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A Practical Verification Language?

LTL and CTL have emerged from theoretical interest
Bound to specific complexity classes and
equivalence notions
Nested CTL/LTL properties are hard to understand
Subtle semantic differences

F X p ≡ X F p ≡ AX AF p 6≡ AF AX p

F G p 6≡ AF AG p
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System Verilog Assertions

Industrial standard
(IEEE 1800-2012)
Embedded in SystemVerilog HDL
Superset of LTL
Sequences and regular expressions
Supports simulation and formal
verification
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Basic Property Structure

// basic property structure
property foo;

@(posedge clk) disable iff (rst)
expr;

endproperty // foo

// verification directives
assert_foo: assert property(foo);
assume_foo: assume property(foo);
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Past Values and Value Changes

Value of a signal in the preceding cycle:
$past(a)

Shortcut for rising edge:
$rose(a) is equal to !$past(a) && a

Shortcut for falling edge:
$fell(a) is equal to $past(a) && !a

Shortcut for stable signal:
$stable(a) is equal to $past(a) == a

Shortcut for changed signal:
$changed(a) is equal to $past(a) ^ a
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Sequentially Extended
Regular Expressions (SERE)

Typical use case: Chains of events
Awkward to describe in LTL
Intuitive description by regular expressions
Syntax resembles known languages (bash, Python, . . . )
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Sequences

a ##1 b ##2 c

clk

a

b

c

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15

Find all matching cycles. . .
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Variable Delay

a ##[1:3] b

clk

a

b

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15

Find all matches. . .
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Repetition

Consider sequence:
a ##1 a ##1 a ##1 b ##1 b

Shortcut for repeating sequence:
a[*3] ##1 b[*2]

Variable repetition:
a[*1:3]
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Assertion Semantics

property foo;
@(posedge clk)
a ##[1:3] b;

endproperty

assert_foo: assert property(foo);

What are we actually verifying here?
Sequence a ##[1:3] b must match in all cycles
Implicit always operator (G in LTL)
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Suffix Implication

// suffix implication
foo ##1 bar |-> pof ##[1:3] mop

clk

foo

bar

pof

mop
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Non-Overlapping Suffix Implication

// non-overlapping suffix implication
foo ##1 bar |=> pof ##[1:3] mop

clk

foo

bar

pof

mop
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Example

Prop. 1: “Whenever signal rdy is asserted, it must
stay asserted for 5 clock cycles”

property rdy_stable;
@(posedge clk)
!rdy ##1 rdy |=> rdy[*4];

endproperty
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Infinity

Special symbol $ for infinity

Can be used in variable delay and repetition

a[*] is a shortcut for a[*0:$]

a[+] is a shortcut for a[*1:$]

Exercise: What is the meaning of this sequence?

(start ##1 busy[*] ##1 done)[+]
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Infinity

Prop. 2: “Whenever signal busy is asserted,
rdy must be asserted eventually.”

property rdy_after_busy;
@(posedge clk)
busy |-> ##[0:$] rdy;

endproperty

This property is wrong!
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Infinity

This assertion has no counter-example

busy |-> ##[0:$] rdy

clk

busy

rdy
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Strength

Use of strong(...) operator
Enforces a match before the end of evaluation
(which is infinity in formal verification)
Weak and strong versions of many operators

A1: assert property (busy |-> ##[0:$] rdy);
A2: assert property (busy |-> strong( ##[0:$] rdy ));
A3: assert property (busy |-> eventually rdy);
A4: assert property (busy |-> s_eventually rdy);
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Until

a until b

a s_until b

clk

a

b

a until_with b

a s_until_with b

clk

a

b

Attention: Weak until operators allow infinite wait!

clk

a

b
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Goto Repetition

Prop. 3: “After signal write is serviced by ack,
signal ready should be asserted.”

(write ##1 !ack[*] ##1 ack) |=> ready

Prop. 4: “After signal wr_burst is serviced twice by ack,
signal ready should be asserted.”

(wr_burst ##1 !ack[*] ##1 ack ##1 !ack[*] ##1 ack) |=> ready

(wr_burst ##1 (!ack[*] ##1 ack)[*2] ) |=> ready

wr_burst ##1 ack[->2] |=> ready
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Goto Repetition

wr_burst ##1 ack[->2] |=> ready

clk

wr_burst

ack

ready
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Within / Throughout

Prop. 5: “Throughout the whole burst cycle, the signal
ready should be low.”

!ready throughout (wr_burst ##1 ack[->2])

Prop. 6: “Within a granted bus cycle, a write transaction
should be completed.”

(write ##1 ack[->1]) within (gnt ##1 !gnt[->1])

This property is (probably) wrong!

(write ##1 ack[->1] ##1 1) within (gnt ##1 !gnt[->1])
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Local Variables

Prop. 7: “After a completed write transaction, the value of
wdata is stored in the register entry.”

clk

write

wdata 0xFFE1

ack

entry 0xFFE1
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Local Variables

Prop. 7: “After a completed write transaction, the value of
wdata is stored in the register entry.”

property foo;
logic[15:0] tmp;
@(posedge clk)
(write, tmp = wdata) ##1 ack[->1] |=>

entry == tmp;
endproperty
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Practical Exercise

Formalization of a textual specification
Verification and debugging with qformal
See exercise on website
https://sen.enst.fr/verification-formelle
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