
System Verilog Assertions
SE767 – Vérification et Test

Ulrich Kühne
02/03/2020



Outline

Introduction

Sequences

Strength & Infinity

Advanced Operators

2/28 SE767 Ulrich Kühne 02/03/2020



A Practical Verification Language?

LTL and CTL have emerged from theoretical interest
Bound to specific complexity classes and
equivalence notions
Nested CTL/LTL properties are hard to understand
Subtle semantic differences

F X p ≡ X F p ≡ AX AF p 6≡ AF AX p

F G p 6≡ AF AG p

3/28 SE767 Ulrich Kühne 02/03/2020



System Verilog Assertions

Industrial standard
(IEEE 1800-2012)
Embedded in SystemVerilog HDL
Superset of LTL
Sequences and regular expressions
Supports simulation and formal
verification

4/28 SE767 Ulrich Kühne 02/03/2020



Basic Property Structure

// basic property structure
property foo;

@(posedge clk) disable iff (rst)
expr;

endproperty // foo

// verification directives
assert_foo: assert property(foo);
assume_foo: assume property(foo);

5/28 SE767 Ulrich Kühne 02/03/2020



Past Values and Value Changes

Value of a signal in the preceding cycle:
$past(a)

Shortcut for rising edge:
$rose(a) is equal to !$past(a) && a

Shortcut for falling edge:
$fell(a) is equal to $past(a) && !a

Shortcut for stable signal:
$stable(a) is equal to $past(a) == a

Shortcut for changed signal:
$changed(a) is equal to $past(a) ^ a

6/28 SE767 Ulrich Kühne 02/03/2020



Outline

Introduction

Sequences

Strength & Infinity

Advanced Operators

7/28 SE767 Ulrich Kühne 02/03/2020



Sequentially Extended
Regular Expressions (SERE)

Typical use case: Chains of events
Awkward to describe in LTL
Intuitive description by regular expressions
Syntax resembles known languages (bash, Python, . . . )

8/28 SE767 Ulrich Kühne 02/03/2020



Sequences

a ##1 b ##2 c

clk

a

b

c

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15

Find all matching cycles. . .

9/28 SE767 Ulrich Kühne 02/03/2020



Variable Delay

a ##[1:3] b

clk

a

b

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15

Find all matches. . .

10/28 SE767 Ulrich Kühne 02/03/2020



Repetition

Consider sequence:
a ##1 a ##1 a ##1 b ##1 b

Shortcut for repeating sequence:
a[*3] ##1 b[*2]

Variable repetition:
a[*1:3]

11/28 SE767 Ulrich Kühne 02/03/2020



Assertion Semantics

property foo;
@(posedge clk)
a ##[1:3] b;

endproperty

assert_foo: assert property(foo);

What are we actually verifying here?
Sequence a ##[1:3] b must match in all cycles
Implicit always operator (G in LTL)

12/28 SE767 Ulrich Kühne 02/03/2020



Suffix Implication

// suffix implication
foo ##1 bar |-> pof ##[1:3] mop

clk

foo

bar

pof

mop

13/28 SE767 Ulrich Kühne 02/03/2020



Non-Overlapping Suffix Implication

// non-overlapping suffix implication
foo ##1 bar |=> pof ##[1:3] mop

clk

foo

bar

pof

mop

14/28 SE767 Ulrich Kühne 02/03/2020



Example

Prop. 1: “Whenever signal rdy is asserted, it must
stay asserted for 5 clock cycles”

property rdy_stable;
@(posedge clk)
!rdy ##1 rdy |=> rdy[*4];

endproperty

15/28 SE767 Ulrich Kühne 02/03/2020



Outline

Introduction

Sequences

Strength & Infinity

Advanced Operators

16/28 SE767 Ulrich Kühne 02/03/2020



Infinity

Special symbol $ for infinity

Can be used in variable delay and repetition

a[*] is a shortcut for a[*0:$]

a[+] is a shortcut for a[*1:$]

Exercise: What is the meaning of this sequence?

(start ##1 busy[*] ##1 done)[+]

17/28 SE767 Ulrich Kühne 02/03/2020



Infinity

Prop. 2: “Whenever signal busy is asserted,
rdy must be asserted eventually.”

property rdy_after_busy;
@(posedge clk)
busy |-> ##[0:$] rdy;

endproperty

This property is wrong!

18/28 SE767 Ulrich Kühne 02/03/2020



Infinity

This assertion has no counter-example

busy |-> ##[0:$] rdy

clk

busy

rdy

19/28 SE767 Ulrich Kühne 02/03/2020



Strength

Use of strong(...) operator
Enforces a match before the end of evaluation
(which is infinity in formal verification)
Weak and strong versions of many operators

A1: assert property (busy |-> ##[0:$] rdy);
A2: assert property (busy |-> strong( ##[0:$] rdy ));
A3: assert property (busy |-> eventually rdy);
A4: assert property (busy |-> s_eventually rdy);

20/28 SE767 Ulrich Kühne 02/03/2020



Until

a until b

a s_until b

clk

a

b

a until_with b

a s_until_with b

clk

a

b

Attention: Weak until operators allow infinite wait!

clk

a

b

21/28 SE767 Ulrich Kühne 02/03/2020



Outline

Introduction

Sequences

Strength & Infinity

Advanced Operators

22/28 SE767 Ulrich Kühne 02/03/2020



Goto Repetition

Prop. 3: “After signal write is serviced by ack,
signal ready should be asserted.”

(write ##1 !ack[*] ##1 ack) |=> ready

Prop. 4: “After signal wr_burst is serviced twice by ack,
signal ready should be asserted.”

(wr_burst ##1 !ack[*] ##1 ack ##1 !ack[*] ##1 ack) |=> ready

(wr_burst ##1 (!ack[*] ##1 ack)[*2] ) |=> ready

wr_burst ##1 ack[->2] |=> ready

23/28 SE767 Ulrich Kühne 02/03/2020



Goto Repetition

wr_burst ##1 ack[->2] |=> ready

clk

wr_burst

ack

ready

24/28 SE767 Ulrich Kühne 02/03/2020



Within / Throughout

Prop. 5: “Throughout the whole burst cycle, the signal
ready should be low.”

!ready throughout (wr_burst ##1 ack[->2])

Prop. 6: “Within a granted bus cycle, a write transaction
should be completed.”

(write ##1 ack[->1]) within (gnt ##1 !gnt[->1])

This property is (probably) wrong!

(write ##1 ack[->1] ##1 1) within (gnt ##1 !gnt[->1])

25/28 SE767 Ulrich Kühne 02/03/2020



Local Variables

Prop. 7: “After a completed write transaction, the value of
wdata is stored in the register entry.”

clk

write

wdata 0xFFE1

ack

entry 0xFFE1

26/28 SE767 Ulrich Kühne 02/03/2020



Local Variables

Prop. 7: “After a completed write transaction, the value of
wdata is stored in the register entry.”

property foo;
logic[15:0] tmp;
@(posedge clk)
(write, tmp = wdata) ##1 ack[->1] |=>

entry == tmp;
endproperty

27/28 SE767 Ulrich Kühne 02/03/2020



Practical Exercise

Formalization of a textual specification
Verification and debugging with qformal
See exercise on website
https://sen.enst.fr/verification-formelle

28/28 SE767 Ulrich Kühne 02/03/2020

https://sen.enst.fr/verification-formelle


References I

Cerny, E., Dudani, S., Havlicek, J., and Korchemny, D. (2015).
SVA: The Power of Assertions in SystemVerilog.
Springer.

29/28 SE767 Ulrich Kühne 02/03/2020


	Introduction
	Sequences
	Strength & Infinity
	Advanced Operators
	Appendix

