK_I
ADR_O()
DAT_I()

DAT_O()
WE_O

SEL_O()
STB_O
ACK_I

CLK_I
ADR_I()
DAT_I()

DAT_O()
WE_I
SEL_I()
STB_I
ACK_O

WI
SH
BO
NE

MA
ST
ER

WI
SH
BO
NE

SL
AV
E

CYC_O CYC_I
TAGN_O TAGN_I

RST_I RST_I

TAGN_I TAGN_O
USER

DEFINED

SYSCON

22/34 TELECOM ParisTech Yves Mathieu

Les signaux du bus Wishbone
Signaux auxiliaires

Signaux non utilisés dans
le cadre de SE204

• RTY : l’esclave n’est pas
prêt.

• ERR : erreur signalée
par l’esclave.

• Forcer 0 dans nos
esclaves.

Signaux d’extension
• TAGS : qualifier plus

précisément une
transaction...

• Voir plus loin
"Registered Feedback"

CLK_I
ADR_O()
DAT_I()

DAT_O()
WE_O

SEL_O()
STB_O
ACK_I

CLK_I
ADR_I()
DAT_I()

DAT_O()
WE_I
SEL_I()
STB_I
ACK_O

WI
SH
BO
NE

MA
ST
ER

WI
SH
BO
NE

SL
AV
E

CYC_O CYC_I
TAGN_O TAGN_I

RST_I RST_I

TAGN_I TAGN_O
USER

DEFINED

SYSCON

23/34 TELECOM ParisTech Yves Mathieu

Les signaux du bus Wishbone
Signaux auxiliaires

Signaux non utilisés dans
le cadre de SE204

• RTY : l’esclave n’est pas
prêt.

• ERR : erreur signalée
par l’esclave.

• Forcer 0 dans nos
esclaves.

Signaux d’extension
• TAGS : qualifier plus

précisément une
transaction...

• Voir plus loin
"Registered Feedback"

CLK_I
ADR_O()
DAT_I()

DAT_O()
WE_O

SEL_O()
STB_O
ACK_I

CLK_I
ADR_I()
DAT_I()

DAT_O()
WE_I
SEL_I()
STB_I
ACK_O

WI
SH
BO
NE

MA
ST
ER

WI
SH
BO
NE

SL
AV
E

CYC_O CYC_I
TAGN_O TAGN_I

RST_I RST_I

TAGN_I TAGN_O
USER

DEFINED

SYSCON

23/34 TELECOM ParisTech Yves Mathieu

Une transaction en écriture Wishbone
"Classic Bus Cycle"

CLK

CYC

STB

WE

ADR

SEL

DAT_MS

DAT_SM

ACK

24/34 TELECOM ParisTech Yves Mathieu

Une transaction en écriture Wishbone
"Classic Bus Cycle"

CLK

CYC

STB

WE

ADR

SEL

DAT_MS

DAT_SM

ACK

24/34 TELECOM ParisTech Yves Mathieu

Une transaction en écriture Wishbone
"Classic Bus Cycle"

CLK

CYC

STB

WE

ADR

SEL

DAT_MS

DAT_SM

ACK

24/34 TELECOM ParisTech Yves Mathieu

Une transaction en écriture Wishbone
"Classic Bus Cycle"

CLK

CYC

STB

WE

ADR

SEL

DAT_MS

DAT_SM

ACK

24/34 TELECOM ParisTech Yves Mathieu

Une transaction en écriture Wishbone
"Classic Bus Cycle"

CLK

CYC

STB

WE

ADR

SEL

DAT_MS

DAT_SM

ACK

24/34 TELECOM ParisTech Yves Mathieu

Une transaction en écriture Wishbone
"Classic Bus Cycle"

CLK

CYC

STB

WE

ADR

SEL

DAT_MS

DAT_SM

ACK

24/34 TELECOM ParisTech Yves Mathieu

Une transaction en écriture Wishbone
Réponse de l’esclave en "Mealy"

CLK

CYC

STB

WE

ADR

SEL

DAT_MS

DAT_SM

ACK

25/34 TELECOM ParisTech Yves Mathieu

Une transaction en écriture Wishbone
Réponse de l’esclave en "Mealy"

CLK

CYC

STB

WE

ADR

SEL

DAT_MS

DAT_SM

ACK

25/34 TELECOM ParisTech Yves Mathieu

Une transaction en écriture Wishbone
Réponse de l’esclave en "Mealy"

CLK

CYC

STB

WE

ADR

SEL

DAT_MS

DAT_SM

ACK

25/34 TELECOM ParisTech Yves Mathieu

Une transaction en écriture Wishbone
Réponse de l’esclave en "Mealy"

CLK

CYC

STB

WE

ADR

SEL

DAT_MS

DAT_SM

ACK

25/34 TELECOM ParisTech Yves Mathieu

Une transaction en écriture Wishbone
Réponse de l’esclave en "Mealy"

CLK

CYC

STB

WE

ADR

SEL

DAT_MS

DAT_SM

ACK

25/34 TELECOM ParisTech Yves Mathieu

Une transaction en lecture Wishbone
"Classic Bus Cycle"

CLK

CYC

STB

WE

ADR

SEL

DAT_MS

DAT_SM

ACK

26/34 TELECOM ParisTech Yves Mathieu

Une transaction en lecture Wishbone
"Classic Bus Cycle"

CLK

CYC

STB

WE

ADR

SEL

DAT_MS

DAT_SM

ACK

26/34 TELECOM ParisTech Yves Mathieu

Une transaction en lecture Wishbone
"Classic Bus Cycle"

CLK

CYC

STB

WE

ADR

SEL

DAT_MS

DAT_SM

ACK

26/34 TELECOM ParisTech Yves Mathieu

Une transaction en lecture Wishbone
"Classic Bus Cycle"

CLK

CYC

STB

WE

ADR

SEL

DAT_MS

DAT_SM

ACK

26/34 TELECOM ParisTech Yves Mathieu

Une transaction en lecture Wishbone
"Classic Bus Cycle"

CLK

CYC

STB

WE

ADR

SEL

DAT_MS

DAT_SM

ACK

26/34 TELECOM ParisTech Yves Mathieu

Une transaction en lecture Wishbone
"Classic Bus Cycle"

CLK

CYC

STB

WE

ADR

SEL

DAT_MS

DAT_SM

ACK

26/34 TELECOM ParisTech Yves Mathieu

Les transactions
En résumé...

Le maître maintient CYC tant qu’il a besoin de l’esclave.
Le maître initie un cycle de transfert par STB.
L’esclave détecte la coïncidence de CYC et STB.
Le maître attend ACK sans relacher la requête.
L’esclave répond au maître par ACK.
ACK peut être calculé combinatoirement si l’esclave est
suffisament rapide.
ACK peut être envoyé un ou plusieurs cycles après STB
en fonction de la latence de l’esclave.
Le maître peut enchaîner des requêtes sans interruption
(STB maintenu à un, changement de ADR)

27/34 TELECOM ParisTech Yves Mathieu

Les transactions
En résumé...

Le maître maintient CYC tant qu’il a besoin de l’esclave.
Le maître initie un cycle de transfert par STB.
L’esclave détecte la coïncidence de CYC et STB.
Le maître attend ACK sans relacher la requête.
L’esclave répond au maître par ACK.
ACK peut être calculé combinatoirement si l’esclave est
suffisament rapide.
ACK peut être envoyé un ou plusieurs cycles après STB
en fonction de la latence de l’esclave.
Le maître peut enchaîner des requêtes sans interruption
(STB maintenu à un, changement de ADR)

27/34 TELECOM ParisTech Yves Mathieu

Les transactions
En résumé...

Le maître maintient CYC tant qu’il a besoin de l’esclave.
Le maître initie un cycle de transfert par STB.
L’esclave détecte la coïncidence de CYC et STB.
Le maître attend ACK sans relacher la requête.
L’esclave répond au maître par ACK.
ACK peut être calculé combinatoirement si l’esclave est
suffisament rapide.
ACK peut être envoyé un ou plusieurs cycles après STB
en fonction de la latence de l’esclave.
Le maître peut enchaîner des requêtes sans interruption
(STB maintenu à un, changement de ADR)

27/34 TELECOM ParisTech Yves Mathieu

Les transactions
En résumé...

Le maître maintient CYC tant qu’il a besoin de l’esclave.
Le maître initie un cycle de transfert par STB.
L’esclave détecte la coïncidence de CYC et STB.
Le maître attend ACK sans relacher la requête.
L’esclave répond au maître par ACK.
ACK peut être calculé combinatoirement si l’esclave est
suffisament rapide.
ACK peut être envoyé un ou plusieurs cycles après STB
en fonction de la latence de l’esclave.
Le maître peut enchaîner des requêtes sans interruption
(STB maintenu à un, changement de ADR)

27/34 TELECOM ParisTech Yves Mathieu

Les transactions
En résumé...

Le maître maintient CYC tant qu’il a besoin de l’esclave.
Le maître initie un cycle de transfert par STB.
L’esclave détecte la coïncidence de CYC et STB.
Le maître attend ACK sans relacher la requête.
L’esclave répond au maître par ACK.
ACK peut être calculé combinatoirement si l’esclave est
suffisament rapide.
ACK peut être envoyé un ou plusieurs cycles après STB
en fonction de la latence de l’esclave.
Le maître peut enchaîner des requêtes sans interruption
(STB maintenu à un, changement de ADR)

27/34 TELECOM ParisTech Yves Mathieu

Les transactions
En résumé...

Le maître maintient CYC tant qu’il a besoin de l’esclave.
Le maître initie un cycle de transfert par STB.
L’esclave détecte la coïncidence de CYC et STB.
Le maître attend ACK sans relacher la requête.
L’esclave répond au maître par ACK.
ACK peut être calculé combinatoirement si l’esclave est
suffisament rapide.
ACK peut être envoyé un ou plusieurs cycles après STB
en fonction de la latence de l’esclave.
Le maître peut enchaîner des requêtes sans interruption
(STB maintenu à un, changement de ADR)

27/34 TELECOM ParisTech Yves Mathieu

Les transactions
En résumé...

Le maître maintient CYC tant qu’il a besoin de l’esclave.
Le maître initie un cycle de transfert par STB.
L’esclave détecte la coïncidence de CYC et STB.
Le maître attend ACK sans relacher la requête.
L’esclave répond au maître par ACK.
ACK peut être calculé combinatoirement si l’esclave est
suffisament rapide.
ACK peut être envoyé un ou plusieurs cycles après STB
en fonction de la latence de l’esclave.
Le maître peut enchaîner des requêtes sans interruption
(STB maintenu à un, changement de ADR)

27/34 TELECOM ParisTech Yves Mathieu

Les transactions
En résumé...

Le maître maintient CYC tant qu’il a besoin de l’esclave.
Le maître initie un cycle de transfert par STB.
L’esclave détecte la coïncidence de CYC et STB.
Le maître attend ACK sans relacher la requête.
L’esclave répond au maître par ACK.
ACK peut être calculé combinatoirement si l’esclave est
suffisament rapide.
ACK peut être envoyé un ou plusieurs cycles après STB
en fonction de la latence de l’esclave.
Le maître peut enchaîner des requêtes sans interruption
(STB maintenu à un, changement de ADR)

27/34 TELECOM ParisTech Yves Mathieu

Une interface SystemVerilog pour le bus
Wishbone

interface wshb_if (input logic clk, input logic rst) ;

logic [31:0] dat_sm ;
logic [31:0] dat_ms ;
logic [31:0] adr ;
logic cyc;
logic [3:0] sel;
logic stb;
logic we;
logic ack;
logic err;
logic rty;
logic [2:0] cti;
logic [1:0] bte;

modport master (
output dat_ms,
output adr ,
output cyc ,
output sel ,
output stb ,
output we ,
output cti ,
output bte ,
input ack ,
input err ,
input rty ,
input dat_sm,
input clk,
input rst

) ;

modport slave (
input dat_ms,
input adr ,
input cyc ,
input sel ,
input stb ,
input we ,
input cti ,
input bte ,
output ack ,
output err ,
output rty ,
output dat_sm,
output clk,
output rst

) ;
endinterface

28/34 TELECOM ParisTech Yves Mathieu

Transferts de données en rafales
"Un protocole insuffisant"

Le protocole tel que décrit n’est pas optimal pour des
transferts de paquets de données en rafales.
La latence de l’esclave (retard de N cycles) est perdue à
chaque transfert en lecture:

• Pour un retard de 1 cycle, la lecture en rafale est 2 fois plus
lente que l’écriture.

Solution:
• Le maître utilise des TAGS pour prévenir l’esclave d’une

requête d’un bloc de données
• L’esclave peut alors anticiper les requêtes sans attendre le

STB du maître.

29/34 TELECOM ParisTech Yves Mathieu

Transferts de données en rafales
"Un protocole insuffisant"

Le protocole tel que décrit n’est pas optimal pour des
transferts de paquets de données en rafales.
La latence de l’esclave (retard de N cycles) est perdue à
chaque transfert en lecture:

• Pour un retard de 1 cycle, la lecture en rafale est 2 fois plus
lente que l’écriture.

Solution:
• Le maître utilise des TAGS pour prévenir l’esclave d’une

requête d’un bloc de données
• L’esclave peut alors anticiper les requêtes sans attendre le

STB du maître.

29/34 TELECOM ParisTech Yves Mathieu

Transferts de données en rafales
"Un protocole insuffisant"

Le protocole tel que décrit n’est pas optimal pour des
transferts de paquets de données en rafales.
La latence de l’esclave (retard de N cycles) est perdue à
chaque transfert en lecture:

• Pour un retard de 1 cycle, la lecture en rafale est 2 fois plus
lente que l’écriture.

Solution:
• Le maître utilise des TAGS pour prévenir l’esclave d’une

requête d’un bloc de données
• L’esclave peut alors anticiper les requêtes sans attendre le

STB du maître.

29/34 TELECOM ParisTech Yves Mathieu

"Registered FeedBack Cycle"

signal CTI : Cycle type identifier (3 bits)
• ’000’ : Classic Cycle
• ’001’ : Constant address burst cycle
• ’010’ : Incrementing burst cycle
• ’...’ : Reserved
• ’111’ : End of Burst

signal BTE : Burst Type Extension (2 bits)
• ’00’ : Linear burst
• ’..’ : voir norme

Les TAGs sont fournis et maintenus avec STB.
Exemple : transférer N données avec un simple incrément
d’adresse:

• Transférer N-1 données avec le TAG (’010’,’00’)
• Transférer la donnée finale avec le TAG (’111’,’00’)

30/34 TELECOM ParisTech Yves Mathieu

"Registered FeedBack Cycle"

signal CTI : Cycle type identifier (3 bits)
• ’000’ : Classic Cycle
• ’001’ : Constant address burst cycle
• ’010’ : Incrementing burst cycle
• ’...’ : Reserved
• ’111’ : End of Burst

signal BTE : Burst Type Extension (2 bits)
• ’00’ : Linear burst
• ’..’ : voir norme

Les TAGs sont fournis et maintenus avec STB.
Exemple : transférer N données avec un simple incrément
d’adresse:

• Transférer N-1 données avec le TAG (’010’,’00’)
• Transférer la donnée finale avec le TAG (’111’,’00’)

30/34 TELECOM ParisTech Yves Mathieu

"Registered FeedBack Cycle"

signal CTI : Cycle type identifier (3 bits)
• ’000’ : Classic Cycle
• ’001’ : Constant address burst cycle
• ’010’ : Incrementing burst cycle
• ’...’ : Reserved
• ’111’ : End of Burst

signal BTE : Burst Type Extension (2 bits)
• ’00’ : Linear burst
• ’..’ : voir norme

Les TAGs sont fournis et maintenus avec STB.
Exemple : transférer N données avec un simple incrément
d’adresse:

• Transférer N-1 données avec le TAG (’010’,’00’)
• Transférer la donnée finale avec le TAG (’111’,’00’)

30/34 TELECOM ParisTech Yves Mathieu

"Registered FeedBack Cycle"

signal CTI : Cycle type identifier (3 bits)
• ’000’ : Classic Cycle
• ’001’ : Constant address burst cycle
• ’010’ : Incrementing burst cycle
• ’...’ : Reserved
• ’111’ : End of Burst

signal BTE : Burst Type Extension (2 bits)
• ’00’ : Linear burst
• ’..’ : voir norme

Les TAGs sont fournis et maintenus avec STB.
Exemple : transférer N données avec un simple incrément
d’adresse:

• Transférer N-1 données avec le TAG (’010’,’00’)
• Transférer la donnée finale avec le TAG (’111’,’00’)

30/34 TELECOM ParisTech Yves Mathieu

Une rafale en lecture Wishbone
"Registered FeedBack Cycle"

CLK

CYC

STB

WE

ADR AD1 AD1 AD1+4

SEL

CTI 010 010 111

BE 00 00 00

DAT_MS

DAT_SM D1 D2

ACK

31/34 TELECOM ParisTech Yves Mathieu

Une rafale en lecture Wishbone
"Registered FeedBack Cycle"

CLK

CYC

STB

WE

ADR AD1 AD1 AD1+4

SEL

CTI 010 010 111

BE 00 00 00

DAT_MS

DAT_SM D1 D2

ACK

31/34 TELECOM ParisTech Yves Mathieu

Une rafale en lecture Wishbone
"Registered FeedBack Cycle"

CLK

CYC

STB

WE

ADR AD1 AD1 AD1+4

SEL

CTI 010 010 111

BE 00 00 00

DAT_MS

DAT_SM D1 D2

ACK

31/34 TELECOM ParisTech Yves Mathieu

Une rafale en lecture Wishbone
"Registered FeedBack Cycle"

CLK

CYC

STB

WE

ADR AD1 AD1 AD1+4

SEL

CTI 010 010 111

BE 00 00 00

DAT_MS

DAT_SM D1 D2

ACK

31/34 TELECOM ParisTech Yves Mathieu

Une rafale en lecture Wishbone
"Registered FeedBack Cycle"

CLK

CYC

STB

WE

ADR AD1 AD1 AD1+4

SEL

CTI 010 010 111

BE 00 00 00

DAT_MS

DAT_SM D1 D2

ACK

31/34 TELECOM ParisTech Yves Mathieu

Une rafale en lecture Wishbone
"Registered FeedBack Cycle"

CLK

CYC

STB

WE

ADR AD1 AD1 AD1+4

SEL

CTI 010 010 111

BE 00 00 00

DAT_MS

DAT_SM D1 D2

ACK

31/34 TELECOM ParisTech Yves Mathieu

Les transactions en rafale
En résumé...

Tout maître peut utiliser ou non le mode Registered Feedback.

Tout esclave peut supporter ou non le mode Registered Feedback.

Tout type d’esclave doit pouvoir être connecté à tout type de maître.

Même si le mode est "Incremental Burst" le maître doit incrémenter les adresses.

En mode burst, le masque SEL doit rester constant...

Un esclave en mode burst peut envoyer le ACK avant même la requête reçue.

Dans ce cas il maintient tout ses signaux dans l’attente de la requête
correspondante.

Un esclave supportant le mode "Incremental Burst" doit disposer de son propre
compteur d’adresses.

Utile pour de la simple communication point à point en mode pipeline.

32/34 TELECOM ParisTech Yves Mathieu

Les transactions en rafale
En résumé...

Tout maître peut utiliser ou non le mode Registered Feedback.

Tout esclave peut supporter ou non le mode Registered Feedback.

Tout type d’esclave doit pouvoir être connecté à tout type de maître.

Même si le mode est "Incremental Burst" le maître doit incrémenter les adresses.

En mode burst, le masque SEL doit rester constant...

Un esclave en mode burst peut envoyer le ACK avant même la requête reçue.

Dans ce cas il maintient tout ses signaux dans l’attente de la requête
correspondante.

Un esclave supportant le mode "Incremental Burst" doit disposer de son propre
compteur d’adresses.

Utile pour de la simple communication point à point en mode pipeline.

32/34 TELECOM ParisTech Yves Mathieu

Les transactions en rafale
En résumé...

Tout maître peut utiliser ou non le mode Registered Feedback.

Tout esclave peut supporter ou non le mode Registered Feedback.

Tout type d’esclave doit pouvoir être connecté à tout type de maître.

Même si le mode est "Incremental Burst" le maître doit incrémenter les adresses.

En mode burst, le masque SEL doit rester constant...

Un esclave en mode burst peut envoyer le ACK avant même la requête reçue.

Dans ce cas il maintient tout ses signaux dans l’attente de la requête
correspondante.

Un esclave supportant le mode "Incremental Burst" doit disposer de son propre
compteur d’adresses.

Utile pour de la simple communication point à point en mode pipeline.

32/34 TELECOM ParisTech Yves Mathieu

Les transactions en rafale
En résumé...

Tout maître peut utiliser ou non le mode Registered Feedback.

Tout esclave peut supporter ou non le mode Registered Feedback.

Tout type d’esclave doit pouvoir être connecté à tout type de maître.

Même si le mode est "Incremental Burst" le maître doit incrémenter les adresses.

En mode burst, le masque SEL doit rester constant...

Un esclave en mode burst peut envoyer le ACK avant même la requête reçue.

Dans ce cas il maintient tout ses signaux dans l’attente de la requête
correspondante.

Un esclave supportant le mode "Incremental Burst" doit disposer de son propre
compteur d’adresses.

Utile pour de la simple communication point à point en mode pipeline.

32/34 TELECOM ParisTech Yves Mathieu

Les transactions en rafale
En résumé...

Tout maître peut utiliser ou non le mode Registered Feedback.

Tout esclave peut supporter ou non le mode Registered Feedback.

Tout type d’esclave doit pouvoir être connecté à tout type de maître.

Même si le mode est "Incremental Burst" le maître doit incrémenter les adresses.

En mode burst, le masque SEL doit rester constant...

Un esclave en mode burst peut envoyer le ACK avant même la requête reçue.

Dans ce cas il maintient tout ses signaux dans l’attente de la requête
correspondante.

Un esclave supportant le mode "Incremental Burst" doit disposer de son propre
compteur d’adresses.

Utile pour de la simple communication point à point en mode pipeline.

32/34 TELECOM ParisTech Yves Mathieu

Les transactions en rafale
En résumé...

Tout maître peut utiliser ou non le mode Registered Feedback.

Tout esclave peut supporter ou non le mode Registered Feedback.

Tout type d’esclave doit pouvoir être connecté à tout type de maître.

Même si le mode est "Incremental Burst" le maître doit incrémenter les adresses.

En mode burst, le masque SEL doit rester constant...

Un esclave en mode burst peut envoyer le ACK avant même la requête reçue.

Dans ce cas il maintient tout ses signaux dans l’attente de la requête
correspondante.

Un esclave supportant le mode "Incremental Burst" doit disposer de son propre
compteur d’adresses.

Utile pour de la simple communication point à point en mode pipeline.

32/34 TELECOM ParisTech Yves Mathieu

Les transactions en rafale
En résumé...

Tout maître peut utiliser ou non le mode Registered Feedback.

Tout esclave peut supporter ou non le mode Registered Feedback.

Tout type d’esclave doit pouvoir être connecté à tout type de maître.

Même si le mode est "Incremental Burst" le maître doit incrémenter les adresses.

En mode burst, le masque SEL doit rester constant...

Un esclave en mode burst peut envoyer le ACK avant même la requête reçue.

Dans ce cas il maintient tout ses signaux dans l’attente de la requête
correspondante.

Un esclave supportant le mode "Incremental Burst" doit disposer de son propre
compteur d’adresses.

Utile pour de la simple communication point à point en mode pipeline.

32/34 TELECOM ParisTech Yves Mathieu

Les transactions en rafale
En résumé...

Tout maître peut utiliser ou non le mode Registered Feedback.

Tout esclave peut supporter ou non le mode Registered Feedback.

Tout type d’esclave doit pouvoir être connecté à tout type de maître.

Même si le mode est "Incremental Burst" le maître doit incrémenter les adresses.

En mode burst, le masque SEL doit rester constant...

Un esclave en mode burst peut envoyer le ACK avant même la requête reçue.

Dans ce cas il maintient tout ses signaux dans l’attente de la requête
correspondante.

Un esclave supportant le mode "Incremental Burst" doit disposer de son propre
compteur d’adresses.

Utile pour de la simple communication point à point en mode pipeline.

32/34 TELECOM ParisTech Yves Mathieu

Les transactions en rafale
En résumé...

Tout maître peut utiliser ou non le mode Registered Feedback.

Tout esclave peut supporter ou non le mode Registered Feedback.

Tout type d’esclave doit pouvoir être connecté à tout type de maître.

Même si le mode est "Incremental Burst" le maître doit incrémenter les adresses.

En mode burst, le masque SEL doit rester constant...

Un esclave en mode burst peut envoyer le ACK avant même la requête reçue.

Dans ce cas il maintient tout ses signaux dans l’attente de la requête
correspondante.

Un esclave supportant le mode "Incremental Burst" doit disposer de son propre
compteur d’adresses.

Utile pour de la simple communication point à point en mode pipeline.

32/34 TELECOM ParisTech Yves Mathieu

Au travail...
(1) Un contrôleur de mémoire à bus Wishbone

Coder un esclave Wishbone pour contrôler une mémoire synchrone interne du
FPGA.

Un module unique contenant à la fois le code de l’interface, et l’inférence de la
mémoire.

L’acquittement de l’écriture se fera de manière combinatoire.

La mémoire étant synchrone, l’acquittement de la lecture aura un cycle de
retard.

La taille de la mémoire (nombre de bit d’adresse) devra être paramétrable

La taille par défaut de la mémoire sera de 2048 mots de 32 bits.

Nous utiliserons une "interface" SystemVerilog pour décrire le bus Wishbone.

Le code devra être évidemment synthétisable.

Nous fournissons (voir site SE204)

• La définition de l’interface
• Un programme de test faisant des requêtes aléatoires sur

le bus.

33/34 TELECOM ParisTech Yves Mathieu

Au travail...
(1) Un contrôleur de mémoire à bus Wishbone

Coder un esclave Wishbone pour contrôler une mémoire synchrone interne du
FPGA.

Un module unique contenant à la fois le code de l’interface, et l’inférence de la
mémoire.

L’acquittement de l’écriture se fera de manière combinatoire.

La mémoire étant synchrone, l’acquittement de la lecture aura un cycle de
retard.

La taille de la mémoire (nombre de bit d’adresse) devra être paramétrable

La taille par défaut de la mémoire sera de 2048 mots de 32 bits.

Nous utiliserons une "interface" SystemVerilog pour décrire le bus Wishbone.

Le code devra être évidemment synthétisable.

Nous fournissons (voir site SE204)

• La définition de l’interface
• Un programme de test faisant des requêtes aléatoires sur

le bus.

33/34 TELECOM ParisTech Yves Mathieu

Au travail...
(1) Un contrôleur de mémoire à bus Wishbone

Coder un esclave Wishbone pour contrôler une mémoire synchrone interne du
FPGA.

Un module unique contenant à la fois le code de l’interface, et l’inférence de la
mémoire.

L’acquittement de l’écriture se fera de manière combinatoire.

La mémoire étant synchrone, l’acquittement de la lecture aura un cycle de
retard.

La taille de la mémoire (nombre de bit d’adresse) devra être paramétrable

La taille par défaut de la mémoire sera de 2048 mots de 32 bits.

Nous utiliserons une "interface" SystemVerilog pour décrire le bus Wishbone.

Le code devra être évidemment synthétisable.

Nous fournissons (voir site SE204)

• La définition de l’interface
• Un programme de test faisant des requêtes aléatoires sur

le bus.

33/34 TELECOM ParisTech Yves Mathieu

Au travail...
(1) Un contrôleur de mémoire à bus Wishbone

Coder un esclave Wishbone pour contrôler une mémoire synchrone interne du
FPGA.

Un module unique contenant à la fois le code de l’interface, et l’inférence de la
mémoire.

L’acquittement de l’écriture se fera de manière combinatoire.

La mémoire étant synchrone, l’acquittement de la lecture aura un cycle de
retard.

La taille de la mémoire (nombre de bit d’adresse) devra être paramétrable

La taille par défaut de la mémoire sera de 2048 mots de 32 bits.

Nous utiliserons une "interface" SystemVerilog pour décrire le bus Wishbone.

Le code devra être évidemment synthétisable.

Nous fournissons (voir site SE204)

• La définition de l’interface
• Un programme de test faisant des requêtes aléatoires sur

le bus.

33/34 TELECOM ParisTech Yves Mathieu

Au travail...
(1) Un contrôleur de mémoire à bus Wishbone

Coder un esclave Wishbone pour contrôler une mémoire synchrone interne du
FPGA.

Un module unique contenant à la fois le code de l’interface, et l’inférence de la
mémoire.

L’acquittement de l’écriture se fera de manière combinatoire.

La mémoire étant synchrone, l’acquittement de la lecture aura un cycle de
retard.

La taille de la mémoire (nombre de bit d’adresse) devra être paramétrable

La taille par défaut de la mémoire sera de 2048 mots de 32 bits.

Nous utiliserons une "interface" SystemVerilog pour décrire le bus Wishbone.

Le code devra être évidemment synthétisable.

Nous fournissons (voir site SE204)

• La définition de l’interface
• Un programme de test faisant des requêtes aléatoires sur

le bus.

33/34 TELECOM ParisTech Yves Mathieu

Au travail...
(1) Un contrôleur de mémoire à bus Wishbone

Coder un esclave Wishbone pour contrôler une mémoire synchrone interne du
FPGA.

Un module unique contenant à la fois le code de l’interface, et l’inférence de la
mémoire.

L’acquittement de l’écriture se fera de manière combinatoire.

La mémoire étant synchrone, l’acquittement de la lecture aura un cycle de
retard.

La taille de la mémoire (nombre de bit d’adresse) devra être paramétrable

La taille par défaut de la mémoire sera de 2048 mots de 32 bits.

Nous utiliserons une "interface" SystemVerilog pour décrire le bus Wishbone.

Le code devra être évidemment synthétisable.

Nous fournissons (voir site SE204)

• La définition de l’interface
• Un programme de test faisant des requêtes aléatoires sur

le bus.

33/34 TELECOM ParisTech Yves Mathieu

Au travail...
(1) Un contrôleur de mémoire à bus Wishbone

Coder un esclave Wishbone pour contrôler une mémoire synchrone interne du
FPGA.

Un module unique contenant à la fois le code de l’interface, et l’inférence de la
mémoire.

L’acquittement de l’écriture se fera de manière combinatoire.

La mémoire étant synchrone, l’acquittement de la lecture aura un cycle de
retard.

La taille de la mémoire (nombre de bit d’adresse) devra être paramétrable

La taille par défaut de la mémoire sera de 2048 mots de 32 bits.

Nous utiliserons une "interface" SystemVerilog pour décrire le bus Wishbone.

Le code devra être évidemment synthétisable.

Nous fournissons (voir site SE204)

• La définition de l’interface
• Un programme de test faisant des requêtes aléatoires sur

le bus.

33/34 TELECOM ParisTech Yves Mathieu

Au travail...
(1) Un contrôleur de mémoire à bus Wishbone

Coder un esclave Wishbone pour contrôler une mémoire synchrone interne du
FPGA.

Un module unique contenant à la fois le code de l’interface, et l’inférence de la
mémoire.

L’acquittement de l’écriture se fera de manière combinatoire.

La mémoire étant synchrone, l’acquittement de la lecture aura un cycle de
retard.

La taille de la mémoire (nombre de bit d’adresse) devra être paramétrable

La taille par défaut de la mémoire sera de 2048 mots de 32 bits.

Nous utiliserons une "interface" SystemVerilog pour décrire le bus Wishbone.

Le code devra être évidemment synthétisable.

Nous fournissons (voir site SE204)

• La définition de l’interface
• Un programme de test faisant des requêtes aléatoires sur

le bus.

33/34 TELECOM ParisTech Yves Mathieu

Au travail...
(1) Un contrôleur de mémoire à bus Wishbone

Coder un esclave Wishbone pour contrôler une mémoire synchrone interne du
FPGA.

Un module unique contenant à la fois le code de l’interface, et l’inférence de la
mémoire.

L’acquittement de l’écriture se fera de manière combinatoire.

La mémoire étant synchrone, l’acquittement de la lecture aura un cycle de
retard.

La taille de la mémoire (nombre de bit d’adresse) devra être paramétrable

La taille par défaut de la mémoire sera de 2048 mots de 32 bits.

Nous utiliserons une "interface" SystemVerilog pour décrire le bus Wishbone.

Le code devra être évidemment synthétisable.

Nous fournissons (voir site SE204)

• La définition de l’interface
• Un programme de test faisant des requêtes aléatoires sur

le bus.

33/34 TELECOM ParisTech Yves Mathieu

Au travail. . .
(2) Un contrôleur de mémoire avec lecture en rafale

Réalisez une nouvelle version de votre contrôleur de
mémoire avec support du mode rafale en lecture.
Le maître du testbench génère à la fois des cycles
classiques, et des cycles «registered feedback ».
N’oubliez pas de vérifier l’amélioration de vitesse en
lecture.

34/34 TELECOM ParisTech Yves Mathieu

Au travail. . .
(2) Un contrôleur de mémoire avec lecture en rafale

Réalisez une nouvelle version de votre contrôleur de
mémoire avec support du mode rafale en lecture.
Le maître du testbench génère à la fois des cycles
classiques, et des cycles «registered feedback ».
N’oubliez pas de vérifier l’amélioration de vitesse en
lecture.

34/34 TELECOM ParisTech Yves Mathieu

Au travail. . .
(2) Un contrôleur de mémoire avec lecture en rafale

Réalisez une nouvelle version de votre contrôleur de
mémoire avec support du mode rafale en lecture.
Le maître du testbench génère à la fois des cycles
classiques, et des cycles «registered feedback ».
N’oubliez pas de vérifier l’amélioration de vitesse en
lecture.

34/34 TELECOM ParisTech Yves Mathieu

	Introduction
	SystemVerilog : les interfaces
	Le bus Wishbone

