System Verilog Assertions

B outline

Introduction

Ti
2/28 SE767 Ulrich Kiihne 02/03/2020 -

I A Practical Verification Language?

®m | TL and CTL have emerged from theoretical interest

B Bound to specific complexity classes and
equivalence notions

®m Nested CTL/LTL properties are hard to understand
B Subtle semantic differences

FXp=XFp=AXAFpAF AX p

FGp#AF AGp

3/28 SE767 Ulrich Kiihne 02/03/2020 W rer "z”j
.4 1| I

I Sysiem Verilog Assertions

B |ndustrial standard JE"h:‘f‘Dde
(IEEE 1 800'201 2) Dmitry Korchemny:
® Embedded in SystemVerilog HDL I\Eseﬁa‘g:; :’:

B Superset of LTL SystemVerilog
B Sequences and regular expressions

B Supports simulation and formal
verification

wat o

4/28 SE767 Ulrich Kiihne 02/03/2020

I Basic Property Structure

// basic property structure
property foo;
@(posedge clk) disable iff (rst)
expr;
endproperty // foo

// verification directives
assert property(foo);
assume property(foo);

EHET ""1"

5/28 SE767 Ulrich Kiihne 02/03/2020

I Past Values and Value Changes

B Value of a signal in the preceding cycle:

B Shortcut for rising edge:

is equal to| ! $past(a) && a|

® Shortcut for falling edge:

is equal to’$past(a) && !a‘

®m Shortcut for stable signal:

is equal to ‘ $past(a) == a‘

® Shortcut for changed signal:

$changed(a) |is equal to’$past(a) A a‘

—gﬂm ..

6/28 SE767 Ulrich Kiihne 02/03/2020

B outline

Sequences

Ti
7/28 SE767 Ulrich Kiihne 02/03/2020 -

Sequentially Extended
Regular Expressions (SERE)

®m Typical use case: Chains of events

m Awkward to describe in LTL

B |ntuitive description by regular expressions

B Syntax resembles known languages (bash, Python, ...)

12 0 2 21 2 2
e LALE LA LA L L L L L L L LR L L L L L L L L L L L
W

wgim

8/28 SE767 Ulrich Kiihne 02/03/2020

I scquences

la ##1 b ##2 c|

ck ST LTI LTI L
S S

a
. B
c |

® Find all matching cycles. ..

EEER

9/28 SE767 Ulrich Kiihne 02/03/2020

I Variable Delay

b it b B 4 ts t &7 fg lo to t1 to tz ta bs

ck UM
« LT

b [__/\.\.\. N

B Find all matches. ..

A R

10/28 SE767 Ulrich Kiihne 02/03/2020

B Rcpetition

®m Consider sequence:
la ##1 a ##1 a ##1 b ##1 b]

®m Shortcut for repeating sequence:
[a[*3] ##1 b[*2]]

B Variable repetition:

FEIGT I

11/28 SE767 Ulrich Kiihne 02/03/2020

I Asscrtion Semantics

property foo;
@(posedge clk)
a ##[1:3] b;
endproperty

assert property(foo);

® What are we actually verifying here?

® Sequence must match in all cycles

® |mplicit always operator (Gin LTL)

FEIGT I

12/28 SE767 Ulrich Kiihne 02/03/2020

I Suffix Implication

// suffix implication
foo ##1 bar |-> pof ##[1:3] mop

foo [\
bar [
pof []

mop

ck LI Lrrururer
\
\

FEIGT I

13/28 SE767 Ulrich Kiihne 02/03/2020

N Non-Overlapping Suffix Implication

// non-overlapping suffix implication
foo ##1 bar |=> pof ##[1:3] mop

ck _TLIULILroroorererer
foo [\

bar [T\
pof [T\
mop I

wgim

14/28 SE767 Ulrich Kiihne 02/03/2020

N Example

Prop. 1: “Whenever signal rdy is asserted, it must
stay asserted for 5 clock cycles”

property rdy_stable;
@(posedge clk)
'rdy ##1 rdy |=> rdy[*4];
endproperty

EHET "

15/28 SE767 Ulrich Kiihne 02/03/2020

B outline

Strength & Infinity

FEICT .

16/28 SE767 Ulrich Kiihne 02/03/2020

I nfinity

B Special symbol | $ | for infinity
B Can be used in variable delay and repetition
m is a shortcut for | a[*0: $]

| is a shortcut for |a[*1:$]

Exercise: What is the meaning of this sequence?

(start ##1 busy[*] ##1 done)[+]

—gﬂm ..

17/28 SE767 Ulrich Kiihne 02/03/2020

I nfinity

Prop. 2: “Whenever signal busy is asserted,
rdy must be asserted eventually.”

property rdy_after_busy;
@(posedge clk)
busy |-> ##[0:$] rdy;
endproperty

This property is wrong!

EHET "

18/28 SE767 Ulrich Kiihne 02/03/2020

I nfinity

B This assertion has no counter-example

busy |-> ##[0:$] rdy

ck _TLILILILI LI s
busy |
rdy

EHET "

19/28 SE767 Ulrich Kiihne 02/03/2020

I Sirength

m Use of operator

B Enforces a match before the end of evaluation
(which is infinity in formal verification)

B Weak and strong versions of many operators

assert property (busy |-> ##[0:$] rdy);

assert property (busy |-> strong(##[0:$] rdy));
assert property (busy |-> eventually rdy);
assert property (busy |-> s_eventually rdy);

mal

20/28 SE767 Ulrich Kiihne 02/03/2020

I until

a until b [a until_with b]
a s_until b |a s_until_with b]

ck LU ck UL
a [a]
b b

Attention: Weak until operators allow infinite wait!
ck LUt

a ———
21/28 SE767 Ulrich Kiihne 02/03/2020 i ' N

FEIGT I

B outline

Advanced Operators

TELECOM

EEERI

22/28 SE767 Ulrich Kiihne 02/03/2020

I Goto Repetition

Prop. 3: “After signal write is serviced by ack,
signal ready should be asserted.”

(write ##1 l'ack[*] ##1 ack) |=> ready

Prop. 4: “After signal wr_burst is serviced twice by ack,
signal ready should be asserted.”

(wr_burst ##1 lack[*] ##1 ack ##1 !ack[*] ##1 ack) |=> ready

(wr_burst ##1 (lack[*] ##1 ack)[*2]) |=> ready

wr_burst ##1 ack[->2] |=> ready

EEER

23/28 SE767 Ulrich Kiihne 02/03/2020

I Goto Repetition

wr_burst ##1 ack[->2] |=> ready

ck _JTLIULTLTLLF e
wr_burst [\
ack [T\ [\
ready [

wgim

24/28 SE767 Ulrich Kiihne 02/03/2020

I \ithin / Throughout

Prop. 5: “Throughout the whole burst cycle, the signal
ready should be low.”

'ready throughout (wr_burst ##1 ack[->21)

Prop. 6: “Within a granted bus cycle, a write transaction
should be completed.”

(write ##1 ack[->1]) within (gnt ##1 !gnt[->11)

This property is (probably) wrong!

(write ##1 ack[->1] ##1 1) within (gnt ##1 !gnt[->11])

WHEE o

25/28 SE767 Ulrich Kiihne 02/03/2020

I 1 ocal Variables

Prop. 7: “After a completed write transaction, the value of
wdata is stored in the register entry.”

ck _TLITLITLriririril

write / \
wdata OXFFET |
ack / \

entry NN OoFFEL

FEIGT I

26/28 SE767 Ulrich Kiihne 02/03/2020

I 1 ocal Variables

Prop. 7: “After a completed write transaction, the value of
wdata is stored in the register entry.”

property foo;
logic[15:0] tmp;
@(posedge clk)
(write, tmp = wdata) ##1 ack[->1] |=>
entry == tmp;
endproperty

mal

27/28 SE767 Ulrich Kiihne 02/03/2020

I Practical Exercise

® Formalization of a textual specification
® Verification and debugging with gformal

B See exercise on website
https://sen.enst.fr/verification-formelle

FEIGT I

28/28 SE767 Ulrich Kiihne 02/03/2020

https://sen.enst.fr/verification-formelle

I Rcferences |

@ Cerny, E., Dudani, S., Havlicek, J., and Korchemny, D. (2015).
SVA: The Power of Assertions in SystemVerilog.
Springer.

Ti
29/28 SE767 Ulrich Kiihne 02/03/2020 -

	Introduction
	Sequences
	Strength & Infinity
	Advanced Operators
	Appendix

