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De la logique combinatoire à l’arithmétique

Dans ce chapitre, nous allons introduire la notion de logique combinatoire en présentant les bases de la logique
booléenne (cf. section 1.1), puis les fonctions logiques élémentaires (cf. section 1.2) ainsi quelques fonctions plus
complexes mais souvent utilisées (cf. section 1.3). Nous verrons ensuite comment représenter des nombres (cf. sec-
tion 1.4) et comment réaliser des opérations sur ces nombres (cf. section 1.5). Enfin, nous introduirons le concept de
temps de propagation dans les opérateurs logiques (cf. section 1.6).

1.1 La logique booléenne

1.1.1 Introduction

Soit E l’ensemble à deux éléments 0, 1.
Une variable logique est un élément de E. Elle ne possède donc que

deux états : 0 ou 1.
Une fonction logique est une application de E × E . . . × E dans E

qui associe à un n-uplet de variables logiques (e0, e1, . . . , en), souvent
appelées entrées, une variable logique s = F(e0, e1, . . . , en), souvent
appelée sortie.

On distingue deux catégories de fonctions logiques, en fonction
de leur comportement temporel.

Une fonction combinatoire est une fonction logique pour laquelle la
sortie ne dépend que de l’état actuel des entrées :

∀t, s(t) = F(e0(t), e1(t), . . . , en(t))

Une fonction séquentielle est une fonction logique pour laquelle la
sortie dépend de l’état actuel de ses entrées mais également de leurs
états passés :

s(t) = F(e0(t), e1(t), . . . , en(t), e0(t− t1), e1(t− t1) . . . )

Dans ce chapitre, nous ne traiterons que des fonctions combi-
natoires. Les fonctions séquentielles seront introduites dans le cha-
pitre 2.

1.1.2 Représentation des fonctions logiques

Il existe plusieurs méthodes pour décrire une fonction logique
combinatoire. Ces méthodes sont toutes équivalentes et le choix de
l’une ou l’autre ne va dépendre que du contexte d’utilisation.
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Table de vérité La première méthode consiste à lister, pour chacune
des valeurs possibles de ses entrées, la valeur de la sortie de la fonc-
tion. Cette liste, présentée très souvent sous forme de table, est ap-
pelée table de vérité.

L’inconvénient majeur de cette méthode est que cette table peut
être très grande. En effet, si la fonction prend en entrée N variables
logiques, il faut 2N lignes dans cette table pour lister l’ensemble des
valeurs possibles des entrées.

Exemple d’une table de vérité d’une fonction prenant en entrée
deux variables logiques a et b :

a b s

0 0 0
0 1 0
1 0 0
1 1 1

Table 1.1: Exemple d’une fonction pre-
nant en entrée deux variables logiques
a et b

Équation analytique Cette méthode consiste à donner l’équation de
la sortie de la fonction en fonction de ses entrées. La liste et la signifi-
cation des opérateurs seront données dans la section sur les fonctions
logiques de base.

Exemple d’une fonction prenant en entrée trois variables logiques
a, b et c : s = a · b + c.

Représentation schématique graphique Cette méthode consiste à repré-
senter graphiquement une fonction booléenne à l’aide à l’aide du
schéma normalisé 1 des fonctions de base et de traits servant à indi- 1. Il existe plusieurs normes pour repré-

senter ces fonctions de base. Dans ce
cours, nous utiliserons la norme “amé-
ricaine” (issue de ANSI 91-1984) car
c’est l’une des plus utilisées. Il existe
également une norme “européenne”
(IEC 60617-12).

quer la “connexion” d’une sortie à une entrée.

sa

b

c

Description fonctionnelle Cette méthode consiste à décrire, en lan-
gage naturel, le comportement de la sortie en fonction des entrées de
la fonction.

Exemple : la sortie s vaut 1 si, et seulement si, au moins une des
entrées a ou b vaut 1.

Langage de description de matériel Cette méthode consiste à décrire
la fonction dans un langage particulier, appelé langage de description
de matériel (Hardware Description Language — HDL), facilement com-
préhensible par un ordinateur. Il en existe plusieurs et dans ce cours
nous utiliserons SystemVerilog.

Ce langage sera introduit tout au long de ce cours et une synthèse
est présentée page 87.

Exemple :

logic A, B, C, S;

always@(*)

S <= A ^ B | C;
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1.2 Fonctions logiques élémentaires

Cette section présente les fonctions logiques élémentaires, égale-
ment appelées portes logiques, couramment utilisées par la suite.

1.2.1 L’inverseur (NOT)

Description
La sortie vaut 1 si, et seulement si, l’entrée vaut 0.

Table de vérité Équation Symbole

e s

0 1
1 0

s = e e s

Description en SystemVerilog

logic s, e;

always@(*)

s <= ~e;

Explications :

— La première ligne permet de déclarer deux signaux (de type logic

donc sur 1 bit), nommés s et e

— La deuxième ligne indique que ce qui suit (donc la troisième
ligne) doit être ré-évalué dès que nécessaire (dans notre cas, dès
que e va changer, ce qui correspond bien à un comportement com-
binatoire)

— <= est l’opérateur d’affectation (c’est-à-dire que la valeur située
à droite de cet opérateur est affectée au signal situé à gauche de
l’opérateur)

— ˜ est l’opérateur unaire d’inversion bit-à-bit (donc notre opéra-
teur NON)

— La troisième ligne indique donc qu’il faut affecter au signal s le
complément de la valeur du signal e

1.2.2 Le ET (AND)

Description
La sortie vaut 1 si, et seulement si, les deux entrées valent 1. 2

2. La fonction ET peut être aussi inter-
prétée comme une fonction de forçage
à zéro d’un signal : dans l’expression
s = valid · b, le signal s ne vaut b que si
valid = 1 sinon il vaut 0.

Table de vérité Équation Symbole

a b s

0 0 0
0 1 0
1 0 0
1 1 1

s = a · b a
b s
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Description en SystemVerilog

logic s, a, b;

always@(*)

s <= a & b;

En SystemVerilog, & représente l’opérateur ET bit-à-bit.

1.2.3 Le OU (OR)

Description
La sortie vaut 0 si, et seulement si, les deux entrées valent 0. 3

3. La fonction OU peut être aussi in-
terprétée comme une fonction de for-
çage à un d’un signal : dans l’expres-
sion s = f orce + b, le signal s ne vaut b
que si f orce = 0 sinon il vaut 1.

Table de vérité Équation Symbole

a b s

0 0 0
0 1 1
1 0 1
1 1 1

s = a + b
a
b s

Description en SystemVerilog

logic s, a, b;

always@(*)

s <= a | b;

En SystemVerilog, | représente l’opérateur OU bit-à-bit.

1.2.4 Le NON ET (NAND)

Table de vérité
Description

Il s’agit de la fonction complémentaire du ET.
La sortie vaut 0 si, et seulement si, les deux entrées valent 1.

Table de vérité Équation

a b s

0 0 1
0 1 1
1 0 1
1 1 0

s = a · b

Symbole

a
b s a

b s

Description en SystemVerilog
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logic s, a, b;

always@(*)

s <= ~(a & b);

1.2.5 Le NON OU (NOR)

Description
Il s’agit de la fonction complémentaire du OU.

La sortie vaut 1 si, et seulement si, les deux entrées valent 0.

Table de vérité Équation

a b s

0 0 1
0 1 0
1 0 0
1 1 0

s = a + b

Symbole

a
b s a

b s

Description en SystemVerilog

logic s, a, b;

always@(*)

s <= ~(a | b);

1.2.6 Le OU exclusif (XOR)

Description
La sortie vaut 1 si une, et seulement une, des deux entrées vaut

1. 4
4. La fonction OU exclusif peut être
aussi interprétée comme une fonction
de sélection entre une donnée et son
complémentaire : dans l’expression s =
selcomp⊕ b, le signal s ne vaut b que si
selcomp = 0 sinon il vaut b

Table de vérité Équation Symbole

a b s

0 0 0
0 1 1
1 0 1
1 1 0

s = a⊕ b

= a · b + a · b
a
b s

Description en SystemVerilog

logic s, a, b;

always@(*)

s <= a ^ b;

En SystemVerilog, ˆ représente l’opérateur OU exclusif bit-à-bit.
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1.2.7 Le NON OU exclusif (XNOR)

Description
Il s’agit de la fonction complémentaire du OU exclusif.

La sortie vaut 1 si, et seulement si, les deux entrées sont égales.

Table de vérité Équation

a b s

0 0 1
0 1 0
1 0 0
1 1 1

s = a⊕ b

= a · b + a · b

Symbole

a
b s a

b s

Description en SystemVerilog

logic s, a, b;

always@(*)

s <= ~(a ^ b);

1.3 Fonctions logiques importantes

Les fonctions logiques élémentaires vues précédemment dans la
section 1.2 permettent de construire toutes les fonctions logiques
combinatoires. Dans cette section, nous présenterons quelques fonc-
tions logiques un peu plus élaborées couramment utilisées.

1.3.1 Le multiplexeur

Un multiplexeur 5 à N entrées, est une fonction logique dont la 5. Parfois appelé également fonction
d’aiguillagesortie est égale à l’une de ses N entrées. Le choix parmi les N entrées

se fait grâce à une entrée particulière de sélection.

Multiplexeur à deux entrées Le multiplexeur le plus simple est le mul-
tiplexeur à deux entrées, dont le schéma est le suivant :

E0

E1

S

Sel

0

1

Si l’entrée Sel vaut 0, la sortie S du multiplexeur vaudra la valeur
présente sur l’entrée E0. De même, si Sel vaut 1, la sortie S vaudra la
valeur présente sur l’entrée E1.

La table de vérité du multiplexeur à deux entrées est la suivante :



de la logique combinatoire à l’arithmétique 11

Sel E1 E0 S

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

Le comportement de ce multiplexeur peut également être décrit
par l’équation suivante :

S = Sel · E1 + Sel · E0

Enfin, il peut également être décrit de plusieurs manières en Sys-
temVerilog :

logic S, Sel, E0, E1;

always@(*)

S <= (Sel & E1) | (~Sel & E0);

Le code précédent est une simple transcription de l’équation ana-
lytique du multiplexeur. Il existe cependant d’autres constructions,
plus proches des langages informatiques classiques, qui permettent
également de décrire le comportement du multiplexeur.

logic S, Sel, E0, E1;

always@(*)

if (Sel) S <= E1;

else S <= E0;

La construction if...else fonctionne comme dans les langages
informatiques classiques. La condition du test est située entre paren-
thèses juste après le if et doit être une expression renvoyant vrai
ou faux. En SystemVerilog, un signal (ici Sel) valant 1 est considéré
comme vrai (dans ce cas la branche principale du if est prise) et
un signal valant 0 est considéré comme faux (dans ce cas la branche
else est prise).

logic S, Sel, E0, E1;

always@(*)

case(Sel)

1’b0: S <= E0;

1’b1: S <= E1;

endcase

La construction case...endcase 6 permet de tester simplement les 6. N’oubliez pas le endcase.

différentes valeurs 7 possibles de la condition (ici Sel) sans avoir à 7. La construction 1’b0 est décrite en dé-
tail page 16. Ici, 1’b0 représente la va-
leur logique 0 et 1’b1 représente la va-
leur logique 1.

imbriquer de nombreux if...else.
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Multiplexeur à n entrées On peut généraliser et disposer de multi-
plexeurs à 2N entrées. Dans ce cas, il faut N entrées de sélection afin
de pouvoir choisir une parmi les 2N entrées.

Exemple, le multiplexeur à 4 entrées :

E3

E2

E1

E0

S

Sel0 Sel1

dont l’équation est :

S = Sel1 · Sel0 · E0 + Sel1 · Sel0 · E1 + Sel1 · Sel0 · E2 + Sel0 · Sel1 · E3

Ce multiplexeur peut être réalisé grâce à trois multiplexeurs à 2

entrées :

E3

E2

E1

E0

S

Sel0

Sel0

Sel1

1.3.2 Le décodeur

Un décodeur est une fonction logique à N entrées et 2N sorties 8
8. On utilise également la terminologie
décodeur N vers 2N , exemple : déco-
deur 2 vers 4

dont une, et une seule, sortie vaut 1, le numéro de cette sortie active
étant la valeur présente sur l’entrée, considérée comme un nombre
entier codé sur N bits (voir section 1.4.1 sur la représentation des
nombres entiers).

Exemple : Décodeur 2 vers 4 La table de vérité du décodeur 2 vers 4

est la suivante :

E1 E0 S0 S1 S2 S3

0 0 1 0 0 0
0 1 0 1 0 0
1 0 0 0 1 0
1 1 0 0 0 1

Les équations logiques des sorties sont les suivantes :

S0 = E0 · E1

S1 = E0 · E1

S2 = E0 · E1

S3 = E0 · E1

De même que pour le multiplexeur, il existe plusieurs manières
pour décrire le décodeur en SystemVerilog :
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logic E0, E1, S0, S1, S2, S3, S4;

always@(*)

begin

S0 <= ~E0 & ~E1;

S1 <= E0 & ~E1;

S2 <= ~E0 & E1;

S3 <= E0 & E1;

end

Il s’agit ici simplement d’une transcription directe des équations
décrivant les sorties en fonction des entrées. Notez ici l’utilisation de
la construction begin...end nécessaire lorsque plusieurs opérations
(affectation, if...else, case...endcase, etc.) sont décrites au sein
du même bloc always.

logic S0, S1, S2, S3, S4;

logic [1:0] E;

always@(*)

begin

S0 <= 1’b0;

S1 <= 1’b0;

S2 <= 1’b0;

S3 <= 1’b0;

if (E == 2’b00) S0 <= 1’b1;

if (E == 2’b01) S1 <= 1’b1;

if (E == 2’b10) S2 <= 1’b1;

if (E == 2’b11) S3 <= 1’b1;

end

Ce code introduit plusieurs nouvelles notions en SystemVerilog :

— logic [1:0] E déclare un vecteur de deux bits. Le premier nombre
entre crochet (ici 1) indique l’indice du bit de poids fort 9 dans le 9. La définition de bit de poids

fort/faible est donnée plus loin dans la
section 1.4.1

vecteur et le second nombre (ici 0) indique l’indice du bit de poids
faible. La dimension en bits du vecteur est donc la différence entre
ces deux nombres plus un (donc ici 1− 0 + 1 = 2). On peut accé-
der à la valeur d’un des bits du vecteur à l’aide de l’opérateur []

(donc ici E[1] est le bit de poids fort et E[0] le bit de poids faible).

— Un vecteur de bits (comme E), peut être comparé avec un nombre.
Le contenu du vecteur est alors considéré comme un nombre en-
tier représenté en binaire.

— Dans un bloc always, si plusieurs valeurs sont affectées à un
même signal, la dernière (dans l’ordre d’écriture du code) “ga-
gne”. Cette propriété est utilisée ici pour affecter 0 par défaut aux
sorties, sauf si elles sont concernées par la suite par un des if.

logic S0, S1, S2, S3, S4;

logic [1:0] E;
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always@(*)

begin

S0 <= 1’b0;

S1 <= 1’b0;

S2 <= 1’b0;

S3 <= 1’b0;

case (E)

2’b00: S0 <= 1’b1;

2’b01: S1 <= 1’b1;

2’b10: S2 <= 1’b1;

default: S3 <= 1’b1; // Correspond au cas E==2’b11

endcase

end

Dans cet exemple, les if précédents sont remplacés par une construc-
tion case...endcase. Le mot clé default permet de définir la branche
du case prise dans le cas où aucune autre ne l’est. Afin d’éviter des
constructions qui ne décriraient pas de la logique combinatoire, il
est recommandé de toujours spécifier une branche default dans une
construction case...endcase.

logic S0, S1, S2, S3, S4;

logic [1:0] E;

always@(*)

begin

S0 <= (E == 2’b00);

S1 <= (E == 2’b01);

S2 <= (E == 2’b10);

S3 <= (E == 2’b11);

end

L’opérateur == renvoie vrai ou faux en fonction du résultat de la
comparaison. Donc (E == 2’b00) renvoie vrai si les deux bits de E

sont à 0 et faux sinon. Lorsque l’on affecte le booléen vrai à un signal
(ici S0), ce signal prend la valeur 1. De même, si on affecte le booléen
faux à un signal, ce dernier prend la valeur 0 10. 10. Il aurait été possible d’utiliser la

construction if (E == 2’b00) S0 <=

1’b1; else S0 <= 1’b0; mais elle
est fortement déconseillée car très
inélégante.

1.4 Représentation des nombres

Jusqu’à présent, nous avons traité uniquement des variables lo-
giques et réalisé des opérations logiques. Nous allons voir dans cette
section comment des nombres peuvent être représentés et manipu-
lés.

1.4.1 Nombres entiers naturels

Représentation générale Un entier naturel N se représente, dans une
base b par un n-uplet (an−1, an−2, . . . , a1, a0) tel que 11 : 11. Attention, les opérateurs + et · re-

prennent ici leur signification mathé-
matique classique, c’est-à-dire l’addi-
tion et la multiplication, contrairement
au chapitre précédent où ils correspon-
daient aux opérateurs logiques OU et
ET.

N = an−1 · bn−1 + an−2 · bn−2 + . . . + a1 · b1 + a0 · b0
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Dans cette représentation :

— ai est le chiffre de rang i et appartient à un ensemble de b sym-
boles (0 à b− 1)

— an−1 est appelé le chiffre le plus significatif

— a0 est appelé le chiffre le moins significatif

Les bases 12 les plus couramment utilisées sont : 12. Dans la suite, en cas de risque de
confusion, la base dans laquelle est re-
présentée un nombre sera indiqué en
indice, exemple : 100(10), 100(2), 100(16)

— b = 10 : représentation décimale, ai ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

— b = 16 : représentation hexadécimale,
ai ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F}

— b = 8 : représentation octale, ai ∈ {0, 1, 2, 3, 4, 5, 6, 7}

— b = 2 : représentation binaire, ai ∈ {0, 1}. Un chiffre binaire est
également appelé bit (abréviation de l’anglais binary digit)

Représentation binaire non signée Nous nous intéresserons dans la
suite à la représentation des nombres en binaire (base 2). Dans cette
base, un nombre entier naturel peut donc se représenter par le n-
uplet (an−1, an−2, . . . , a1, a0) tel que :

N = an−1 · 2n−1 + an−2 · 2n−2 + . . . + a1 · 21 + a0 · 20

Où :

— ai est un bit (il appartient à un ensemble de 2 symboles : 0 ou 1)

— an−1 est appelé le bit le plus significatif (MSB : Most Significant
Bit)

— a0 est appelé le bit le moins significatif (LSB : Least Significant Bit)

Conversion entre hexadécimal et binaire Il est très simple de passer
d’un nombre représenté en hexadécimal à un nombre représenté en
binaire non signé. Il suffit de concaténer la représentation binaire sur
4 bits de chacun des chiffres hexadécimaux.

Exemple :

A1F(16) = 1010 0001 1111(2)

En effet :

A1F(16) = 10 · 162 + 1 · 161 + 15 · 160

= (1 · 23 + 0 · 22 + 1 · 21 + 0 · 20) · 162

+ (0 · 23 + 0 · 22 + 0 · 21 + 1 · 20) · 161

+ (1 · 23 + 1 · 22 + 1 · 21 + 1 · 20) · 160

= 1 · 211 + 0 · 210 + 1 · 29 + 0 · 28

+ 0 · 27 + 0 · 26 + 0 · 25 + 1 · 24

+ 1 · 23 + 1 · 22 + 1 · 21 + 1 · 20

= 1010 0001 1111(2)
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De même, pour passer d’une représentation binaire non signée à
une représentation hexadécimale, il suffit de regrouper les bits 4 par
4 (en partant des bits de poids faibles) et en transformant chacun des
groupes en un chiffre hexadécimal.

Exemple :
10 1011 0000(2) = 2B0(16)

Représentation binaire modulo En pratique, sur le matériel, les nombres
vont être représentés et manipulés sur un nombre fixe fini de bits.
Donc un nombre N va être représenté, modulo 2n, sur n bits.

Sur n bits, il est donc possible de représenter les nombres entiers
naturels compris dans l’intervalle [0, 2n − 1].

En SystemVerilog En SystemVerilog, il est souvent nécessaire de ma-
nipuler des constantes dans la description d’un module. Or, indiquer
la valeur 10 dans un code est ambigu : dans quelle base doit être
interprétée cette valeur (s’agit-il de 10(2) = 2(10), de 10(10) ou de
10(16) = 16(10)) et sur combien de bits doit être représentée cette
valeur ?

Il est recommandé d’utiliser la construction SystemVerilog sui-
vante afin d’être rigoureux : N’Bvvvv où :

— N est le nombre de bits sur lesquels la valeur doit être représentée

— B est la base dans laquelle la valeur qui suit est représentée : b
pour binaire, h pour hexadécimal et d pour décimal

— vvvv est la valeur de la constante dans la base B

Exemples :

logic [3:0] P; // Vecteur de 4 bits

logic [7:0] Q; // Vecteur de 8 bits

logic [7:0] R; // Vecteur de 8 bits

always @(*)

begin

P <= 4’b1001;

// Identique à P <= 4’d9 ou P <= 4’h9

Q <= 8’h5A;

// Identique à Q <= 8’b01011010 ou P <= 8’d90

R <= 8’d127;

// Identique à R <= 8’b01111111 ou R <= 8’h7F

end

1.4.2 Nombres entiers relatifs

Il existe plusieurs méthodes pour représenter les nombres entiers
relatifs. La plus couramment utilisée est la représentation en complé-
ment à 2 (CA2).
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Comme vu précédemment, sur n bits, les nombres sont représen-
tés modulo 2n, c’est-à-dire que 2n a la même représentation que 0,
2n + 1 a la même représentation que 1, etc.

Si on étend ce principe aux nombres négatifs, il faudrait que −1
ait la même représentation que 2n − 1 (soit 11 . . . 11(2)), que −2 ait la
même représentation que 2n − 2 (soit 11 . . . 10(2)), etc.

Par convention, dans la représentation en complément à 2, les nombres
dont le bit de poids fort vaut 1 vont être considérés comme des
nombres négatifs et les nombres dont le bit de poids fort vaut 0 vont
être considérés comme des nombres positifs 13. 13. Ce qui permet de garder une compati-

bilité avec la représentation non signéeEn complément à 2, on peut donc représenter, sur n bits, les nombres
signés compris dans l’intervalle [−2n−1, 2n−1 − 1].

Exemple de représentation sur 4 bits (n = 4) :

Binaire CA2 Décimal Binaire non signé Décimal
1000 −8 1000 8
1001 −7 1001 9
1010 −6 1010 10
1011 −5 1011 11
1100 −4 1100 12
1101 −3 1101 13
1110 −2 1110 14
1111 −1 1111 15
0000 0 0000 0
0001 1 0001 1
0010 2 0010 2
0011 3 0011 3
0100 4 0100 4
0101 5 0101 5
0110 6 0110 6
0111 7 0111 7

D’un point de vue mathématique, un nombre N représenté en
complément à 2 sur n bits par (an−1, an−2, . . . , a0) vaut :

N = −an−12n−1 +
n−2

∑
i=0

ai2i

1.4.3 Règles d’extension de signe

Les règles d’extension permettent de passer d’un nombre repré-
senté sur n bits au même nombre représenté sur n + m bits.

Entier non signé Dans le cas non signé (entiers naturels), l’extension
consiste à rajouter m bits à 0 en tête (poids fort).

Exemple : 9(10) se représente sur 4 bits non signés sous la forme
1001(2). Sur 6 bits non signés, il se représente sous la forme 001001(2).

Complément à 2 Dans le cas d’un nombre représenté en complément
à 2, l’extension est un peu plus complexe car il ne faut pas oublier
que le bit de poids fort porte l’information du signe. Pour un nombre
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en complément à deux, l’extension se fait en dupliquant le bit de
poids fort.

Exemples : −7(10) se représente sur 4 bits en complément à deux
sous la forme 1001(2). Sur 6 bits non signés, il se représente sous la
forme 111001(2). 5(10) se représente sur 4 bits en complément à deux
sous la forme 0101(2). Sur 6 bits non signés, il se représente sous la
forme 000101(2).

Preuve : Soit N = (an−1, an−2, . . . , a0) un entier relatif représenté
en complément à 2 sur n bits.

N = −an−12n−1 +
n−2

∑
i=0

ai2i

= −an−12n−1 · (2− 1) +
n−2

∑
i=0

ai2i

= −an−12n + an−12n−1 +
n−2

∑
i=0

ai2i

N = −an−12n +
n−1

∑
i=0

ai2i

D’où N = (an−1, an−1, an−2, . . . , a0) représenté sur n + 1 bits.

1.4.4 Virgule fixe

Un nombre décimal D peut être approximé en base 2 par un vec-
teur (an−1, an−2, . . . , a1, a0, a−1 . . . a−m) tel que :

D = an−1 · 2n−1 + . . . + a1 · 21 + a0 · 20 + a−1 · 2−1 + . . . a−m · 2−m

Où :

— (an−1, . . . a0) est la partie entière de D (sur n bits)

— (a−1, . . . a−m) est la partie fractionnaire de D (sur m bits)

— 2−m représente la précision de cette approximation

Cette représentation est appelée représentation en virgule fixe 14. 14. Fixe car une fois fixé le nombre de
bits de la partie entière et de la par-
tie fractionnaire, ils ne changent pas. Il
existe d’autres méthodes, notamment la
représentation en virgule flottante dont
vous avez probablement déjà entendu
parler qui est nettement plus complexe
à mettre en œuvre au niveau des opé-
rateurs arithmétiques et donc que nous
n’aborderons pas dans ce cours.

Elle présente l’avantage de conserver les mêmes opérateurs d’addi-
tion et de soustraction que ceux des nombres entiers.

1.4.5 Conclusion

En conclusion, lorsque l’on représente un nombre en binaire, il est
très important de préciser la convention choisie (non signée, complé-
ment à 2, virgule fixe. . .) ainsi que le nombre de bits sur lequel est
représenté ce nombre.

1.5 Opérateurs arithmétiques

Dans cette section, nous allons présenter comment réaliser une
addition et une soustraction, sur des nombres binaires (non signés
ou en complément à 2), en utilisant les fonctions logiques de base
introduites dans la section 1.2.
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1.5.1 Addition

Introduction Il est possible d’additionner deux nombres binaires en
utilisant l’algorithme élémentaire 15 consistant à additionner chaque 15. Algorithme que vous avez appris à

l’école primairechiffre des deux opérandes depuis les chiffres de poids faible vers les
chiffres de poids fort et en propageant la retenue.

Exemple : Addition non signée de 3(10) = 11(2) et 2(10) = 10(2)

1
0 1 1

+ 0 1 0
= 1 0 1

Additionneur élémentaire On a donc plusieurs additions élémentaires
prenant en entrées un bit de chacun des deux opérandes du calcul
(ai et bi) et une retenue dite entrante (ri) venant de l’addition élé-
mentaire précédente, et produisant en sortie un bit du résultat (si)
et une retenue dite sortante (ri+1) destinée à l’addition élémentaire
suivante.

Cette addition élémentaire peut s’écrire arithmétiquement sous
l’équation 16 : 16. Le + et le · représentent ici les opé-

rateurs arithmétiques d’addition et de
multiplication.

ai + bi + ri = 2 · ri+1 + si

Les deux sorties ri+1 et si étant des booléens, il est possible d’ex-
primer leur valeur sous forme de fonctions booléennes des entrées
ai, bi et ri. La table de vérité de cet opérateur d’addition élémentaire
est la suivante :

ai bi ri ri+1 si Décimal

0 0 0 0 0 0
0 0 1 0 1 1
0 1 0 0 1 1
0 1 1 1 0 2
1 0 0 0 1 1
1 0 1 1 0 2
1 1 0 1 0 2
1 1 1 1 1 3

D’un point de vue analytique on obtient les équations 17 suivantes : 17. Le + et le · représentent ici les opéra-
teurs logiques OU et ET.

si = ai ⊕ bi ⊕ ri

ri+1 = ai · bi + ai · ri + bi · ri

L’additionneur sur un bit peut être représenté par le schéma sui-
vant :
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si
ri

ai

bi

ri+1

Additionneur complet Pour réaliser l’additionneur complet, il suffit
de connecter ensemble des opérateurs élémentaires sur 1 bits 18 : 18. Cette structure est appelée addition-

neur à propagation de retenue. Il
existe d’autres structures d’addition-
neur offrant des compromis entre le
nombre d’opérateurs logiques utilisés
et le temps de calcul différents.

+
si

ai bi

riri+1

a0 b0

s0

+
si

ai bi

riri+1

a1 b1

s1

+
si

ai bi

riri+1

a2 b2

s2

+
si

ai bi

riri+1

a3 b3

s3

r0

r1r2r3

r4

Dynamique de l’addition Il faut faire attention au fait que l’addition
de deux nombres binaires non signés (respectivement en complé-
ment à deux) sur n bits produit un résultat qui peut être représenté
en non signé (respectivement en complément à deux) sur n + 1 bits.

Afin d’être certain du résultat de l’addition d’un nombre non si-
gné représenté sur n bits et d’un nombre non signé représenté sur
m bits est d’étendre au préalable ces deux opérandes sur max(n, m)+

1 bits (en utilisant la règle d’extension vue précédemment dans la
section 1.4.3). Le résultat, non signé, sera représenté sur max(n, m) +

1 bits. L’éventuelle retenue sortante de l’addition n’est pas à considé-
rer.

De même, afin d’être certain du résultat de l’addition d’un nombre
représenté sur n bits en complément à 2 et d’un nombre représenté
sur m bits en complément à 2 est d’étendre au préalable ces deux
opérandes sur max(n, m) + 1 bits (en utilisant la règle d’extension
de signe vue précédemment dans la section 1.4.3). Le résultat sera
représenté sur max(n, m) + 1 bits en complément à 2. L’éventuelle
retenue sortante de l’addition n’est pas à considérer.
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En SystemVerilog

logic [7:0] A;

logic [7:0] B;

logic [7:0] C;

logic retenue;

always @(*)

begin

{retenue, C} <= A + B;

// Si on n’a pas besoin de la retenue sortante, on peut

// écrire : C <= A + B;

end

L’addition de deux vecteurs de 8 bits produit en SystemVerilog
un résultat sur 9 bits. Si ce résultat est affecté à un vecteur de 8 bits,
seuls les 8 bits de poids faible sont gardés (addition modulo 28).
L’opérateur {} qui permet de concaténer plusieurs signaux permet
de récupérer, comme réalisé dans le code précédent, la retenue et le
résultat du calcul.

1.5.2 Soustracteur

On peut également réaliser une soustraction de deux nombres à
partir de soustracteurs élémentaires sur un bit.

Soustracteur élémentaire D’un point de vue arithmétique, on a 19 : 19. Le + et le · représentent ici les opé-
rateurs arithmétiques d’addition et de
multiplication.ai − bi − ri = −2 · ri+1 + si

La table de vérité correspondante est :

ai bi ri ri+1 si Décimal

0 0 0 0 0 0
0 0 1 1 1 −1
0 1 0 1 1 −1
0 1 1 1 0 −2
1 0 0 0 1 1
1 0 1 0 0 0
1 1 0 0 0 0
1 1 1 1 1 −1

D’un point de vue logique, si on exprime les sorties (ri+1 et si)
en fonction des entrées et des fonctions logiques élémentaires, on
obtient 20 : 20. Le + et le · représentent ici les opéra-

teurs logiques OU et ET.si = ai ⊕ bi ⊕ ri

ri+1 = ai · bi + ai · ri + bi · ri

Ce soustracteur sur un bit peut être représenté par le schéma sui-
vant :
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si
ri

ai

bi

ri+1

1.6 Du temps de propagation au temps de calcul

À cause des contraintes physiques liées à leur réalisation concrète 21, 21. Un aperçu de la réalisation physique
de ces portes en logique CMOS est
donné dans le chapitre 5.

les portes logiques ne peuvent pas changer d’état instantanément
lorsque leurs entrées changent.

Le temps de propagation d’une porte, noté tp, est le temps entre le
changement de la valeur d’une entrée et la stabilisation de la valeur
de la sortie de la porte.

Pendant ce laps de temps, la valeur de la sortie de la porte peut
ne pas correspondre à la fonction logique réalisée avec les valeurs
actuelles des entrées de la porte. Cette valeur de sortie ne doit donc
pas être prise en compte durant cette période.

La prise en compte de ce temps de propagation va être importante
pour déterminer la vitesse maximale de fonctionnement de l’implé-
mentation d’une fonction logique et plus généralement le temps de
calcul d’une fonction arithmétique quelconque.

1.6.1 Exemple de l’additionneur 1 bit

Soit l’additionneur complet sur 1 bit (tel qu’introduit en section 1.5.1)
réalisé de la façon suivante :

si
ri

ai

bi

ri+1

Si on suppose que chacune des portes élémentaires (ici les XOR
à deux entrées, les ET à deux entrées et le OU à trois entrées) ont
toutes un temps de propagation tp = 1 ns, une fois les entrées ai, bi

et ri stables, les sorties seront stables et correctes au bout de 2 ns. Le
temps de propagation de cette implémentation de l’additionneur 1

bit est donc de 2 ns.
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1.6.2 Exemple de l’additionneur à propagation de retenue

À partir de cet l’additionneur 1 bit, nous construisons un addi-
tionneur à propagation de retenue :

+
si

ai bi

riri+1

a0 b0

s0

+
si

ai bi

riri+1

a1 b1

s1

+
si

ai bi

riri+1

a2 b2

s2

+
si

ai bi

riri+1

a3 b3

s3

r0

r1r2r3

r4

Une fois les entrées a0, . . . , a3, b0, . . . , b3 et r0 stables, les sorties s0

et r1 du premier additionneur 1 bit seront stables au bout de 2 ns.
Comme l’entrée r1 du deuxième additionneur 1 bit n’est stable qu’au
bout de 2 ns, ses sorties s1 et r2 ne seront stables que 2 ns plus tard,
c’est-à-dire au bout de 4 ns.

Donc, pour cet additionneur à propagation de retenue sur 4 bits,
les sorties s3 et r4 ne seront stables qu’au bout de 8 ns. Le temps de
propagation, ou temps de calcul, de cet additionneur est donc est de
8 ns.





2
La logique séquentielle

Dans ce chapitre nous allons introduire la logique séquentielle synchrone en introduisant la notion de mémorisation
(cf. section 2.1). Nous présentons ensuite la bascule D, élément mémorisant principal utilisé pour la mise en œuvre de
la logique synchrone (cf. section 2.3) ainsi que les contraintes temporelles permettant de garantir le fonctionnement
(cf. section 2.3.3). Enfin, nous présenterons quelques applications de la logique synchrone (cf. section 2.5).

2.1 Mémorisation et logique séquentielle

Les opérateurs logiques et les opérateurs de calcul combinatoires
présentés au chapitre 1 ont la propriété suivante :

— Pour une même valeur des entrées présentées on obtient toujours
la même valeur en sortie. En d’autre termes, les opérateurs com-
binatoires n’ont pas de mémoire.

De plus ces opérateurs possèdent un temps de propagation qu’il
faut respecter pour être sûr que le résultat en sortie soit valide.

Dans ce cas, comment utiliser ces opérateurs pour enchainer plusieurs
calculs consécutifs de façon fiable ?

2.2 Logique séquentielle synchrone

Prenons comme exemple la fonction combinatoire F de la figure2.1.

E0

E1

E2

SF

tp Figure 2.1: Un bloc combinatoire

Ce bloc a trois entrées E0, E1 et E2 et une sortie S. Si nous mo-
difions l’une des entrées, il faut attendre tp pour que le résultat soit
valide.
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Nous voulons enchaîner plusieurs calculs et obtenir la séquence
suivante :

1. S(0) = F(E0(0), E1(0), E2(0))

2. S(1) = F(E0(1), E1(1), E2(1))

3. S(2) = F(E0(2), E1(2), E2(2))

4. . . .

Il faut s’assurer que les entrées ne sont pas modifiées tant que la
sortie n’est pas valide. Les entrées venant du monde extérieur ou
d’un autre bloc de calcul, nous n’avons pas la garantie qu’elles res-
tent stables.

Pour cela nous devons ajouter des éléments pour capturer les va-
leurs des entrées et les empêcher de changer durant le calcul, comme
illustré sur la figure 2.2.

E0
Em0

E1
Em1

E2
Em2

S
SmF

tp Figure 2.2: On capture les entrées pour
les empêcher de changer durant un cal-
cul

Pour se simplifier la tâche, la capture et la mémorisation des en-
trées se fera en même temps, de façon synchrone.

t0 t1 t2

E0
E0(0) E0(1)

E1
E1(0) E1(1)

E1
E2(0) E2(1)

Em0
E0(0) E0(1)

Em1
E1(0) E1(1)

Em2
E2(0) E2(1)

S S(0) S(1)

Sm S(0) S(1)

tp tp

Figure 2.3: Chronogramme d’un calcul
séquentiel synchrone
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Une fois que nous sommes sûrs que le résultat est valide (après
un temps tp), nous pouvons capturer le résultat en sortie et en même
temps présenter de nouvelles valeurs sur les entrées.

La sortie, ainsi capturée, peut à son tour être utilisée comme entrée
d’un autre bloc de calcul.

Tout ceci est résumé dans le chronogramme 2.3. Nous avons la
séquence suivante :

— à l’instant t0 les entrées sont capturées (on dit aussi échantillon-
nées)

— à t0 + tp la sortie du bloc combinatoire est valide

— à t1 > t0 + tp la sortie est échantillonnée et de nouvelles entrées
capturées

— et ainsi de suite . . .

Cette logique est dite séquentielle synchrone. Nous avons la ga-
rantie que les calculs effectués sont corrects tant que l’intervalle entre
les instants d’échantillonnage est supérieur au temps de propagation
du bloc combinatoire.

Dans la suite, nous verrons quel composant est utilisé pour échan-
tillonner et mémoriser les signaux et comment l’ensemble est syn-
chronisé.

2.3 La bascule D

Le composant de base de la logique séquentielle synchrone est la
bascule D. Elle peut aussi être appelée dff ou encore flipflop et parfois
registre.

La figure 2.4 montre le schéma d’une bascule D. Une bascule D
possède deux entrées et une sortie :

— Une entrée particulière, l’horloge clk symbolisée par un triangle.

— Une entrée pour la donnée, D.

— Une sortie pour la donnée mémorisée, Q.

L’horloge clk sert à synchroniser toutes les bascules d’un circuit.
L’échantillonnage des signaux se faisant à chacun de ses fronts mon-
tants. clk

D Q

Figure 2.4: La bascule D

Le fonctionnement de la bascule D est le suivant :

— A chaque front montant de l’horloge clk (passage de 0→ 1) l’en-
trée D est copiée sur la sortie Q. On dit de la donnée est échan-
tillonnée.

— Entre deux fronts d’horloge, la sortie Q ne change pas, elle est
mémorisée.

Ce comportement peut, comme pour la logique combinatoire, être
représenté par une table de vérité (voir la table 2.1).

Description SystemVerilog
Le bloc de code 2.1 est la description SystemVerilog d’une bascule

avec une entrée D et une sortie Q. À chaque front montant (posedge)
de l’horloge clk, l’entrée est copiée sur la sortie. Sinon, la sortie Q ne
change pas d’état.
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D clk Q → effet

0 ↑ 0 → (copie de D sur Q)
1 ↑ 1 → (copie de D sur Q)
× 0 Q → (Q conserve sa valeur)
× 1 Q → (Q conserve sa valeur)
× ↓ Q → (Q conserve sa valeur)

Table 2.1: Table de vérité d’une bascule
D

module dff (

input clk,

input D,

output logic Q

);

always @(posedge clk)

Q <= D;

endmodule

Code 2.1: Description SystemVerilog
d’une bascule D

2.3.1 Utilisation des bascules D

1. Échantillonnage :

Une bascule D sert à échantillonner les données en entrée. Comme
nous le voyons sur le chronogramme suivant, la valeur de l’entrée D
est capturée à chaque front montant de l’horloge. Cette valeur est
conservée jusqu’au front suivant.

clk

D1

Q1

2. Filtrage :

Par son fonctionnement, une bascule D filtres les changements de
son entrée qui se produisent entre les fronts de l’horloge. Comme
le montre le chronogramme suivant, les changements sur le signal
d’entrée de durée inférieure à la période de l’horloge n’apparaissent
pas sur la sortie.

clk

D2

Q2
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2.3.2 Les registres

Comme nous sommes souvent amenés à manipuler des mots de
plusieurs bits, on utilise pour cela plusieurs bascules. Cet assemblage
de bascules D est appelé registre.

Le symbole d’un registre est le même que celui d’une bascule D.
On peut préciser le nombre de bits manipulés sur l’entrée et la sortie
du registre (voir la figure 2.5).

H

D1

D2

D3

D4

Q1

Q2

Q3

Q4

⇐⇒
H

D
4 4

Q

Figure 2.5: Un exemple de registre de
4bits de large

Description SystemVerilog

module dff (

input clk,

input[3:0] D,

output logic[3:0] Q

);

always @(posedge clk)

Q <= D;

endmodule

Code 2.2: Description SystemVerilog
d’un registre de 4bits

2.3.3 Les contraintes et les performances temporelles

Pour qu’une bascule D fonctionne correctement, certaines pré-
cautions sont à prendre. En effet, les données présentées en entrée
doivent être stables au moment du front de l’horloge. Ceci se traduit
par des contraintes temporelles sur les signaux arrivant aux bascules.

La figure 2.6 schématise ces contraintes. Pour une bascule D, les
trois temps suivants, sont définis :

tsu : temps de pré–positionnement (setup)

th : temps de maintien (hold)

tco : temps de propagation (clock to output).

Pour que la bascule D fonctionne correctement, il faut que la don-
née présentée en entrée soit stable au front d’horloge, il faut aussi
que la donnée reste stable le temps que la mémorisation se fasse :
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th

tco

tsu

Q

clk

D

Figure 2.6: Contraintes temporelles
d’une bascule D

— elle doit avoir atteint sa valeur tsu avant le front d’horloge,

— cette valeur doit être maintenue th après le front d’horloge.

La copie de l’entrée sur la sortie se fait avec un retard de tco.

Performances d’un opérateur synchrone
Comment calculer la fréquence maximale de fonctionnement d’un

bloc de logique synchrone ?

registre

sorties

tco tsutcrit

combinatoire

horloge

entrées

Figure 2.7: Période minimale de l’hor-
loge dans un bloc de logique séquen-
tielle

Un bloc de logique synchrone, peut être vu comme un ensemble
de blocs combinatoires précédés et suivis de registres. Les entrées de
ces blocs combinatoires sortent des registres après un front d’horloge
et les sorties sont échantillonnées au front suivant.

La période du signal d’horloge doit être suffisamment grande
pour permettre aux sorties de tous les blocs combinatoires de se sta-
biliser avant le front où elles sont échantillonnées.

On définit ce qu’on appelle le chemin critique, comme le chemin
qui a le temps de parcours le plus long dans les blocs combinatoires.
On notera tcrit ce temps de parcours.

Résumons :

— Au front d’horloge les données en entrée sont échantillonnées.

— Au bout de tco elles arrivent en entrée de blocs combinatoires.
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— tcrit plus tard on arrive aux bascules suivantes.

— Pour respecter les contraintes temporelles sur l’échantillonnage
des bascules, il faut attendre au moins tsu avant d’échantillonner.

La figure 2.7 montre ce parcours.
Il faut donc que la période de l’horloge, Tclk vérifie :

Tclk > tco + tcrit + tsu

Ou, exprimé en termes de fréquence de fonctionnement :

Fclk < Fmax =
1

tco + tcrit + tsu

2.3.4 L’initialisation

L’état initial d’une bascule D, au moment où le circuit est mis
sous tension, n’est pas connu. Il dépend de plusieurs facteurs, parmi
lesquels :

— la technologie utilisée pour la fabrication du circuit,

— l’architecture interne de la bascule,

— des micro-variations technologiques entre les éléments d’un même
circuit,

— le bruit ambiant . . .

Pour avoir un comportement prédictible, il faut pouvoir initialiser
les bascules dans un état connu. Pour cela, un signal supplémentaire,
que l’on peut contrôler, doit être utilisé. Ce signal particulier doit
permettre de forcer l’état initial d’une bascule.

Si l’état initial est 0 on parle de reset. Si l’état initial est 1 on parle
alors de preset.

Remise à zéro asynchrone :
Pour forcer l’état initial des bascules après la mise sous tension du

circuit, on dispose généralement d’un signal supplémentaire de re-
mise à zéro asynchrone. L’action de ce signal est globale, agissant sur
toutes les bascules en même temps, indépendamment de l’horloge.

Les bascules possédant ce signal reset asynchrone sont représen-
tées avec une entrée supplémentaire, comme on peut voir sur la fi-
gure 2.8.

clk

D Q

reset

clk

D Q

n_reset Figure 2.8: Shéma de bascules D avec
reset asynchrone.

Ce reset asynchrone peut être :

positif : initialise la bascule dès qu’il passe à 1
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négatif : initialise la bascule dès qu’il passe à 0

Dans le schéma de la figure 2.8, le reset négatif est symbolisé par
le rond, symbolisant l’inversion, sur l’entrée n_reset.

L’effet d’un reset asynchrone est immédiat et la bascule est main-
tenue dans cet état initial tant que le signal reset est maintenu dans
son état actif.

clk

n_reset

D

Q

Figure 2.9: Chronogramme d’une re-
mise à zéro asynchrone.

Le chronogramme 2.9 montre l’effet d’un reset asynchrone négatif.
La sortie de la bascule est forcée à zéro dès que l’entrée n_reset passe
à 0. La bascule reste dans cet état jusqu’au front de l’horloge suivant
le passage de l’entrée n_reset à 1.

Description SystemVerilog

module dff (

input clk,

input n_reset,

input D,

output logic Q

);

always @(posedge clk or negedge n_reset)

if(!n_reset)

Q <= 1’b0;

else

Q <= D;

endmodule

Code 2.3: Bascule D avec remise à zéro
asynchrone

Remarquez que dans l’exemple de code 2.3 deux évènements,
(posedge clk) et (negedge n_reset), déclenchent l’évaluation du pro-
cessus always. Ceci veut dire que le passage à zéro de l’entrée n_reset
est pris en compte immédiatement.

Remise à zéro synchrone :
Une remise à zéro synchrone ou reset synchrone, est un forçage

de l’état de la bascule qui prend effet au front d’horloge.

clk

D Q

n_reset

D

Figure 2.10: Construction d’une bas-
cule D avec reset synchrone.

La figure 2.10 montre comment on peut construire une bascule
avec un reset synchrone.

clk

n_reset

D

Q

Figure 2.11: Chronogramme d’une re-
mise à zéro synchrone.
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Le chronogramme 2.11 montre comment cette remise à zéro syn-
chrone se produit.

Le signal n_reset est un de polarité négative, il agit sur la bascule
quand sa valeur est 0. Au front de l’horloge, la bascule est forcée à
zéro. Quand le signal n_reset repasse à 1, la bascule retrouve son
fonctionnement normal et la donnée en entrée est échantillonnée au
front d’horloge.

Un reset synchrone doit respecter les mêmes règles que tout signal
échantillonné par une bascule D.

En général, le reset synchrone est utilisé pour l’initialisation fonc-
tionnelle d’une partie du circuit. Il est ainsi généré par une autre
partie du circuit qui est elle aussi synchrone ce qui garanti qu’il a
une durée d’au moins une période d’horloge.

Description SystemVerilog

module dff (

input clk,

input n_reset,

input D,

output logic Q

);

always @(posedge clk)

if(!n_reset)

Q <= 1’b0;

else

Q <= D;

endmodule

Code 2.4: Bascule D avec remise à zéro
synchrone

Remarquez que dans l’exemple de code 2.4 seul l’évènement (posedge clk)
déclenche l’évaluation du processus always. Ceci veut dire que l’état
de l’entrée n_reset n’est testé qu’au front de l’horloge.

2.4 Généralisation

Un bloc générique de logique séquentielle est représenté en fi-
gure 2.12.

Dans un bloc de logique séquentielle on utilise la même horloge
pour synchroniser l’ensemble des calculs. Tous les signaux venant
du monde extérieur doivent être échantillonnés. Les sorties des blocs
combinatoires doivent elles aussi être échantillonnées.

Ces sorties peuvent être :

— utilisées à l’extérieur (dans un autre bloc),

— redirigée vers les entrées de la logique combinatoire.

Dans le second cas nous parlons d’état interne. La valeur des sor-
ties dépend alors de la valeur des entrées et de cet état interne.
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sorties
combinatoire

entrées

horloge

Figure 2.12: Schéma générique d’un
bloc de logique séquentielle synchrone

Pour que les valeurs consécutives des sorties soient prédictibles,
il faut pouvoir forcer l’état initial. Ce qui est fait grâce à un signal
externe d’initialisation.
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2.5 Applications de la logique synchrone

Vous trouverez dans la suite quelques exemples d’applications de
la logique synchrone.

2.5.1 Les registres à décalage

La figure2.13 montre le schéma d’un registre à décalage composé
de quatre bascules D mises en série. On peut aussi parler de registre
à décalage d’une profondeur de 4.

Ce registre a comme entrée le signal E et comme sortie le signal
S. Les signaux intermédiaires D1, D2 et D1 servent à relier la sortie
d’une bascule à l’entrée de la bascule qui la suit.

E
D1 D2 D3

S

H
Figure 2.13: Shéma d’un registre à dé-
calage composé de 4 basculesLe chronogramme suivant montre le fonctionnement de ce registre

à décalage.

H

E

D1

D2

D3

S

Au premier coup d’horloge, l’entrée E est copiée en D1. Puis aux
coups d’horloge suivants, la valeur de E est décalée de proche en
proche.

Utilisation d’un registre à décalage :
Un registre à décalage sert à retarder un signal d’un nombre entier

de périodes d’horloge. Dans l’exemple précédent, la sortie S est une
copie de l’entrée E avec quatre périodes d’horloge de retard.

Aussi, les sorties des bascules représentent l’histoire du signal E.

D1 = E(t− 1)

D2 = E(t− 2)

D3 = E(t− 3)

S = E(t− 4)

Respect des contraintes temporelles :
Nous avons vu, en section 2.3.3, que pour qu’une bascule fonc-

tionne correctement il faut que le signal en entrée soit stable au mo-
ment du front d’horloge.
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Pour qu’un registre à décalage respecte cette contrainte, il faut
que le temps de propagation de la bascule soit supérieur au temps
de maintien.

C’est-à-dire :
tco > th

Le respect de cette contrainte est garanti par construction par les
concepteurs des bascules D.

Description SystemVerilog

module shift (

input clk,

input E,

output logic S

);

logic D1,D2,D3;

always @(posedge clk)

begin

D1 <= E;

D2 <= D1;

D3 <= D2;

S <= D3;

end

endmodule

Code 2.5: Registre à décalage de pro-
fondeur 4

Remarquez dans l’exemple de code 2.5 que les signaux internes
sont déclarés à l’intérieur du module.

De plus, dans un processus (always) les expressions utilisées à
droite des affectations (<=) sont évaluées au moment de l’évènement
déclenchant (ici le front montant de l’horloge). Ainsi les quatre affec-
tations (<=) sont effectuées en même temps à chaque front montant
de l’horloge. Leur ordre d’écriture dans le processus n’a donc pas
d’importance.

2.5.2 Les compteurs

Un compteur est un bloc de logique séquentielle synchrone de
base. La sortie d’un compteur est incrémentée à chaque cycle d’hor-
loge.

Pour construire un compteur il faut deux éléments :

— un registre, pour stocker la valeur (l’état) du compteur,

— un incrémenteur (additionneur avec 1) pour calculer les valeurs
suivantes.

La figure 2.14 montre le schéma d’un tel compteur utilisant un
registre et un addditionneur de 8 bits.
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1

8
8

Q

reset_n

D

Figure 2.14: Schéma d’un compteur
modulo 256

Le signal d’initialisation reset_n permet de forcer l’état initial et
ainsi de commencer à compter à zéro. En suite, à chaque coup d’hor-
loge, la valeur de Q est incrémentée.

Comme le nombre de bits du registre et de l’additionneur est de
8, une fois arrivé à 255 le compteur repassera naturellement à 0. On
parle de compteur modulo.

Le chronogramme suivant montre l’évolution des signaux dans le
compteur. Ici l’action du signal de remise à zéro est synchrone.

clk

reset_n

D 1 2 3 4 5

Q 0 1 2 3 4 5

tp

Remarquez que le signal de remise à zéro agit sur la sortie du re-
gistre. Remarquez aussi que la sortie de l’additionneur change après
que la sortie du registre et que nous voyons apparaitre son temps de
propagation.

Description SystemVerilog
Remarquez que le signal interne D n’a pas besoin d’apparaitre

dans le code SystemVerilog. Quand nous écrivons Q <= Q + 1 cela
veut dire qu’au front d’horloge, la valeur du signal Q sera remplacée
par son ancienne valeur plus 1.
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module cpt (

input clk,

input reset_n,

output logic[7:0] Q

);

always @(posedge clk)

if (!reset_n)

Q <= ’0;

else

Q <= Q + 1;

endmodule

Code 2.6: Compteur modulo 256 avec
remise à zéro synchrone

2.5.3 Le “pipeline”

Le pipeline est une technique qui permet d’augmenter la fréquence
de fonctionnement d’un bloc séquentiel. Elle est utile pour augmen-
ter le débit de calcul sur un flux de données.

Considérons l’exemple suivant :

— Une fonction combinatoire F de temps de propagation tp

— Les données sont présentées sur les entrées A et B à la cadence
de l’horloge clk de période Tclk.

nb. Pour simplifier les expressions, nous négligeons dans cet exemple
les temps de propagations dans les registres.

A

B

C
OUTF

tp

Le système fonctionne correctement tant que la relation suivante,
entre la période de l’horloge et le temps de propagation, est respec-
tée :

tp < Tclk

La sortie du bloc combinatoire C est échantillonnée et on obtient
un résultat sur la sortie OUT à chaque période Tclk. Ce que montre
le chronogramme suivant :
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clk

A A0 A1 A2

B B0 B1 B2

C C0 C1 C2

OUT C0 C1

tp

On décompose F en deux fonctions combinatoires F1 et F2 de
temps de propagation respectifs tp1 et tp2 .

— On s’arrange pour avoir tp1 < tp et tp2 < tp

A

B

C
OUTF1

Ci F2

tp1 tp2

Le point Ci représente l’ensemble des signaux reliant les deux
blocs combinatoires F1 et F2.

Le système fonctionne correctement tant que

tp1 + tp2 < Tclk

Dans le chronogramme suivant, nous avons pris tp1 + tp2 = tp

pour pouvoir le comparer au chronogramme précédent.

clk

A A0 A1 A2

B B0 B1 B2

Ci
Ci0 Ci1 Ci2

C C0 C1 C2

OUT C0 C1

tp1 tp2

tp

Ajoutons un registre entre les blocs combinatoires F1 et F2. Les
deux blocs sont maintenant précédés et suivis de registres.

Dans le jargon, nous disons que nous avons ajouté une couche de
pipeline.
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A

B

C
OUTF1

Ci Cr F2

tp1 tp2

Le système fonctionne correctement si les deux conditions sui-
vantes sont vérifiées : tp1 < Tclk

tp2 < Tclk

Mais comme les deux temps de propagation tp1 et tp2 sont infé-
rieurs au temps de propagation initial tp, nous pouvons réduire la
période de l’horloge Tclk.

Ou augmenter ainsi la fréquence de fonctionnement et donc la
cadence à laquelle les calculs sont faits. Ce qui est illustré dans le
chronogramme suivant : Remarquez que le premier résultat ar-

rive sur la sortie OUT au bout de deux
périodes de l’horloge.clk

A A0 A1 A2

B B0 B1 B2

Ci
Ci0 Ci1 Ci2

Cr Ci0 Ci1 Ci2

C C0 C1 C2

OUT C0 C1 C2

tp1 tp2

Résumons :

— Le pipeline permet d’augmenter la fréquence de fonctionnement.

— La latence initiale augmente du nombre de couches de pipeline.

— On a augmenté la complexité et la taille du circuit en ajoutant des
bascules et en modifiant le bloc combinatoire initial.
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Les unités de contrôle

Les architectures classiques de traitement numérique sont traditionnellement découpées en Unités de Traitement
et Unités de Contrôle.

Les Unités de Traitement sont en charge du traitement proprement dit des données. L’Unité Arithmétique et
Logique d’un microprocesseur est un exemple d’unité de traitement : Elle reçoit des données interprétées comme des
entiers, et réalise des opérations arithmétiques simples (addition, soustraction,..) ainsi que des opérations booléennes
sur ces données. Pour opérer convenablement, c’est-à-dire exécuter la bonne opération au bon moment, ces unités
de traitement reçoivent des ordres par l’intermédiaire de signaux de contrôle.

Le Unités de Contrôle sont en charge de générer ces signaux de contrôle, en s’appuyant sur la connaissance
du passé (l’état courant du système) et sur des sollicitations extérieures (les commandes). En clair, ce sont des
automates matériels.

Ce chapitre décrit donc les structures nécessaires à la réalisation d’automates matériels ainsi que les techniques de
codage SystemVerilog associées.

TraitementsContrôle

commandes Données d’entrée

Données de sortie

ordres

Figure 3.1: Système numérique partagé
en unité de cotrole et unité de traite-
ment

3.1 Automates matériels synchrones

3.1.1 Gestion de l’évolution des états

Les automates matériels synchrones peuvent être construits de la façon suivante :

— L’état courant de l’automate est codé dans un registre (ensemble de bascules D) synchrone.

— La taille du registre (nombre de bits) définit ainsi le nombre d’états maximum pouvant être codés.

— L’initialisation du registre permet d’imposer un état de départ à l’automate.

— En fonction de l’état courant et des entrées (les commandes) un état futur est calculé combinatoire-
ment.
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— Au front d’horloge, le registre est mis à jour : l’état futur devient l’état courant.

Le schéma de la figure 3.2 décrit la structure matérielle correspondante. Le nuage représente le bloc
de calcul combinatoire. Remarquons que les signaux d’entrée des bascules codent l’état futur (n_state),
alors que les signaux de sortie des bascules codent l’état courant (state).

staten_state
input

Figure 3.2: Structure matérielle pour
l’évolution des états

3.1.2 Génération des signaux de contrôle

Un automate, n’a de sens que s’il sert à piloter une unité de traitement. Pour cela, un bloc de calcul
combinatoire est en charge de créer les signaux de contrôle, soit simplement à partir de l’état courant
(dans la littérature on appelle cela machine de Moore), soit à partir de l’état courant et des entrées du
contrôleur (dans la littérature on appelle cela machine de Mealy). Les figures 3.3 et 3.4 représentent
respectivement les schémas d’une machine de Moore et d’une machine de Mealy. Suivant la situation,
l’une ou l’autre est plus adaptée.

state
inputs

n_state

outputs

Figure 3.3: Structure matérielle pour le
calcul des sorties (Moore)

staten_state

outputsinputs

Figure 3.4: Structure matérielle pour le
calcul des sorties (Mealy)
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3.2 Codage SystemVerilog des automates

En s’appuyant sur les schémas précédents la traduction en code SystemVerilog est assez directe comme
l’indique la figure 3.5 :

state
inputs

n_state

outputs

always@(*)

always@(posedge clk)

always@(*)

Figure 3.5: Processus SystemVerilog
pour un automate synchrone

— Un processus combinatoire se charge de calculer les états futurs

— Un processus synchrone se charge de la mise à jour des états

— Un ou plusieurs processus combinatoires génére(nt) les signaux de contrôle.

3.2.1 Utilisation de types énumérés pour décrire des états

Il est possible, en SystemVerilog, de définir des vecteurs de booléens sous la forme de type énumérés par
l’utilisation du mot-clé enum.

— Par défaut, les valeurs énumérées correspondent aux codes 0, 1, 2, 3 . . . en partant de la première
valeur.

— La taille nécessaire au codage des différentes valeurs est définie dans la définition du vecteur logic.

Le code 3.1 décrit la définition de signaux state et n_state sous la forme de types énumérés. Ces
signaux représentent respectivement l’état courant et l’état futur de notre automate. Il est possible ensuite
d’utiliser directement les noms symboliques pour calculer des affectations ou faire des comparaisons.

...

// state et n_state doivent être déclarés conjointement

enum logic[2:0] {SWAIT, S1, S2, S3, S4, S5, S6} state, n_state ;

...

always@(*) begin

n_state <= S1;

if(state == SWAIT) begin

...

end else begin

...

end

Code 3.1: Les états sous forme de type
énuméré
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3.2.2 Codage de la mise à jour de l’état

Le code 3.2 est un exemple de définition du registre d’état. Attention : Il ne faut pas oublier l’initialisation
qui permet de définir l’état de départ de l’automate. Dans l’exemple suivant, on choisit de placer l’auto-
mate dans l’état SWAIT si le signal reset vaut 1 au front montant de l’horloge (initialisation synchrone).
On aurait pu aussi choisir une initialisation asynchrone.

always@( posedge clk)

if(reset)

state <= SWAIT;

else

state <= n_state;

end

Code 3.2: Le registre d’états

3.2.3 Codage de l’évolution d’un automate

La construction case permet de traduire facilement la table d’évolution des états. Nous pouvons ainsi
regrouper dans un même vecteur (les accolades servent à concaténer des éléments dans un vecteur)
l’ensemble des signaux d’entrée et l’état courant de manière à définir la table d’évolution des états de
manière très régulière. Remarquez, dans le code 3.3, l’usage du mot-clef default pour définir le cas par
défaut, c’est-à-dire le fait de ne pas changer d’état.

always@(*)

case ( {state, entree_1, entree_2} )

{SWAIT,1’b0, 1’b1} : n_state <= S1;

{S1 ,1’b1, 1’b1} : n_state <= S2;

...

default : n_state <= state;

endcase

Code 3.3: Le calcul de l’état futur

3.2.4 Extension de la construction case : le mot-clef casez

Il peut parfois être long et fastidieux de donner explicitement tous les cas. Lorsque certains signaux ne
sont pas utiles dans les équations de transition, il est possible de les représenter par le caractère «?». Dans
ce cas le mot-clé case doit être remplacé par casez comme indiqué dans le code 3.4

Dans l’exemple précédent, on passe de l’état S1 à l’état S2 indé-
pendamment de la valeur du signal entree_2.
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always@(*)

casez ( {state, entree_1, entree_2} )

{WAIT,1’b0, 1’b1} : n_state <= S1;

{S1, 1’b1, 1’b?} : n_state <= S2;

...

default : n_state <= state;

endcase

Code 3.4: Exemple d’utilisation du
mot-clé casez

3.2.5 Utilisation des constructions if et les transitions par défaut

Dans certains cas, il est plus simple et plus lisible d’exprimer les conditions de transitions en utilisant la
construction if.

Une astuce de codage permet de réduire la complexité du code en prévoyant un cas par défaut dans
lequel on reste dans l’état courant. Comme le montre l’extrait de code 3.6, les if ne servant à exprimer
que les changements d’état.

Notez l’utilisation obligatoire de begin. . .end pour délimiter les blocs de code.

always@(*)

begin

// cas par défaut, on reste dans l’état courant

// n_state vaudra cette valeur si aucune autre condition n’est vérifiée

n_state <= state;

casez (state)

WAIT : begin

if (entree_1) n_state <= S1;

if (entree_2) n_state <= S2;

// si aucune condition n’est vérifiée, on sait que n_state

// vaudra state et qu’on reste dans l’état courant

end

S1 : begin

if (entree_3) n_state <= S3;

...

end

...

// ici le cas default n’est pas obligatoire

endcase

end

Code 3.5: Utilisation de case et if pour
les transitions d’états

3.2.6 Codage des signaux de sortie (signaux de contrôle).

Pour des raisons de facilité de lecture, il est recommandé d’écrire un processus combinatoire par signal de
sortie. Cela permet souvent d’éviter des codes trop complexes à base de case et de if imbriqués, difficiles
à lire et à corriger. La règle étant de ne pas mélanger dans un même processus always des codes qui n’ont
rien de commun.
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Le code 3.6 est un exemple de génération de signaux de contrôle. Dans cet exemple, on imagine qu’une
unité de traitement est capable de calculer des divisions et démarre un traitement si le signal start_div
est égal à 1.

Le contrôleur reçoit la commande ask_div mais ne donne l’ordre au diviseur de démarrer que lorsque
il est dans l’état START_COMPUTATION.

Enfin, le contrôleur génère un signal end_of_computation dès qu’il atteint l’état END_OF_COMPUTATION.
Notez qu’en SystemVerilog, il y équivalence entre une expression booléenne et un bit.

always@(*) start_div <= (state==START_COMPUTATION)) && ask_div;

always@(*) end_of_computation <= (state==END_OF_COMPUTATION));

Code 3.6: Exemple de codage de si-
gnaux de contrôle
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Le nano processeur

Dans ce chapitre nous allons présenter comment concevoir un microprocesseur à partir d’un exemple simple et
progressif. Nous introduisons la notion de programme (cf. section 4.1) ainsi que la mémoire servant à le stocker (cf.
section 4.2). Dans la suite du chapitre nous faisons évoluer l’architecture du processeur pour permettre d’exécuter
des programmes de plus en plus complexes.

4.1 Programme, instructions et données

Les processeurs ne sont rien d’autre que des machines à calculer
programmables. Imaginez que vous êtes comptable, et que vous avez à
effectuer une série d’opérations qu’on vous a gentiment inscrites sur
une feuille de papier.

Voici un exemple d’instructions qu’on peut vous avoir donné :

1 faire 112 + 3

2 faire 4 + 5

3 faire 2 + 16

4 faire ...

Vous pouvez avoir des enchaînements un peu plus complexes, par
exemple :

1 faire 112 + 4

2 faire "résultat précédent" + 1

3 ...

pour lesquels vous devez mémoriser des résultats intermédiaires.
Et si on vous demande vraiment de réfléchir, de raisonner et de

prendre des décisions, vous vous retrouverez avec :
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1 faire 112 + 3

2 faire "résultat précédent" - 4

3 faire si "le résultat est nul" alors "passer à l’étape" 6,

4 sinon "continuer"

5 faire 3 * 4

6 faire "résultat précédent" + 9

7 faire "ouvrir la fenêtre"

8 faire "résultat de l’étape" 2 - 15

9 faire "passer à l’étape" 12

10 faire ...

Un microprocesseur est un dispositif électronique qui peut faire
ce travail à votre place. Il ne reste qu’à rendre cette feuille de papier
lisible par ce dispositif électronique.

Examinons un peu plus le texte de la feuille de papier pour essayer
de trouver les éléments important qu’il faut faire « comprendre » au
processeur.

Ce texte est une série 1 d’opérations ou d’actions à effectuer, c’est 1. Notez que ces opérations sont numé-
rotées : elles ont un ordre.
Dans le premier exemple, l’ordre n’a
pas tellement d’importance, mais il en
a une dans les deux suivants quand on
parle de « résultat précédent », l’« étape
6 », . . .

ce qu’on appelle un « programme ».
Dans ce programme on distingue deux types d’éléments :

— les données :

— d’abord les opérandes proprement dits (3, 4, 112, . . . ),

— et les opérandes implicites (« résultat précédent », « résultat
de l’étape 2 », . . . ) ;

— les instructions :

— pour nous ce sont principalement les opérations arithmétiques
(« + », « − », « ∗ », « / » . . . ),

— il y a aussi des tests (« si le résultat précédent est nul

. . . »),

— et des sauts (« passer à l’étape 12 »), souvent conditionnés
par un test (« alors passer à l’étape 6 »),

— ainsi que des instructions spéciales (« ouvrir la fenêtre »).

Résumons :

— Un programme est une suite ordonnée d’instructions.

— Une instruction permet :

— d’agir sur des opérandes en utilisant des opérateurs,

— d’agir sur le flot d’exécution du programme.

4.2 La mémoire RAM

Comme le processeur est un dispositif électronique numérique, il
ne peut interpréter que des niveaux logiques (1 ou 0). Il faudra donc
« encoder » les instructions et les données de notre programme en
une série de bits (des 1 et 0 donc des nombres).
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La feuille de papier doit être elle aussi remplacée par dispositif
électronique permettant de stocker ces nombres et de les modifier
pendant l’exécution du programme. Cette mémoire électronique doit
aussi permettre d’accéder aux éléments qu’elle contient dans n’im-
porte quel ordre (de façon aléatoire).

Ce type de mémoire est appelé « RAM » (Random Access Me-
mory). La figure 4.1 montre le schéma de l’interface d’une RAM
simple pouvant contenir 256 mots de 8 bits.

RAM

WRITE

ADDR[7:0]

D[7:0] Q[7:0]

Figure 4.1: Une mémoire minimaliste

La RAM possède trois bus :

— un bus d’adresses, ADDR[7:0] indiquant l’emplacement en mé-
moire de la donnée à laquelle on accède,

— un bus de données d’entrée, D[7:0], pour les données qu’on va
écrire en RAM,

— un bus de données de sortie, Q[7:0], pour les données qu’on lit
en RAM,

ainsi que

— un signal de contrôle sur 1 bit, WRITE, indiquant si on est en
train de faire une lecture dans la RAM (WRITE==0), ou une écri-
ture (WRITE==1).

La figure 4.2 montre les chronogrammes d’une lecture et d’une
écriture.

ADDR 67 110

D 22

Q ram[67] 22

WRITE

lecture @67 écriture @110

Figure 4.2: exemple d’accès à la RAM

Le fonctionnement de la RAM est le suivant :

— la RAM présente en permanence sur sa sortie Q[] la donnée sto-
ckée à l’adresse présente sur ADDR[]

— si cette donnée n’est pas utile, on l’ignore,

— si WRITE est actif (égal à 1), la valeur présente sur D[] est écrite
dans la mémoire à l’adresse présente sur ADDR[],
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— cette écriture prend un certain temps,

— si WRITE est inactif (égal à 0), l’entrée D[] est ignorée.

— Pendant que WRITE est actif, le bus Q[] prend comme valeur le
contenu de la case pointée par l’adresse. Cela va donc être la copie
de D[], mais avec du retard.

Les données et les instructions de nos programmes sont alors « en-
codés » pour être stockées dans la RAM. L’encodage des données en
binaire est quelque chose de naturel. Pour les instructions, il faudra
choisir un encodage puis respecter cette convention.

4.3 Le système de base

Maintenant que nous avons notre feuille de papier électronique
qui peut contenir notre programme, nous allons la connecter à notre
processeur. Ceci nous permet de définir l’interface extérieure du pro-
cesseur, qui ne changera plus, avant de concevoir son fonctionnement
interne.

La figure 4.3 montre la structure de notre système. Il contient :

— notre microprocesseur

— la RAM, reliée au processeur,

— un buzzer qui servira à jouer de la musique

Processeur
RAM

Buzzer

ADDR[7:0]

WRITE

D[7:0] Q[7:0]

CLK

RESET

Figure 4.3: Architecture du système de
complet

Nous connecterons notre microprocesseur à la RAM :

— Un bus pour les données D[] de 8 bits.

— Un bus pour les adresses ADDR[] de 8 bits 2. 2. La RAM contient 256 mots, il y donc
256 valeurs potentielles d’adresse

— Un signal WRITE pour commander les écritures.
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4.4 Première version du microprocesseur : l’automate linéaire

Dans cette première étape nous allons définir l’architecture du
processeur permettant d’exécuter simplement une série d’instruc-
tions indépendantes.

Aussi, nous nous limiterons à deux instructions, l’addition et la
soustraction. Comme la mémoire que nous utilisons contient des
mots de 8 bits, nous choisissons arbitrairement l’encodage suivant
pour ces deux instructions 3. 3. Avec un encodage sur 8 bits nous pou-

vons avoir jusqu’à 256 instructions dif-
férentes.

Code Instruction

00000100 (4) addition

00000110 (6) soustraction

Exemple de programme : Ceci est un exemple simple de programme
que nous voulons exécuter :

1 3 + 4

2 12 - 8

Nous proposons d’organiser le programme en mémoire en respec-
tant, pour chaque instruction, la structure suivante :

1. instruction

2. 1
er opérande

3. 2
nd opérande

4. emplacement pour le résultat

Les instructions et les données sont chargées de façon indifféren-
ciée dans la mémoire, seule la position de ces dernières permet de
savoir comment nous devons les interpréter.

Pour notre programme d’exemple, le contenu 4 suivant est chargé 4. Les X indiquent que nous ne connais-
sons pas la valeur se trouvant initiale-
ment dans cette case.

initialement dans la RAM :

adresse type du mot stocké exemple

0 instruction +

1 donnée (premier opérande) 3

2 donnée (deuxième opérande) 4

3 donnée (résultat) X

4 instruction -

5 donnée (premier opérande) 12

6 donnée (deuxième opérande) 8

7 donnée (résultat) X

Après l’exécution du programme par le processeur, le contenu de
la RAM est modifié 5 et contient le résultat des calculs demandés. 5. Les cases qui ont changé sont indi-

quées en rouge.
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adresse type du mot stocké exemple

0 instruction +

1 donnée (premier opérande) 3

2 donnée (deuxième opérande) 4

3 donnée (résultat) 7

4 instruction -

5 donnée (premier opérande) 12

6 donnée (deuxième opérande) 8

7 donnée (résultat) 4

Fonctionnement de l’automate Vu l’organisation de la RAM qui a été
choisie, le fonctionnement de l’automate est simple : à chaque coup
d’horloge, il va chercher successivement une instruction, puis le pre-
mier opérande, puis le deuxième opérande, calcule le résultat et le
stocke. Puis il recommence à l’adresse suivante.

En détail :

1. Premier coup d’horloge : le microprocesseur présente l’adresse 0 à la RAM.

→ La RAM lui présente sur son bus de sortie le contenu de l’adresse 0, qui est la première instruction.

2. Deuxième coup d’horloge : le microprocesseur incrémente l’adresse qu’il présente à la RAM (1).

→ La RAM lui présente sur son bus de sortie le contenu de l’adresse 1, qui est le premier opérande.

3. Troisième coup d’horloge : le microprocesseur incrémente l’adresse qu’il présente à la RAM (2).

→ La RAM lui présente sur son bus de sortie le contenu de l’adresse 2, qui est le deuxième opérande.

A ce moment-là, le microprocesseur dispose de toutes les données nécessaires au calcul : l’instruction,
et les deux opérandes. Il peut donc calculer le résultat.

4. Quatrième coup d’horloge : le microprocesseur incrémente l’adresse qu’il présente à la RAM (3).

→ Il présente sur le bus de donnée en entrée de la RAM le résultat qu’il vient de calculer.

→ Il passe la ligne WRITE de la RAM à l’état haut, pour dire à la mémoire qu’il désire effectuer une
écriture.

→ Le résultat du calcul est donc à ce moment-là écrit à l’adresse 3 de la mémoire.

5. Cinquième coup d’horloge : le microprocesseur incrémente l’adresse qu’il présente à la RAM (4).

→ La RAM lui présente sur son bus de sortie le contenu de l’adresse 4, qui est la deuxième instruction.

6. Et on recommence . . .

La figure 4.4 montre ce séquencement temporel.

CLK

ADDR 0 1 2 3 4

Q 0x4 3 4 7 0x6

D 7

WRITE

Figure 4.4: chronogramme des accès à
la mémoire du processeur « linéaire »
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4.4.1 L’architecture du processeur :

Les adresses : Pour effectuer un calcul, le processeur doit disposer
de trois informations :

— l’instruction (l’opération à effectuer)

— l’opérande 1

— l’opérande 2

Il doit en disposer en même temps. Mais elles sont stockées en RAM,
et ne peuvent être lues que l’une après l’autre. Il faudra donc prévoir
de stocker ces trois informations à l’intérieur du processeur pour
pouvoir effectuer le calcul (ce que nous verrons dans la suite).

Vu l’organisation de la mémoire, il semble logique de lire ces trois
informations de la façon la plus simple possible, c’est-à-dire, dans
l’ordre :

— tout d’abord l’instruction,

— puis l’opérande 1,

— puis l’opérande 2.

Ce qui correspond à un parcours linéaire de la mémoire.

De plus, le stockage du résultat s’effectue dans la RAM à l’adresse
suivant celle de l’opérande 2. On peut donc doter le processeur d’un
compteur qu’on appellera compteur programme ou PC (Program
Counter), qui donnera l’adresse de la RAM à laquelle on est en train
d’accéder. Ce compteur sera incrémenté à chaque coup d’horloge et
pilotera directement le bus d’adresse de la RAM et qui servira pour
les lectures et les écritures.

Les données : Le processeur a un fonctionnement linéaire et l’ordre
des actions effectuées est toujours le même :

1. aller chercher une instruction,

2. aller chercher le premier opérande,

3. aller chercher le second opérande,

4. stocker le résultat du calcul.

On peut donc le concevoir comme un automate à quatre états,
dont le fonctionnement est circulaire : état 1 → état 2 → état 3 →
état 4→ état 1→ état 2→ . . .

État 1 : L’état IF (Instruction Fetch)

— le compteur est en train de présenter à la RAM une adresse correspondant à une instruction.
Le processeur récupère sur le bus Q[7:0] la contenu de la RAM à cette adresse, c’est-à-dire l’instruction
à effectuer.

— il faut stocker cette instruction pour plus tard (quand on aura récupéré les opérandes).
On ajoute donc au processeur un registre de 8 bits disposant d’un enable (entrée d’activation).
L’entrée de ce registre est reliée au bus Q[7:0] (sortie de la RAM)
Le signal d’enable de ce registre est mis à l’état haut seulement pendant l’état 1.

État 2 : L’état OP1F (Operand 1 Fetch)
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— le compteur est en train de présenter à la RAM une adresse correspondant au premier opérande.
Le processeur récupère sur le bus Q[7:0] la contenu de la RAM à cette adresse, c’est-à-dire l’opé-
rande 1. . .

— il faut stocker cet opérande, donc, on ajoute un registre 8 bits avec enable, relié à la sortie de la RAM.
L’enable de ce registre est mis à l’état haut seulement pendant l’état 2.

État 3 : L’état OP2F (Operand 2 Fetch)

— le compteur est en train de présenter à la RAM une adresse cor-
respondant au second opérande.
Le processeur récupère sur le bus Q[7:0] la contenu de la RAM à
cette adresse, c’est-à-dire l’opérande 2. . .

— Comme précédemment on stocke cet opérande dans un registre 6
6. On doit stocker l’opérande dans un
registre car l’écriture du résultat en
RAM ne se fait qu’au cycle d’horloge
suivant.
On aurait pu effectuer le calcul dans
ce cycle et stocker le résultat pour le
cycle suivant mais ça ne change rien au
nombre de registres nécessaires. Ce ne
sont que des considérations de chemin
critique qui permettront de déterminer
la meilleure des deux structures.

8 bits, dont l’enable est à l’état haut uniquement durant ce cycle.

État 4 : L’état WR (Write back)

— le compteur est en train de présenter à la RAM une adresse cor-
respondant au résultat à stocker.

— le processeur dispose dans ses trois registres de toutes les don-
nées pour effectuer le calcul. Il suffit d’ajouter une fonction com-
binatoire, pour produire le résultat 7. La sortie de cette fonction 7. Le résultat dépend des deux opéra-

teurs Op1 et Op2 ainsi que de l’instruc-
tion I que nous avons stockés dans les
registres correspondants.

combinatoire sera reliée au bus d’entrée de la RAM.

— Parallèlement, le processeur doit mettre le signal WRITE de la
RAM à l’état haut, pour dire à la RAM de stocker à l’adresse cou-
rante la sortie de la fonction de calcul.

+1

I

Op1

Op2

CTRL

Load_op1

Load_I

Load_op2

Load_I

Load_op1

Load_op2

ADDR

D[7:0]

WRITE

+/−

Q[7:0]

Figure 4.5: Architecture du processeur
« linéaire »
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On obtient donc l’architecture de la figure 4.5 pour notre proces-
seur :

— En rouge : le compteur d’adresse courante.

— En bleu : les trois registres 8 bits, les signaux load sont les enable.

— En noir rond : la fonction combinatoire de calcul proprement dite
(ALU : pour Arithmetic and Logic Unit).

— En noir carré : la machine à état qui séquence l’ensemble.

Le contrôleur (ou machine à état) « CTRL » est présentée en fi-
gure 4.6. Ce diagramme représente les transitions de l’état 8 (Etat) 8. Ici, les deux bits de poids faible du

compteur programme PC peuvent être
utilisés pour définir cet état.

interne du processeur.

IF
load_I

OP1F
load_OP1

OP2F
load_OP2

WR
WRITE

Figure 4.6: Séquencement des états du
processeur « linéaire »

Les équations des différents signaux générés par ce contrôleur
sont :

Load_I <= (Etat == IF)

Load_OP1 <= (Etat == OP1F)

Load_OP1 <= (Etat == OP2F)

WRITE <= (Etat == WR)

La figure 4.7 représente le chronogramme complet avec l’état des
registres internes du processeur ainsi que leurs signaux d’activation
(enable).

CLK

CYCLE IF OP1F OP2F WR IF

ADDR 0 1 2 3 4

Q 0x4 3 4 7 0x6

WRITE

D 7

Load_I

Load_OP1

Load_OP2

I ADD

Op1 3

Op2 4

Figure 4.7: chronogramme complet
pour le processeur « linéaire »
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4.5 Deuxième version du microprocesseur : l’automate avec
accumulateur

L’architecture actuelle ne permet pas de chaîner les calculs (exemple :
3 + 4 + 5). Pour pouvoir le faire, il y a plusieurs possibilités, voici
quelques exemples :

1. Garder le résultat de chaque opération en mémoire, et définir une
nouvelle addition 9 qui opère sur un opérande en RAM et le ré- 9. On ajoute une instruction pour

chaque type d’opérations. Cette nou-
velle opération ne nécessitant qu’un
seul opérande en RAM, pourra donc
être effectuée en 3 ce qui va compli-
quer le séquencement des états car cer-
taines opérations se feront en 3 cycles et
d’autres en 4.

sultat qu’on a gardé.

2. Définir des opérations de manipulation de la RAM avec lesquelles
nous pourrions recopier le résultat en RAM à la position d’un des
deux opérandes de la prochaine instruction. C’est bien compliqué
car il faut connaitre les instructions à venir.

3. Définir une nouvelle addition qui opère sur un opérande à l’en-
droit habituel en RAM, et sur un autre opérande situé à l’adresse
(instruction - 1)

La solution que nous proposons d’implémenter est la suivante :

— Utiliser la première solution 10, mais pour simplifier les choses, 10. l’instruction opère sur un opérande
en RAMet par cohérence, supprimer les opérations sur deux opérandes en

RAM.

— Toutes les opérations se feront entre un opérande en RAM, et un
gardé dans un registre interne au processeur.

— Et pour rendre cela possible 11, on définit deux nouvelles instruc- 11. initialiser le registre interne et stocker
le résultat finaltions : chargement de ce registre à partir d’une donnée en RAM et

stockage du contenu de ce registre en RAM.

4.5.1 L’accumulateur

Nous allons doter notre processeur d’un registre interne sur 8 bits,
que nous appellerons accumulateur. Toutes les opérations arithmé-
tiques à deux opérandes s’effectueront entre l’accumulateur et une
donnée en RAM.

Plus précisément : pour effectuer « 3 + 4 » et stocker le résultat en
RAM, le processeur effectuera la séquence d’instructions suivante :

1. chargement de 3 dans l’accumulateur

2. addition de l’accumulateur avec un opérande en RAM (4)

3. stockage du contenu de l’accumulateur en RAM

Pour effectuer « 3 + 4 + 5 » :

1. chargement de 3 dans l’accumulateur

2. addition de l’accumulateur avec un opérande en RAM (4)

3. addition de l’accumulateur avec un opérande en RAM (5)

4. stockage du contenu de l’accumulateur en RAM

On ajoute donc deux instructions à notre processeur :

— LDA (load to accumulator) : chargement de l’accumulateur à partir
de la RAM
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— STA (store accumulator) : stockage du contenu de l’accumulateur
dans la RAM

Aussi, les instructions d’addition et de soustraction n’ont plus be-
soin que d’un seul opérande : le deuxième opérande est dans l’accu-
mulateur.

Nous en profitons aussi pour ajouter des instructions pour la ma-
nipulation de bits (et, ou et ou-exclusif) qui, comme l’addition et la
soustraction, opèrent sur l’accumulateur et un élément venant de la
RAM.

La table suivante donne ce nouveau jeu d’instructions :

code (8 bits) mnémonique fonction

00000001 (1) XOR le ou-exclusif bit à bit
00000010 (2) AND le et bit à bit
00000011 (3) OR le ou bit à bit
00000100 (4) ADD l’addition
00000110 (6) SUB la soustraction
00001010 (10) LDA le chargement de l’accumulateur à partir de la mémoire
00001011 (11) STA la sauvegarde de l’accumulateur en mémoire

L’organisation en mémoire d’un programme permettant de calcu-
ler « 3 + 4− 1 » ressemblerait à :

adresse type du mot stocké exemple

0 instruction LDA

1 donnée 3

2 instruction +

3 donnée 4

4 instruction -

5 donnée 1

6 instruction STA

7 donnée X

On remarque donc qu’une adresse sur deux contient une instruction, une sur deux contient une donnée,
soit un opérande, soit un espace pour stocker le contenu de l’accumulateur. À la fin de l’exécution du
programme, le résultat du calcul sera disponible à l’adresse 7.

4.5.2 L’architecture du processeur avec accumulateur :

Commençons par observer une séquence d’accès à la mémoire pour l’exécution du programme précédent
(voir figure 4.8).

Nous avons une séquence régulière avec, systématiquement, la lecture d’une instruction puis la lecture
ou l’écriture d’une donnée. Nous pouvons nommer ces deux cycles :

IF (Instruction Fetch) : lecture de l’instruction, durant lequel :

— on présente l’adresse d’une instruction

— on autorise le chargement du registre instruction (Load_I)

DF (Data Fetch) : lecture ou écriture de la donnée
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— on présente l’adresse d’une donnée

— on autorise le chargement du registre accumulateur (Load_Acc) sauf dans le cas d’un « store » où
on autorise l’écriture en RAM (WRITE).

CLK

CYCLE IF DF IF DF IF DF IF DF

ADDR 0 1 2 3 4 5 6 7

Load_I

I LDA ADD SUB STA

Load_Acc

WRITE

Sel_Acc

Acc/D 3 7 6

Q LDA 3 ADD 4 SUB 1 STA 6

Figure 4.8: chronogramme pour le pro-
cesseur avec « accumulateur »

L’architecture du processeur avec accumulateur est représentée
par la figure 4.9. La séquence des adresses est toujours linéaire, nous
avons toujours besoin d’un compteur programme (PC).

Les opérations arithmétiques et logiques se font dans l’ALU. L’opé-
ration à effectuer est choisie en fonction de la valeur du registre d’ins-
truction 12. 12. Plusieurs fonctions combinatoires en

parallèle avec un multiplexeur pour re-
diriger vers la sortie le bon calcul

L’accumulateur peut être soit chargé directement à partir de la
RAM, soit modifié par le résultat d’un calcul venant de l’ALU. Son
entrée est reliée aux deux par l’intermédiaire d’un multiplexeur qui
permet, en fonction de l’instruction, de sélectionner la bonne entrée.
Sa sortie est reliée directement à l’entrée de la RAM pour pouvoir
sauvegarder le résultat 13, ainsi qu’à la seconde entrée de l’ALU. 13. dans le cas d’une instruction store

(STA)
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CTRL

Load_I

Load_Acc

Sel_Acc

AccALU
1

0

+1
ADDR

I
Q[7:0]

Load_I

WRITE

D[7:0]

I

Load_AccSel_Acc
I

Figure 4.9: Architecture du processeur
avec « accumulateur »

Le diagramme d’états 14 du contrôleur est représenté dans en fi- 14. Ici, le bit de poids faible du PC peut
être utiliségure 4.10. Les équations des différents signaux générés par ce contrô-

leur sont :

Load_I <= (Etat == IF )

Sel_Acc <= ( I == LDA)

Load_Acc <= (Etat == AF ) && (I != STA)

WRITE <= (Etat == AF ) && (I == STA) IF

Load_I
DF

Figure 4.10: Séquencement des états du
processeur avec « accumulateur »
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4.6 Troisième version du microprocesseur : l’automate avec
accumulateur et indirection

Séparation des données des instructions :
Imaginez qu’on souhaite séparer le code des données, pour :

— exécuter un même code sur des données différentes (sans le dupliquer pour chaque groupe de don-
nées)

— exécuter différents codes sur des mêmes données (sans dupliquer les groupes de données)

— exécuter un code sur des données qui ne sont pas connues avant l’exécution du programme (par
exemple, au début du programme on demande à l’utilisateur d’entrer des valeurs)

Pour le moment, notre processeur ne sait pas faire : nous devons connaître les données au moment du
pré-chargement de la RAM avec le code.

Il faudrait disposer d’instructions de manipulation du contenu de la RAM à des adresses arbitraires
(on ne modifierait que des données, pas le code) Cela permettrait de modifier les zones de la mémoire
dans lesquelles se trouvent les opérandes. Mais c’est peut-être un peu compliqué d’avoir à modifier plein
de zones éparses.

Pour une meilleure organisation, on pourrait séparer le code des données. On aurait, en RAM, une zone
avec les instructions et une zone avec les données. Il suffirait juste d’aller modifier la zone des données, et
d’exécuter le code générique qui saurait, pour chaque instruction, où trouver les bons opérandes.

Dans l’état actuel, les instructions en RAM occupent de deux octets, un pour le code de l’instruction et
l’autre pour l’opérande. Nous proposons de modifier toutes les instructions pour que le second octet soit
l’adresse de l’opérande et non plus sa valeur.

Par exemple, pour effectuer « 3 + 4, 3− 1 » on pourra avoir une
organisation en RAM comme suit :

adresse type du mot stocké exemple zone

0 instruction LDA

1 adresse de l’opérande 100

2 instruction +

3 adresse de l’opérande 101

4 instruction STA

5 adresse de l’opérande 103

6 instruction LDA zone de code
7 adresse de l’opérande 100

8 instruction -

9 adresse de l’opérande 102

10 instruction STA

11 adresse de l’opérande 104

. . . . . . . . .
100 donnée 3

101 donnée 4

102 donnée 1 zone de données
103 donnée X

104 donnée X

. . . . . . . . .

Comme vous pouvez le voir le programme est mis dans la partie
basse de la RAM (commençant à l’adresse 0 15) alors que les données 15. Le fait que le programme commence à

l’adresse 0 simplifie le démarrage après
une remise à zéro
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sont mises dans la partie haute de la RAM (commençant à l’adresse
100

16). 16. le choix de cette adresse est arbitraire

Après l’exécution du programme la zone des données est modifiée
et contient les résultats comme suit.

adresse type du mot stocké exemple zone

. . . . . . . . .
100 donnée 3

101 donnée 4

102 donnée 1 zone de données
103 donnée 7

104 donnée 1

. . . . . . . . .

Cette séparation entre une zone contenant les données et une zone
contenant les instructions est une séparation simple. Dans un pro-
gramme plus complexe (et plus réaliste) on aurait plusieurs zones
pour les données en fonction du fait qu’elles soient constantes, mo-
difiables, non définies au début du programme. . .

Fonctionnement de l’automate : Vu la nouvelle structure du programme
en mémoire RAM, dans le processeur, nous devons suivre les trois
étapes suivantes :

1. lire l’instruction (IF : Instruction Fetch),

2. lire l’adresse de l’opérande 17 (AF : Adress Fetch), 17. Nous devons aussi stocker cette
adresse dans un registre du processeur
car elle est utilisée au cycle suivant3. présenter l’adresse de l’opérande à la RAM pour exécuter l’ins-

truction (EX : Execution).

Cette séquence est présentée en figure 4.11. Les instructions s’exé-
cutent donc maintenant en trois cycles.

CLK

CYCLE IF AF EX IF AF EX IF AF EX

ADDR 0 1 100 2 3 101 4 5 103

Inc_PC

Sel_Addr

Load_I

I LDA ADD STA

Load_Acc

Sel_Acc

Acc 3 7

WRITE

Q LDA 100 3 ADD 101 4 STA 103 7

Figure 4.11: chronogramme pour le
processeur avec « indirection »
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Les accès à la RAM ne sont donc plus simplement linéaires. Dans
l’exemple de programme nous avons la séquence d’adresses sui-
vante :

1 0 (adresse de l’instruction)
2 1 (adresse de l’adresse de l’opérande)
3 100 (adresse de l’opérande)
4 2 (adresse de l’instruction)
5 3 (adresse de l’adresse de l’opérande)
6 101 (adresse de l’opérande)
7 4 (adresse de l’instruction)
8 5 (adresse de l’adresse de l’opérande)
9 103 (adresse de l’opérande)

10 . . . (adresse de l’instruction)

Les adresses du code sont globalement linéaires (0, 1, 2, 3. . .), celles
des données ne le sont plus (elles sont arbitraires). Nous pouvons
donc garder le compteur programme, tel que défini pour les versions
précédentes du processeur en prenant soin de présenter sur le bus
d’adresse RAM :

— le compteur programme durant les deux premiers cycles (que
l’on incrémente à chaque fois)

— puis le contenu du registre d’adresse (adresse de l’opérande à al-
ler chercher) pendant le troisième cycle (et ici le compteur d’adresse
ne doit pas être incrémenté)

Pour cela, le compteur programme doit pouvoir être stoppé. Un
signal ide contrôle supplémenta tire INCR_PC permet d’autoriser le
fait qu’il soit incrémenté. La figure 4.12 montre comment ce signal
de contrôle peut être ajouté.

PC

0

1

Inc_PC

+1

Figure 4.12: Structure du compteur
programme du processeur avec
indirection

Le registre d’adresse est chargé au cycle numéro 2 (AF) et son
contenu n’est utile qu’au cycle numéro 3 (EX). Il n’est donc pas né-
cessaire de le piloter avec un signal enable. Il peut rester tout le temps
actif : son contenu sera indéterminé pendant les cycles 1 (IF) et 2 (AF),
mais ce n’est pas grave, il n’est pas utilisé pendant ces cycles-là.

Un multiplexeur supplémentaire permet durant le cycle numéro
3 (EX) de présenter sur le bus d’adresse de la RAM le contenu du
registre d’adresse à la place de PC.

La figure 4.13 montre l’architecture interne du processeur avec
cette sélection d’adresse.
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AccALU
1

0

I

PC

Addr

CTRL Load_Acc

Sel_Acc

Sel_Addr

Load_I

Inc_PC

1

0

D[7:0]

I

Load_AccSel_Acc
IQ[7:0]

Load_I

ADDR

Inc_PC
Sel_Addr

WRITE

Figure 4.13: Architecture du processeur
avec « indiretion »

IF

load_I Inc_PC

AF

Inc_PC

EX

Sel_Add

Figure 4.14: Séquencement des états du
processeur avec « indirection »

Le diagramme d’états du contrôleur est représenté en figure 4.14.
Ici, les bits de poids faible du PC ne peuvent plus être utilisés.
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4.7 Quatrième version du microprocesseur : le processeur RISC

Dans cette partie nous allons ajouter des fonctionnalités au processeur pour pouvoir exécuter des pro-
grammes plus réalistes.

Exécution conditionnelle : Jusqu’ici, l’architecture du processeur ne permet que d’effectuer que des calculs
linéaires sur une suite fixe d’instructions. Les données sont potentiellement inconnues mais leurs adresses
de stockage sont connues.

Nous allons maintenant lui ajouter des instructions de saut conditionnels et, tant qu’on y est, incondi-
tionnels.

Les « Flags » :
Pour cela, chaque opération (logique ou arithmétique) va positionner deux signaux sur l’état d’un

résultat de calcul. Ces indicateurs (flags) seront mémorisés pour l’instruction suivante et ne devront être
modifiés que si le contenu de l’accumulateur est modifié.

— C pour la retenue (Carry) :

— mis à 1 si l’opération courante est une opération arithmétique et donne lieu à une retenue,

— mis à 0 si l’opération courante est une opération arithmétique et ne donne pas lieu à une retenue,

— mis à 0 si on charge l’accumulateur avec une nouvelle donnée.

— Z pour zéro :

— mis à 1 si ce qui est chargé dans l’accumulateur est nul.

— mis à 0 dans tous les autres cas.

La génération de deux signaux C et Z est combinatoire et peut être effectuée dans l’ALU.
Il suffit pour cela d’ajouter deux registres 1 bits pour stocker ces deux signaux, pilotés par le même

enable que l’accumulateur LOAD_ACC, qu’on appellera maintenant LOAD_AZC. Nous pouvons considérer que
Z et C font partie de l’accumulateur qui devient donc un registre sur 10 bits : 8 de donnée, 1 pour Z, un
pour C.

Ces flags permettront de changer le flot d’exécution en fonction du résultat d’un calcul.

Remarque : Comme nous mémorisons la retenue C, nous pouvons nous en servir pour ajouter deux ins-
tructions permettant d’enchaîner les opérations d’addition (ou de soustraction), en prenant en compte la
retenue précédente. Il suffit pour cela de refaire entrer la sortie du registre C sur la retenue entrante de
l’additionneur/soustracteur de l’ALU. Nous aurons donc deux instructions supplémentaires ADDC et SUBC
dans notre jeu d’instructions.

Les sauts : 18
18. jump en anglais.

Nous ajoutons les trois instructions de saut (ou branchement) suivantes :

— JMP : saut inconditionnel :

→ L’exécution de cette instruction fait sauter l’exécution du programme directement à une adresse
passée comme opérande.

— JNC : saut si pas de retenue (Jump if No Carry) :

→ Idem à JMP, mais seulement si C est nul. Sinon, on continue à l’adresse suivante

— JNZ : saut si non nul (Jump if No Carry) :

→ Idem à JMP, mais seulement si Z est nul. Sinon, on continue à l’adresse suivante
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Pour implémenter les sauts, il suffit de se donner la possibilité de remplacer le contenu de PC par la
valeur de l’adresse de destination lue en RAM.

Le PC devient donc un peu plus complexe. C’est globalement un compteur, mais il :

— est incrémenté si son signal de commande INCR_PC = 1,

— est chargé avec une nouvelle valeur si un signal de chargement LOAD_PC = 1,

— si LOAD_PC et INCR_PC valent 1, c’est LOAD_PC qui prime.

Ceci peut être implémenté comme montré sur la figure 4.15.

0

1
0

1

PC

Inc_PC Load_PC

+1

Figure 4.15: Structure du compteur
programme du processeur complet

Les instructions de sauts ainsi que l’instruction d’écriture en mé-
moire STA, ne changent jamais l’état de l’accumulateur ni celui des
flags. Tant qu’on y est nous pouvons définir une instruction expli-
cite NOP (No OPeration) qui ne fait rien. Cette instruction permettra
d’avoir des pauses durant lesquelles l’état du processeur n’est pas
modifié.

Elle n’a pas besoin d’opérande, et pourrait donc être stockée sur
un seul octet (au lieu de deux pour les autres). Mais cela casserait
la régularité de l’organisation du programme en mémoire et com-
pliquerait la gestion de la machine à états pour générer les signaux
LOAD_PC et INCR_PC.

Nous acceptons donc de perdre un octet de mémoire pour ne pas
casser l’organisation de la mémoire. L’instruction NOP sera accompa-
gnée d’un opérande qui ne servira pas.

Une instruction sera toujours exécutée en trois cycles. La seule
modification de la machine à état sera dans le calcul du signal qui
autorise la modification du PC (LOAD_ACC).

Nous ajoutons aussi deux instructions de rotation de données
(vers la droite ou vers la gauche en incluant le bit de retenue) :

— ROL : ACC[7:0] devient {ACC[6:0], C} et C devient ACC[7].

— ROR : ACC[7:0] devient {C, ACC[7:1]} et C devient ACC[0].

Ces opérations sont combinatoires et seront donc implémentées
dans l’ALU.
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Le jeu d’instructions plus complet devient donc :

code
(8 bits)

mnémonique fonction effet

00000000 (0) NOP Pas d’opération Aucun

00000001 (1) XOR ou-exclusifle bit à bit Acc = Acc XOR (AD)

00000010 (2) AND et bit à bit Acc = Acc AND (AD)

00000011 (3) OR ou bit à bit Acc = Acc OR (AD)

00000100 (4) ADD addition Acc = Acc + (AD)

00000101 (5) ADC addition avec retenue entrante Acc = Acc + (AD) + C

00000110 (6) SUB soustraction Acc = Acc - (AD)

00000111 (7) SBC soustraction avec retenue entrante Acc = Acc - (AD) - C

00001000 (8) ROL rotation de l’accumulateur vers la gauche {C, Acc} = {Acc[7 :0], C }

00001001 (9) ROR rotation de l’accumulateur vers la droite {C, Acc} = {Acc[0], C, Acc[7 :1] }

00001010 (10) LDA chargement de l’accumulateur à partir de la mémoire Acc = (AD)

00001011 (11) STA sauvegarde de l’accumulateur en mémoire (AD) = Acc

. . . ...

00001101 (13) JMP saut inconditionnel PC = AD

00001110 (14) JNC saut si pas de retenue PC = AD si C=0

00001111 (15) JNZ saut si resultat non nul PC = AD si Z=0

Remarques :

— AD est le deuxième octet (en RAM) de l’instruction

— (AD) est la valeur en RAM stockée à l’adresse AD
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Avec toutes ces modifications, l’architecture du processeur évolue
comme le montre la figure 4.16.

AccALU
1

0

PC

Addr 1

0

CTRL

Inc_PC

Load_PC

Load_I

Load_AZC

EX

WRITE

Z

C

I
I

Load_I

D[7:0]

Load_AZC

ADDR

Inc_PC

Load_PC

EX

Q[7:0]

I

Sel_AZC

Figure 4.16: Architecture du processeur
complet
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La figure 4.18 montre comme sont générés les signaux de contrôle des différents registres du processeur.
Le fonctionnement se décompose en trois phases (IF,AF et EX) comme pour la version précédente.

On peut noter que certains signaux (load_I par exemple) ont systématiquement la même allure (on ira
toujours chercher l’instruction au 1e cycle) alors que d’autres signaux (WRITE) dépendent de l’instruction
en cours (on écrit en mémoire que si l’instruction est STA).

CLK

CYCLE IF AF EX

ADDR PC PC+1 ADD

Q Inst. ADD (AD)

load_I

load_PC

Sel_Add

load_AZC

WRITE

Inc_PC

Si I = JMP, C, Z

Si opération

Si STA

Figure 4.17: chronogramme pour le
processer RISC

La figure 4.18 montre le séquencement des états du contrôleur. Les
équations des différents signaux générés par ce contrôleur sont :

Load_I <= (Etat == IF )

Inc_PC <= (Etat == IF ) || (Etat == AF)

Load_PC <= (Etat == AF ) && ( I == JMP || ...)

Sel_Add <= (Etat == EX )

Sel_AZC <= ( I == LDA)

Load_AZC <= (Etat == EX ) && (I != NOP || ...)

WRITE <= (Etat == EX ) && (I == STA)

IF

load_I Inc_PC

AF

Inc_PC

EX

Sel_Add

A = 2′b11 A = 2′b10

Figure 4.18: Séquencement des états du
processeur complet
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4.8 Les périphériques

Une instruction pour le buzzer : Rajouter une instruction pour com-
mander le buzzer. Cette instruction permet de commander ce qui est
appelé un port.

Pour commander le buzzer un seul bit suffit mais comme dans
notre processeur toutes les données manipulées font 8 bits de large,
nous pouvons avoir un port faisant aussi 8 bits. Le bit 0 serait connecté
au buzzer tandis que les autres pourraient être utilisés pour com-
mander d’autres éléments (de leds par exemple).

L’instruction que nous ajoutons (OUT) va permettre de charger un
registre connecté à ce port de sortie avec une valeur lue en mémoire.

code
(8 bits)

instruction effet

... ...

00001100 (12) OUT PORT = (AD) ( ou BZ = (AD)[0])
... ...

Fonctionnellement cette instruction n’est pas bien différente de
l’instruction LDA, sauf qu’ici ce n’est pas l’accumulateur qui est chargé.
La figure 4.19 montre comment ce registre pourrait être ajouté.

Le contrôleur doit générer un signal de commande supplémen-
taire pour le registre PORT. Ce signal vaut 1 dans le cycle d’exécution
si l’instruction est OUT.

Load_AZC <= (Etat == EX ) && (I == OUT)
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AccALU
1

0

PC

Addr 1

0

CTRL

Inc_PC

Load_PC

Load_I

Load_AZC

EX

Load_Port

WRITE

Z

C

I
I

Load_I

PORT

D[7:0]

Load_AZC

Inc_PC

Load_PC

EX

Q[7:0]

I

Sel_AZC

Load_Port

ADDR

PORT

Figure 4.19: Architecture du processeur
complet avec un port en sortie
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La logique CMOS

Dans ce chapitre, notre objectif est de faire le lien entre le monde « virtuel » du traitement numérique et la réalisation
physique des composants qui le supportent. Il s’agit, sans entrer dans les détails subtils du fonctionnement de ces
composants, d’établir les grandes lois technologiques et économiques régissant l’industrie micro-électronique. Ainsi,
il sera possible, d’une part de comprendre les enjeux de performance des composants réalisés (vitesse de traitement,
consommation) et d’autre part d’intégrer ces enjeux dans un contexte économique plus global.

5.1 Construisons des fonctions logiques

5.1.1 Construisons un inverseur

La première étape de la réalisation « physique » de fonctions boo-
léennes consiste à définir arbitrairement une convention liant un état
booléen (0 ou 1) à une grandeur physique. Nous pouvons choisir, par
exemple, la valeur d’une tension 1 aux bornes d’un dipôle. Le plus 1. Tout phénomène physique facilement

réductible à 2 états pourrait être uti-
lisé. L’aspect fondamental du choix est
la possibilité d’effectuer des « calculs »
directement au moyen de ces grandeurs
physiques.

simple, pour cela est de disposer d’une source de tension fixe servant
de référence pour la génération des différents états des variables.
Nous supposons dans la suite du cours que nous disposons d’une
telle source d’alimentation 2 connectée entre Vdd (borne positive) et

2. Attention : la présence de cette source
d’alimentation implique que la réalisa-
tion d’un calcul nécessite forcément la
consommation d’une certaine quantité
d’énergie

Vss (référence de masse). Par convention, un signal électrique s :

— représentera la valeur booléenne 0 si V(s) = Vss,

— représentera la valeur booléenne 1 si V(s) = Vdd.

Supposons, maintenant, que nous disposons d’un composant se
comportant comme un interrupteur idéal piloté par une tension. En
nommant « Vg » la tension de commande de cet interrupteur, mesu-
rée par rapport à Vss, les états de l’interrupteur sont les suivants :

— Vg = 0 : interrupteur ouvert,

— Vg = Vdd : interrupteur fermé.

Nous disposons enfin d’une charge résistive Rload. Nous construi-
sons un schéma de référence composé de la source d’alimentation,
de l’interrupteur commandé et de la charge résistive (figure 5.1).

Rload

Vdd

Vss

Vg

g

Figure 5.1: Schéma de référence utili-
sant un interrupteur commandé

Nommons « e » le signal de commande de l’interrupteur dans le
schéma de référence, et nommons « y » le signal commun entre la
résistance de charge et l’interrupteur.
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Dans une première étape, (figure 5.2) nous fixons la tension Ve

du signal e à la valeur 0 : l’interrupteur est ouvert. Au repos, aucun
courant ne traverse la charge Rload donc la chute de potentiel à ses
bornes est nulle : La tension en sortie Vy est égale à Vdd.

Rload

Vdd

Vss

Vy=VddVe=0

e y

Figure 5.2: Tension de commande égale
à 0

Si maintenant, (figure 5.3) nous fixons la tension Ve à la valeur Vdd,
alors l’interrupteur est fermé. L’interrupteur étant idéal, la tension Vy

est égale à Vss.

Rload

Vdd

Vss

Ve=Vdd Vy=0

e y

Figure 5.3: Tension de commande égale
à Vdd

En utilisant notre convention liant « booléen » à « tension » nous
avons réalisé la fonction booléenne inverseuse (y = e).

5.1.2 Construisons des fonctions booléennes plus élaborées

En jouant sur des assemblages d’interrupteurs en série, nous pou-
vons créer la fonction non-et à 2 entrées (y = e1 · e2). Les quatre
figures suivantes représentent l’état des interrupteurs et de la sortie
pour les quatre entrées possibles.

Rload

Vdd

Vss

Vy=Vdd

Ve2=0

e1 y

e2

Ve1=0

(a) Entrées 00

Rload

Vdd

Vss

Vy=Vdd

Ve2=0

e1 y

e2

Ve1=Vdd

(b) Entrées 01

Rload

Vdd

Vss

Vy=Vdd

Ve2=Vdd

e1 y

e2

Ve1=0

(c) Entrées 10

Rload

Vdd

Vss

Vy=0

Ve2=Vdd

e1 y

e2

Ve1=Vdd

(d) Entrées 11

Figure 5.4: La fonction non-et à deux
entrées

En jouant sur des assemblages d’interrupteurs en parallèle, nous
pouvons de même créer la fonction non-ou à 2 entrées (y = e1 + e2) :

Rload

Vdd

Vss

Vy=Vdd

Ve2=0

e1

y

Ve1=0

e2

(a) Entrées 00

Rload

Vdd

Vss

Vy=0

Ve2=Vdd

e1

y

Ve1=0

e2

(b) Entrées 01

Rload

Vdd

Vss

Vy=0

Ve2=0

e1

y

Ve1=Vdd

e2

(c) Entrées 10

Rload

Vdd

Vss

Vy=0

Ve2=Vdd

e1

y

Ve1=Vdd

e2

(d) Entrées 11

Figure 5.5: La fonction non-ou à deux
entrées

5.1.3 En conclusion c’est simple, mais. . .

Cette première approche prouve que nous pouvons créer « physi-
quement » des fonctions booléennes simples. Dans le chapitre 1, nous
avons déjà montré comment passer de la logique à l’arithmétique :
nous pouvons donc virtuellement réaliser n’importe quelle fonction
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de traitement combinatoire. La réalisation de fonctions de logique
séquentielle n’est guère plus compliquée.

Cela dit, nos fonctions logiques ne sont guère réalistes.
D’une part ces fonctions consomment de l’énergie en permanence

lorsque leur valeur de sortie est 0. En effet, dans cette situation, un
courant permanent s’établit dans la résistance de charge (ce pro-
blème existait dans les premiers microprocesseurs réalisés au siècle
dernier).
Nous aimerions réaliser des microprocesseurs qui ne consomment
de l’énergie que lorsqu’ils effectuent des calculs, c’est-à-dire lorsque
les signaux d’entrée et de sortie des portes logiques changent d’état.

D’autre part les physiciens ne savent pas réaliser d’interrupteur
idéal (à des températures de fonctionnement raisonnables), ainsi le
niveau électrique en sortie n’atteint pas exactement Vss (lorsque la
sortie est au 0 logique). Il est alors difficile de garantir la bonne ou-
verture des interrupteurs des portes situées en aval de la porte à
l’état 0.

L’objectif de la section suivante est de s’appuyer sur les compo-
sants « réalisables » par les « technologues » pour construire la lo-
gique robuste universellement utilisée dans les circuits électroniques
depuis plusieurs décennies : la logique CMOS.

5.2 La logique CMOS

5.2.1 Transistors MOS complémentaires

L’interrupteur commandé en tension mis à disposition par les
technologues est le transistor MOS (acronyme de « Metal Oxyde Se-
miconductor » ). Ce composant exploite la possibilité d’établir un
courant dans un matériau semi-conducteur (le silicium) entre deux
électrodes que nous nommerons la « Source » et le « Drain » du tran-
sistor.

S

G

D

N+ N+

P−

— Canal N

— Courant d’électrons

— Passant si Vgs > VT

Figure 5.6: Transistor nMOS

La zone ou s’établit le courant (le « Canal » du transistor) est située
sous une électrode de commande appelée la « Grille » du transistor.
Le canal est isolé de la grille par une fine couche d’isolant (l’oxyde).
Cette structure verticale Grille/Oxyde/Canal est à l’origine du nom
du transistor. Enfin, le dopage (implantation d’impuretés donnant
ou acceptant des électrons) permet de spécialiser le comportement
du transistor à la fabrication : on peut ainsi créer des courants de
charge négatives (électrons) ou de charges positives (trous).

Dans le cas du transistor nMOS (ou MOS à canal N) , une diffé-
rence de potentiel Vgs suffisamment positive (Vgs > Vt) établie entre
la Grille et la Source permet de faire circuler un courant allant du
Drain vers la Source. La constante Vt est appelée tension de seuil du
transistor. On peut, pour simplifier, considérer le transistor nMOS
comme un interrupteur fermé si (Vgs > Vt) et ouvert dans le cas
contraire.

S

G

D

P+ P+

N−

— Canal P

— Courant de trous

— Passant si Vgs < |VT |
Figure 5.7: Transistor pMOS

Dans le cas du transistor pMOS (ou MOS à canal P) , une diffé-
rence de potentiel Vgs suffisamment négative (Vgs < −|Vt|) établie
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entre la Grille et la Source permet de faire circuler un courant allant
de la Source vers le Drain. La constante Vt est appelée tension de
seuil du transistor. On peut, pour simplifier, considérer le transistor
pMOS comme un interrupteur fermé si (Vgs < −|Vt[) et ouvert dans
le cas contraire.

5.2.2 L’inverseur CMOS
S

D

VG

Figure 5.8: Transistor nMOS, interrup-
teur connecté à la masse

Vdd

D

S

VG

Figure 5.9: Transistor pMOS, interrup-
teur connecté à l’alimentation

Nous allons exploiter les propriétés duales des deux transistors
nMOS et pMOS pour réaliser des fonctions booléennes « efficaces ».

Dans une première étape, nous choisissons une tension d’alimen-
tation Vdd dont la valeur est supérieure à la tension de seuil Vt des
transistors nMOS et pMOS. Dans la pratique, cette tension d’alimen-
tation est 3 à 4 fois plus élevée que la tension de seuil, ce qui garantit
la bonne ouverture ou fermeture des interrupteurs.

Nous spécialisons les transistors nMOS pour réaliser des interrup-
teurs connectés à la masse. Ainsi, en reprenant la convention logique
de la section précédente :

— si Vg, tension de grille du transistor nMOS, est égale à Vss alors
l’interrupteur est ouvert.

— si Vg, tension de grille du transistor nMOS, est égale à Vdd alors
l’interrupteur est fermé.

Nous spécialisons les transistors pMOS pour réaliser des inter-
rupteurs connectés à la tension d’alimentation. Ainsi, en reprenant
la convention logique de la section précédente :

— si Vg, tension de grille du transistor pMOS, est égale à Vss alors
l’interrupteur est fermé.

— si Vg, tension de grille du transistor pMOS, est égale à Vdd alors
l’interrupteur est ouvert.

Vss

Vdd

e y

Figure 5.10: L’inverseur CMOS

Nous pouvons maintenant joindre les deux schémas précédents
pour obtenir le schéma de la figure 5.10). Les deux transistors nMOS
et pMOS sont pilotés par un même signal e. Lorsque Ve est égal
à Vss alors l’interrupteur nMOS est ouvert et l’interrupteur pMOS
est fermé. La tension en sortie est donc Vdd. Inversement lorsque Ve

est égal à Vdd alors l’interrupteur pMOS est ouvert et l’interrupteur
nMOS est fermé. La tension en sortie est donc Vss.

Nous avons bien réalisé la fonction inverseuse, mais dans ce cas
nous avons la garantie qu’il n y a consommation d’énergie qu’au
moment des transitions entre deux états différents de la fonction. A
l’état stable, il n’y a aucun courant permanent entre l’alimentation et
la masse.

5.2.3 Généralisation à une fonction logique complexe

La structure de l’inverseur CMOS peut être généralisée (figure 5.11)
à certaines fonctions logiques à N entrées (e1, e2, ...) et une sortie S.
Un réseau d’interrupteurs nMOS est connecté à la masse du mon-
tage, les grilles des différents transistors sont connectées aux en-
trées ei.
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Par le biais des associations de transistors nMOS montés en série
et en parallèle il est possible de rendre ce réseau « passant » pour
certaines combinaisons des entrées ei et « bloqué » pour les autres
combinaisons des entrées.

Vdd

E {e1, e2, . . .}
S

N

P

Figure 5.11: Logique MOS complémen-
taire

De même, un réseau de transistors pMOS est connecté à l’alimen-
tation du montage, et ce réseau peut lui-même être construit de fa-
çon à être bloqué lorsque le réseau nMOS est passant et réciproque-
ment 3.

3. On peut démontrer qu’il suffit de dis-
poser d’un réseau pMOS « dual » du
réseau nMOS, c’est-à-dire où les as-
semblages en parallèle et en série sont
échangés pour obtenir ce comporte-
ment, cependant, dans certains cas, ce
n’est pas la solution optimale

Ainsi, la sortie S est « électriquement » fixée à Vdd ou Vss quelles
que soient les combinaisons d’entrées : nous avons bien réalisé une
fonction booléenne.

La figure 5.12 présente le schéma de la porte logique CMOS « non-
et à deux entrées » construite en respectant les règles précédentes.
Nous laissons au lecteur le soin de vérifier la valeur de la tension
sur la sortie Out de ce schéma pour les quatre configurations des
tensions sur les entrées A et B.

Vss

Vdd

A

A

B

B

Out

Figure 5.12: La porte CMOS « non-et à
deux entrées »

Cette méthode ne permet de construire que les fonctions boo-
léennes pouvant s’exprimer sous la forme S = ∑ ∏ ei, c’est-à-dire les
fonctions booléennes résultant de l’assemblage de « et » et de « ou »
des entrées ei et dont la sortie est inversée 4.

4. Dans la pratique, seules des fonc-
tions ayant 2 à 6 entrées peuvent être
« raisonnablement » construites ainsi,
au-delà, notre modèle « interrupteur
presque parfait » n’est plus valable.

Nous détaillons, ici, quelques cas de figure :

— S = a + b : réalisable en une seule porte logique

— S = a + b · c : réalisable en une seule porte logique

— S = a + b : réalisable en deux portes logiques (il faut un inverseur
pour obtenir b

— S = a · b + c · d : réalisable en une seule porte logique

— S = a⊕ b réalisable à partir de 3 portes logiques (dont deux
inverseurs)

5.3 Performances de la logique CMOS

5.3.1 Un peu d’histoire

En 1965, Gordon Moore, co-fondateur d’Intel a émis la constata-
tion que la complexité (le nombre de transistors) des circuits à semi-
conducteurs doublait tous les deux ans à coûts constants (coûts de
fabrication). Cette constatation s’accompagnait de la prédiction de la
poursuite de cette tendance. Cette constatation, dénommée depuis
"Loi de Moore", est devenue par la suite « auto-prédictive » , en ce
sens qu’elle est devenue un facteur d’ajustement économique pour
l’ensemble de l’industrie micro-électronique, du fabriquant d’équipe-
ments aux fondeurs de circuits. Plus précisément, les grands acteurs
du domaine, ont ajusté leurs efforts de recherche et développement
ainsi que leurs investissements dans les usines de fabrication pour
« tenir » le rythme imposé par cette prédiction.

En termes économiques, nous sommes dans une situation de « Tech-
nology push » : les fabricants de semi-conducteurs tablent sur une
offre constamment renouvelée pour créer de nouveaux besoins. Les
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analyses simplistes de l’innovation dans le numérique se réfèrent
souvent au « Market pull » (l’innovation tirée par le marché), en ou-
bliant totalement l’impact de cette industrie entièrement tournée vers
la fourniture de composants sans cesse moins chers et plus perfor-
mants.

La loi de Moore a depuis été extrapolée à d’autres aspects des
composants, liés à leurs performances, on trouvera dans la littérature
des choses comme :

— La fréquence de fonctionnement des microprocesseurs double
tous les . . . mois

— La consommation des circuits est divisée par deux tous les . . .
mois

Les fabricants tentent d’améliorer en permanence les « perfor-
mances » de leur technologie, mais qu’entend-on par performances ?

5.3.2 Critères de performance

Le premier critère, conforme à l’énoncé de Gordon Moore est la
surface du circuit intégré. En effet, comme pour tout procédé de
fabrication le rendement de fabrication (le nombre de circuits opéra-
tionnels divisé par le nombre de circuits fabriqués) n’est pas de 100%.
Le procédé de fabrication des circuits intégrés s’accompagne de dé-
fauts (transistors non opérationnels), dont la probabilité d’apparition
croît avec la surface du circuit réalisé. On peut donc tenter de réduire
les coûts de fabrication, en réduisant la taille des transistors.

Le deuxième critère est la vitesse de fonctionnement. Plus le temps
de propagation des portes logique est faible, plus on peut augmenter
la fréquence d’horloge des processeurs et donc plus on augmente la
puissance de calcul. Nous verrons plus loin, qu’ici aussi, la diminu-
tion de la taille des transistors est un critère prépondérant.

Le troisième critère est la consommation. Nous avons déjà vu
que le calcul implique une consommation d’énergie. On désire évi-
demment minimiser cette consommation comme, par exemple, dans
le cas des objets connectés, mais aussi évacuer la chaleur dissipée
comme, par exemple, pour les serveurs dans le « cloud ». Cette fois
encore, la taille des transistors a un impact direct sur l’énergie consom-
mée par une porte logique.

5.3.3 Le transistor MOS : une vision plus précise

Pour tenter de modéliser les performances de la logique CMOS, il
nous faut revenir à un modèle un peu plus précis du transistor MOS,
en intégrant, entre autre, ses caractéristiques géométriques.

La figure 5.13 présente la vue en coupe d’un transistor nMOS.
Dans une technologie donnée, le concepteur de portes logiques peut
utiliser deux paramètres géométriques pour « tailler » le transistor.

N+

L

W
tox

N+

P−

Figure 5.13: Un transistor nMOS de lar-
geur W et de longueur L

Intuitivement, le canal du transistor situé entre la source et le
drain (les deux zones dopées N+) peut être assimilé à un barreau
conducteur : plus le barreau est court (longueur L du canal) et plus
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le barreau est large (largeur W du canal) moins le barreau est résis-
tif. Enfin, la commande du transistor (la grille) étant séparée du canal
par l’oxyde, sera d’autant plus efficace que l’épaisseur de cet oxyde
sera faible.

Tout en conservant le modèle interrupteur des paragraphes pré-
cédents, nous pouvons étudier un modèle simple du courant maxi-
mal traversant le transistor utilisé pour réaliser des portes en logique
CMOS, lorsqu’il est « passant » :

IDSmax = Kn · (Vdd −VTN)
2

avec
Kn =

1
2

µ0N · C′ox
WN
LN

Dans ces équations, nous observons :

— Que le courant croît comme le carré de la différence entre la ten-
sion d’alimentation Vdd et la tension de seuil VTN du transistor

— Que le courant croît avec la mobilité µ0N des porteurs dans le
matériau

— Que le courant croît avec la capacité surfacique de l’oxyde de
grille C′ox, c’est-a-dire avec la diminution de l’épaisseur de cet
oxyde.

— Enfin, que les géométries W et L ont bien l’impact prédit précé-
demment.

De plus, nous avons vu que la grille des transistors est utilisée
pour connecter les entrées des portes en logique CMOS. Cette grille,
séparée du canal par l’oxyde de grille, forme une capacité (condensa-
teur) parasite avec ce canal. Cette capacité est tout simplement pro-
portionnelle à la surface du canal. Nous pouvons modéliser cette
capacité par la formule :

Cox = C′oxWN · LN

5.3.4 Temps de calcul d’une porte en logique CMOS

Nous avons déjà vu dans le chapitre 1 que l’on pouvait s’ap-
puyer sur le temps de propagation des portes logiques pour estimer
la vitesse de fonctionnement maximale d’opérateurs de traitements.
Nous allons, ici, élaborer un modèle de ce temps de propagation en
nous appuyant sur notre connaissance des caractéristiques du tran-
sistor MOS et en nous limitant à l’exemple simple de l’inverseur
CMOS.

La sortie d’un inverseur est physiquement reliée par des fils de
connexions métalliques et à des entrées de portes logiques situées
en aval. Ces fils de connexions forment des capacités parasites par
rapport au substrat de silicium du circuit. Nous avons vu, d’autre
part, que les entrées des portes logiques sont connectées à des grilles
de transistors qui forment elles aussi des capacités parasites.

Toutes ces capacités peuvent être assimilées à une unique capacité
parasite Cpar, connectée à la sortie de notre inverseur.
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À chaque transition montante de l’inverseur le transistor pMOS
fournit le courant nécessaire à la charge de cette capacité parasite Vss

à Vdd.
À chaque transition descendante de l’inverseur le transistor nMOS

fournit le courant nécessaire à la décharge de cette capacité parasite
Vdd à Vss.

Le temps de calcul d’une porte logique est directement lié au
temps nécessaire à ces charges et décharges.

INV

E
S

Cpar

Figure 5.14: Décharge d’une capacité
parasite pour une transition descen-
dante de l’inverseur CMOS

S

Vdd

ICpar

Cpar

Figure 5.15: Consommation pour une
transition montante de l’inverseur

Considérons la figure 5.14. Le signal d’entrée E passe brutalement
de Vss à Vdd. Au début de la transition, le transistor pMOS est passant
et le transistor nMOS est bloqué : la sortie S vaut Vdd. Pendant la
transition, le transistor pMOS se bloque et le transistor nMOS devient
passant. Ce dernier fourni le courant pour décharger la capacité Cpar

et établir la sortie S à Vss.
Nous pouvons exploiter la relation entre le courant et la tension

aux bornes de la capacité parasite :

ICpar = Cpar
dVCpar

dt
Le courant de décharge peut être approximativement considéré

comme constant et identique à celui du transistor nMOS :

ICpar ≈ IDSmax = Kn · (Vdd −Vtn)
2

Le temps de calcul de l’inverseur, c’est-à-dire le temps de décharge
de Vdd à Vss, est donc :

tcalc = Cpar
∆V

IDSmax
= Cpar

Vdd
Kn · (Vdd −Vtn)2

Nous disposons donc d’un modèle simple du temps de calcul de
l’inverseur dans lequel apparait l’influence de la capacité parasite
chargée (Cpar), de la tension d’alimentation (Vdd) de la logique 5, et 5. On pourrait être tenté d’augmenter

la tension d’alimentation de la logique
pour augmenter sa vitesse de calcul.
C’est d’ailleurs ce qui est fait pour les
PC dédiés aux jeux pour lesquels on
pratique l’ « Overclocking ». Cependant
cela nécessite de maîtriser parfaitement
le refroidissement des processeurs ce
que nous comprendrons dans le para-
graphe traitant de la consommation

enfin de la technologie et des dimensions du transistor (Kn et Vtn).

5.3.5 Consommation d’une porte en logique CMOS

Pendant une transition montante de la sortie de l’inverseur (fi-
gure 5.15), la source d’alimentation fournit le courant traversant le
transistor pMOS servant à la charge de la capacité parasite. L’énergie
fournie par l’alimentation constante Vdd est :

EVdd = Cpar

∫ Vdd

0
VdddVs = CparV2

dd

L’énergie stockée dans la capacité Cpar est :

ECpar = Cpar

∫ Vdd

0
VsdVs = Cpar

V2
dd
2

La moitié de l’énergie fournie par l’alimentation a été dissipée par
effet Joule dans le transistor pMOS, l’autre moitié a été stockée dans
la capacité parasite.

Pendant une transition descendante de la sortie de l’inverseur (fi-
gure 5.16), l’énergie stockée dans la capacité parasite est restituée et
dissipée par effet Joule dans le transistor nMOS.
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En moyenne, on peut considérer que Cpar
V2

dd
2 est dissipée (ou consom-

mée) à chaque transition de la sortie de la porte logique.

Cpar

Vdd

-ICpar

S

Figure 5.16: Consommation pour une
transition descendante de l’inverseur

5.3.6 Consommation d’un circuit intégré en logique synchrone CMOS

Nous pouvons extrapoler le calcul précédent à un circuit complet.
Pour cela, nous nous intéresserons plutôt à la puissance consommée
qu’à l’énergie. Nous considérons un circuit réalisé en logique syn-
chrone :

Soit Fh la fréquence de fonctionnement du circuit.
À chaque cycle d’horloge, un nouveau calcul sera effectué, cer-

taines portes logiques changeront d’état à l’occasion de ce calcul,
d’autres ne changeront pas d’état. Pour un circuit donné on peut es-
timer la probabilité de transition des portes à chaque cycle d’horloge.
L’ordre de grandeur communément admis de cette probabilité est
d’environ 0, 3 6, bien que cela soit très variable d’un circuit à l’autre. 6. Une probabilité de 1 correspond à une

horloge de fréquence Fh/2. Une hor-
loge de fréquence Fh/4 correspond à
une probabilité de 0, 5. Quand il y a cal-
cul, c’est-à-dire traitement de l’informa-
tion, cette probabilité est forcément in-
férieure...

Soit Tact la probabilité de transition des portes du circuit à chaque
front d’horloge.

Soit enfin Ctotal la capacité parasite totale du circuit.
La puissance consommée (donc dissipée) par le circuit est égale au

produit du nombre de transitions par seconde des portes par l’éner-
gie consommée par ces mêmes portes. D’où la formule évaluant la
consommation du circuit :

Pcircuit ≈ TactFhCtotalV2
dd

Nous constatons donc que la consommation du circuit est direc-
tement proportionnelle à sa fréquence de fonctionnement et croît
comme le carré de sa tension d’alimentation 7. 7. En ce qui concerne l’« Overclocking »

déjà évoqué dans une note précédente,
nous percevons la difficulté : si nous
augmentons la tension d’alimentation
pour augmenter la fréquence de fonc-
tionnement, la consommation doit su-
bir à la fois une augmentation due à la
fréquence et une augmentation due à la
tension d’alimentation. C’est ce qui ex-
plique l’usage de systèmes de refroidis-
sement monstrueux dans les PC pour
joueurs. . .

5.4 Évolutions technologiques et lois de Moore

Nous avons déjà évoqué les lois de Moore dans ce chapitre, avec
notamment cette course à la réduction des dimensions des transis-
tors.

Les fabricants de circuits intégrés travaillent en utilisant la no-
tion de « génération technologique » : ils visent une réduction d’un
facteur 2 des surfaces des circuits intégrés à chaque nouvelle géné-
ration. Cela nécessite à chaque génération des investissements colos-
saux d’abord en recherche et développement et ensuite en construc-
tion de nouvelles usines.

Une génération technologique est caractérisée par la longueur de
grille L caractéristique des transistors utilisés. Nous parlons ainsi de
technologies 90 nm, 65 nm, 40 nm, 28 nm. . .

Nous allons utiliser les formules de performance calculées précé-
demment pour évaluer l’impact de la réduction des dimensions sur
ces performances.

Attention, les hypothèses que nous allons faire sont simplifica-
trices et ne correspondent pas à la réalité d’aujourd’hui. Cependant
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elles permettent de bien comprendre les conséquences qualitatives
de ces évolutions.

Pour réduire la surface d’un facteur 2, nous utilisons un facteur
β =
√

2 de la façon suivante :

— division par β de la largeur W et la longueur L des transistors 8
8. d’où la réduction en surface d’un fac-
teur β2

— division par β de l’épaisseur d’oxyde de grille TOX
9

9. pour mieux piloter le courant du tran-
sistor— division par β de la tension d’alimentation Vdd des circuits 10

10. pour ne pas "claquer" les transistors à
plus faible épaisseur de grille— division par β de la tension de seuil VT des transistors 11

11. pour garder de la marge par rapport
à Vdd

5.4.1 Évolution du temps de calcul en fonction de β

En reprenant l’expression du temps de calcul de l’inverseur et en
exprimant chaque paramètre en fonction de β, nous avons :

tcalc(β) = Cpar(β)
Vdd/β

Kn(β) · ((Vdd −Vtn)/β)2

= Cpar(β)
β ·Vdd

Kn(β) · (Vdd −Vtn)2

Nous devons donc évaluer l’évolution de la capacité parasite Cpar.
Nous supposons qu’elle provient essentiellement des capacités de
grilles des transistors, donc interviennent les dimensions et l’épais-
seur de l’oxyde :

Cpar(β) = (W/β)(L/β)(βC′ox) =
Cpar

β

Nous devons de même évaluer l’évolution du paramètre Kn :

Kn(β) =
1
2

µ0N · (βC′ox)
WN/β

LN/β
= Kn · β

D’où l’expression finale du temps de calcul :

tcalc(β) = (Cpar/β)
β ·Vdd

Kn · β · (Vdd −Vtn)2 =
tcalc

β

La vitesse de fonctionnement de la logique (donc la fréquence
maximale pour un circuit synchrone) est donc multipliée par β.

5.4.2 Évolution de la consommation en fonction de β

Reprenons l’expression de l’énergie fournie à la porte par l’ali-
mentation :

Eporte(β) = (
Cpar

β
)(

Vdd
β

)2 =
Eporte

β3

L’énergie consommée par chaque porte au moment des transi-
tions est donc diminuée d’un facteur β3 !

5.4.3 Changer de génération technologique pour diminuer les coûts
et la consommation

Une première stratégie d’exploitation du changement de techno-
logie consiste à ne pas exploiter le gain théorique en vitesse pour
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se concentrer essentiellement sur les coûts. La nouvelle génération
technologique permet de créer des circuits de surface β2 plus petits
(d’où le gain en coût), ayant les mêmes performances que la géné-
ration précédente et ayant une consommation globale qui diminue.
En effet, si nous reprenons l’expression de la puissance consommée
globalement par le circuit, nous avons :

Pcircuit(β) = Tact · Fh
Ecircuit

β3 =
Pcircuit

β3

Cette stratégie est particulièrement intéressante dans les systèmes
embarqués. Elle peut être utilisée pour gérer des transitions de pro-
duits « haut de gamme » à faible diffusion vers des produits « bas de
gamme » à forte diffusion. L’exemple le plus frappant est celui des
smartphones pour lesquels les produits à faible coût intègrent petit
à petit les fonctionnalités des produits plus chers.

On peut aussi mettre à profit la diminution de consommation
pour créer de nouveaux produits avec de nouvelles utilisations, l’exemple
majeur étant ici l’apparition des objets connectés.

5.4.4 Changer de génération technologique pour augmenter la puis-
sance de calcul à coût constant

L’idée est d’une part d’utiliser le gain potentiel en vitesse (un fac-
teur β) tout en gardant un coût de fabrication des circuits. La surface
du circuit ne diminuant pas nous multiplions donc par β2 le nombre
de transistors du circuit, donc sa complexité.

La consommation du circuit ne change pas 12 : 12. La capacité des transistors est divisée
par β mais le nombre de transistors est
multiplié par β2

Pcircuit(β) ≈ Tact(βFh)(β2(Ctotal/β))(Vdd/β)2 = Pcircuit

Nous pouvons donc réaliser un circuit β fois plus rapide, β2 fois
plus complexe, ayant la même consommation que le circuit de la
génération précédente et au même coût de fabrication. Cette straté-
gie est particulièrement intéressante pour les processeurs de stations
de travail « Haut de gamme » ou des serveurs de calcul, puisque la
puissance totale de calcul de ces processeurs bénéficie à la fois de la
montée en fréquence et de l’augmentation de parallélisme.
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5.4.5 Changer de génération technologique : la fin de la loi de Moore ?

Dans la pratique, les vitesses de fonctionnement maximales stagnent depuis le début des années 2000 (3
à 5 Ghz). Les processeurs sont limités en vitesse à cause de la résistance et des capacités des intercon-
nexions entre portes dont l’impact est de plus en plus important. Pour compenser cela, les architectes
utilisent une stratégie de parallélisme (processeurs multi-coeurs). Mais ils sont cette fois limités par la
consommation, ainsi les performances des processeurs pour serveurs "progressent" mais à un rythme
relativement modéré.

On ne peut diminuer sans cesse la tension d’alimentation sans s’éloigner du modèle d’interrupteur
idéal. Les circuits ont des courants de fuite de moins en moins négligeables ce qui est un problème pour
les applications embarquées avec des modes de veille.

Les technologues doivent jongler avec des procédés de fabrication de plus en plus complexes pour
continuer à suivre la loi de Moore. À chaque nouvelle génération il faut inventer de nouvelles structures
physiques dont on est de moins en moins sûr de la faisabilité. Il faut d’autre part créer des équipements
de fabrication aptes à gérer des dimensions physiques de plus en plus petites, une fois de plus ces
équipements sont à la limite de ce que l’on sait réaliser.

On a plusieurs fois prédit la fin de la loi de Moore pour des raisons "scientifiques" dues à la physique du
transistor mais il semble, en 2015, que le plus grave problème soit économique, en tout cas la controverse
est clairement présente.

Figure 5.17: La fin de la loi de Moore ?

La figure 5.17 présente une étude de l’évolution des coûts des
technologies les plus récentes et à venir. La figure indique, pour
chaque génération technologique, l’année d’apparition, la longueur
de grille 13 des transistors et le nombre de transistors achetables par 13. Attention, la dénomination des tech-

nologies par référence à la longueur L
de grille des transistors n’a plus beau-
coup de sens depuis la technologie
65 nm. Les fondeurs utilisent une lon-
gueur équivalente correspondant à la
racine carrée du rapport de surface des
circuits en passant d’une technologie à
la suivante. . .

dollar. Cette étude tend à montrer que les coûts n’évoluent plus de-
puis 2012. C’est-à-dire que le seul gain des nouvelles technologies
concerne les performances en vitesse et en consommation. Ce genre
de projection peut avoir un impact sérieux sur les décisions d’inves-
tissement dans la micro-électronique et en conséquence sur l’évolu-
tion de l’industrie du numérique au sens large.

Cette projection est contestée par des acteurs majeurs comme la
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Figure 5.18: Pour Intel, la loi de Moore
continue

société Intel. Ainsi le document présenté en figure 5.18, extrait d’une
présentation de la société Intel, faite en novembre 2014 et à destina-
tion d’investisseurs, présente une diminution des coûts se poursui-
vant au moins sur les 4 à 5 années à venir.

Toujours est-il que nous ne connaissons pas, à l’heure actuelle, les
solutions technologiques qui permettrons de poursuivre cette évolu-
tion dans les dix années à venir.
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A
SystemVerilog

SystemVerilog est un langage de description de matériel ou HDL (Hardware Description Language). Il per-
met de décrire des circuits de deux façons :

Description d’une structure : on décrit de quoi est composé un circuit en termes de blocs et comment ces
blocs sont reliés entre eux. Les blocs peuvent aussi à leur tour contenir des blocs plus petits jusqu’aux
portes élémentaires.

Description d’un comportement : plutôt que de décrire un circuit en termes de sous-blocs, on peut décrire
son comportement (ce qu’il fait, sa fonctionnalité).

La syntaxe de SystemVerilog est proche de celle de C, cependant il faut faire attention au fait que :

— Un programme en C ou en Java est une succession d’ordres (instructions) qu’un processeur exécute
successivement les uns après les autres, alors qu’une description SystemVerilog décrit le comportement
d’un circuit composé de plusieurs entités fonctionnant simultanément en parallèle

— SystemVerilog sert à décrire des opérations entre des signaux (au sens physique du terme) et non pas
des variables (au sens informatique du terme)

A.1 Quelques règles générales de syntaxe

L’extension des fichiers SystemVerilog est .sv. Ce sont de simples
fichiers textes, vous pouvez donc utiliser l’éditeur de texte de votre
choix.

Les commentaires sont comme en C :

— // pour commenter une ligne

— /* .... */ pour commenter un bloc

Le ; joue le rôle de séparateur.
Les blocs sont délimités par les mots clés begin et end. Ils rem-

placent les accolades {} utilisées en C ou en Java.
Il ne faut pas mettre de séparateur ; après les mots-clés end,

endmodule et endcase.

A.2 Les modules

En SystemVerilog, les blocs sont appelés modules. Toute descrip-
tion comportementale ou structurelle doit impérativement être faite
dans un module.

La déclaration d’un module se fait de la façon suivante :
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module nom_du_module ( declaration_des_entrees_sorties );

contenu_du_module

endmodule

Code A.1: Déclaration d’un module

Les signaux d’entrée/sortie sont déclarés dans l’entête de décla-
ration du module. Il s’agit d’une liste de déclarations individuelles
séparées par des virgules.

Chaque déclaration individuelle doit comprendre :

— La déclaration du type d’entrée-sortie : input pour une entrée,
output pour une sortie.

— Le type de signal : nous utiliseront exclusivement le type logic.

— La largeur éventuelle du signal : la notation [j:i] indique un
vecteur de (j-i+1) bits indexés de i à j.

Attention : i est le bit de poids faible et j est le bit de poids fort.

(

input logic clk, // Un signal entrant de largeur 1 bit appelé "clk"

output logic aaa, // Un signal sortant de largeur 1 bit appelé "aaa"

input logic [7:0] d // Un bus entrant de largeur 8 bits appelé "d"

);

Code A.2: Exemple de déclaration
d’entrées/sortiesLes modules contiennent des signaux internes (qui ne sont ni des

entrées ni des sorties). Ces signaux internes peuvent être déclarés de
façon similaire aux entrées/sorties.

...

logic mon_signal ; // Un signal de largeur 1 bit appelé "mon_signal"

logic [3:0] mon_autre_signal ; // Un bus de largeur 4 bits appelé "mon_autre_signal"

...

Code A.3: Exemple de déclaration de
signaux internes
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A.3 Contenu des modules : Structures et instanciation de mo-
dules

La figure A.1 présente l’exemple d’un module M_a contenant deux
instances Inst1 et Inst2 d’un même module M_b.

B

A
Y

M_b

B

A
Y

M_b

M_a

Z
Y

X Inst2

Inst1

S1

Figure A.1: Exemple d’instanciation de
sous-modules

Remarquez le signal nommé S1 qui connecte la sortie Y d’un sous-
module à l’entrée B d’un autre sous-module.

Le code correspondant à cette description est le suivant :

module M_a( input logic X,

input logic Y,

output logic Z );

logic S1; // Déclaration du signal S1 interne à M_a

M_b Inst1(.A(X),.B(Y),.Y(S1)) ; // Instance Inst1 de M_b

M_b Inst2(.A(S1),.B(Y),.Y(Z)) ; // Instance Inst2 de M_b

endmodule

Code A.4: Exemple d’instanciation de
sous-modules

— La déclaration d’un signal interne à un module ce fait en précisant :

— Le type de signal ; pour nous exclusivement logic

— La largeur éventuelle du signal : la notation [i:j] indique un vecteur de i-j+1 bits indexés de j à
i

— Le nom du signal

— L’instanciation d’un sous-module ce fait en précisant :

— Le nom du sous-module

— Le nom de l’instance particulière du sous-module

— Entre parenthèse, une liste de connexions des entrées/sorties.
La syntaxe pour chaque Entrée/Sortie est :
.nom_de_l’entree_sortie_du_sous_module ( nom_du_signal_du_module )
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Exemples de connexions :

logic [1:0]C ;

logic [1:0]D ;

xxx inst_xxx(.E(C),... ); // Le bus C est relié à l’entrée E de xxx.

// Ils ont le même nombre de bits.

xxx inst_xxx(.F(C[0]),... ); // Le bit 0 de C est connecté à l’E/S F de xxx.

// (F doit donc normalement avoir une largeur de 1 bit)

xxx inst_xxx(.G({C,D}),... ); // Les signaux C et D sont regroupés en un vecteur

// de largeur 4 bits, connecté à l’E/S G de xxx.

// (G doit donc ici normalement avoir une largeur de 4 bits)

...

A.4 Contenu des modules : Description d’un comportement
combinatoire

A.4.1 Logique combinatoire

On décrit un comportement en spécifiant les valeurs affectées aux
sorties ou à des signaux internes d’un module. Pour l’instant nous
nous limitons à la description de comportements de type calcul com-
binatoire.

La syntaxe générale utilisée est la suivante :

always@(*)

nom_du_signal <= fonction_combinatoire ;

Code A.5: Forme générale pour décrire
de la logique combinatoire

Il faut interpréter cette syntaxe comme :

— Le signal nom_du_signal est la sortie de la fonction fonction_combinatoire.

— À chaque fois qu’une entrée de cette fonction est modifiée, le
signal nom_du_signal est remis à jour.

Voici quelques exemples de description de calculs combinatoires.
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logic a, b, c ; // Déclaration de 3 signaux internes sur 1 bit

logic [1:0] Z ; // Déclaration d’un signal interne sur 2 bits

always@(*) a <= b & c ; // Il y a une porte logique AND dont les entrées

// sont b et c et dont la sortie est a

always@(*) a <= c ; // le signal a est identique au signal c (on a relié les fils)

// Le signale a est défini par une fonction tabulée de Z

always@(*)

case (Z)

2’b00 : a <= 1’b1;

2’b01 : a <= 1’b0;

2’b10 : a <= 1’b0;

2’b11 : a <= 1’b1;

endcase

// Le signal a est défini par une

always@(*) // fonction complexe de Z, b c et d...

case (Z)

2’b00 : a <= b ; // cas où Z vaut 0

2’b01 : a <= c & d ; // cas où Z vaut 1

default : a <= d ; // tous les autres cas

endcase

Code A.6: Exemple de comportement
combinatoire

Comme vous le remarquez dans cet exemple, nous vous propo-
sons deux modes de calcul des fonctions combinatoires :

— une expression algébrique directe,

— une expression tabulée grâce à l’usage de la syntaxe case.

Les expressions algébriques peuvent utiliser les opérateurs sui-
vants :

Fonction Symbole

Négation ~

Et &

Ou |

Xor ^

Table A.1: Opérateurs logiques

La syntaxe que nous utiliserons pour le case est celle du bloc de
code A.7.
Attention : lorsque l’on utilise l’expression case il faut veiller à définir
complètement la table de vérité, soit explicitement, soit implicitement
via l’expression default.

Les valeurs indiquées dans le case sont des constantes.
La base 10 est utilisée par défaut. Vous pouvez aussi préciser ex-

plicitement la base utilisée (décimal : ’d, hexadécimal : ’h ou binaire :
’b) ainsi que la taille de la constante de la façon suivante :
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case (signal_de_selection)

valeur_1 : mon_signal <= expression_algebrique_1 ;

valeur_2 : mon_signal <= expression_algebrique_2 ;

...

default : mon_signal <= expression_algebrique_default ;

endcase

Code A.7: Syntaxe du case

25 : ... // constante (par défaut sur 32 bits) valant 25 (en base 10)

8’d25 : ... // constante sur 8 bits valant 25 (en base 10)

3’b101 : ... // constante sur 3 bits valant 101 en base 2 (donc 5 en base 10)

4’ha : ... // constante sur 4 bits valant A en hexadécimal (donc 10 en base 10)

Code A.8: Exemple de constantes

A.4.2 Manipulation des vecteurs (bus)

Les entrées/sorties ainsi que les signaux internes peuvent être des
vecteurs. Il est possible de sélectionner un élément ou une partie
d’un vecteur. Les exemples du bloc A.9 vous montrent quelques cas
d’utilisation.

logic [7:0] A; // Déclaration d’un vecteur de dimension 8

logic [3:0] B, C, D; // Déclaration de 3 vecteurs de dimension 4

logic Z; // Élement sur 1 bit

always@(*) B <= A[7:4]; // Le quartet B est identique à la moitié de poids fort de l’octet A

always@(*) Z <= A[3]; // Z est identique au bit n° 3 de A

always@(*) A <= {C,D}; // A est la concaténation de C et D

// équivalent à A[7:4] <= C et

// A[3:0] <= D

Code A.9: Exemple d’opérations sur les
bus

A.4.3 Arithmétique entière et expressions

En SystemVerilog, les vecteurs de bits de type logic[i:0] sont im-
plicitement interprétés comme des entiers non signés de (i+1) bits.
Vous pouvez donc utiliser les opérateurs arithmétiques standards : +
et - . . .
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SystemVerilog gère automatiquement les opérations d’extension
de taille et de troncature lorsque les opérandes sont de tailles diffé-
rentes :

logic [3:0] a ;

logic [4:0] b ;

logic c ;

logic y[5:0] ;

logic z[3:0] ;

logic t[2:0] ;

always@(*) b <= 5’b01110 ; // b est un entier de 5 bits valant 14.

always@(*) a <= 2’b11 ; // la valeur constante 3 est affectée à l’entier a

// codé sur 4 bits (a vaut 4’b0011)

always@(*) c <= 3 ; // c est un entier de 1 bit,

// on lui affecte la valeur 3 (2’b11),

// après troncature c vaut la valeur 1

// (bit de poids faible de la constante)

always@(*) y <= a + b + c ; // y est codé sur un nombre de bits suffisant

// quelles que soient les valeurs de a, b et c

// (ici y = 18) 010010 = 000011 + 001110 + 000011

always@(*) z <= a + b + c ; // z prends les 4 bits de poids faible du résultat

// (z = 2) 0010 = 0011 + 1110 + 0011

always@(*) {t,z} <= a + b + c ; // z prends les 4 bits de poids faible du résultat : z=2

// voir la remarque 1

// t prends les 3 bits de poids fort du résultat : t=1

always@(*) z <= {4{c}} ^ a ; // Le bus z est identique au bus a si c est égal a 0,

// sinon le bus z est le complémentaire du bus a.

// voir la remarque 2

Code A.10: Exemple d’opérations
arithmétiques

1. Remarquez l’usage des accolades pour concaténer deux bus.

2. Remarquez l’usage des accolades pour générer un bus de 4 bits
identiques.

A.4.4 Nombres signés

Par défaut, les vecteurs de bits déclaré comme logic[i:0] sont
considérés comme des nombres non signés. Les opérations arith-
métiques ainsi que les opérations de comparaison arithmétique les
interpréteront donc comme des nombres non signés.

Pour pouvoir faire de l’arithmétique sur des nombres signés il faut
utiliser le mot-clé signed au moment de la déclaration.
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logic signed [3:0] A,B;

logic c;

always@(*) A <= 4’b1111;

always@(*) B <= 4’b0000;

always@(*) c <= (A>B); // c vaut 0 car A est interprété comme un nombre signé

// ie. A vaut -1 et B vaut 0

Code A.11: Exemple d’utilisation des
nombres signés

A.4.5 Expressions booléennes

En SystemVerilog, un signal de type logic est équivalent à un
booléen :

— vrai est représenté par un 1

— faux est représenté par un 0

Les opérateurs utilisés dans les expressions booléennes sont sem-
blables à ceux du langage C

L’opérateur ternaire <condition> ? <valeur si vrai> : <valeur si faux>

peut être utilisé de la même façon qu’en langage C ou Java.

Fonction Symbole

et &&

ou ||

égalité ==

négation logique !

non égalité !=

inférieur <

. . . ...

Table A.2: Opérateurs logiques boo-
léens

logic a, c ,d ;

logic [7:0] b ;

always@(*) a <= (b == 8) ; // a prend la valeur 1’b1 lorque b est égal à 8

always@(*) a <= (!(b == 8)) && c ; // a prend la valeur 1’b1 lorsque b

// est différent de 8 et que c est égal à 1’b1

always@(*) a <= (b == 8) ? c : d ; // a prend la valeur c si b est égal à 8,

Code A.12: Exemple d’utilisation des
opérateurs logiques
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A.5 Contenu des modules : Description d’un comportement
séquentiel synchrone

La syntaxe always@(*) permet de décrire des fonctions combina-
toires dans le langage SystemVerilog. Dans le jargon des HDL, nous
appelons cela un processus.

Une description HDL d’un matériel est donc un ensemble de pro-
cessus s’exécutant parallèlement. Pour décrire des bascules D et des
registres ou plus généralement tout élément synchrone à une hor-
loge, nous devons disposer d’une syntaxe permettant de déclencher
l’évaluation d’un processus sur des évènements correspondant à la
transition d’un signal. La transition particulière qui nous intéresse ici
est le front de l’horloge.

Pour cela, en SystemVerilog, nous pouvons utiliser le processus
always@(posedge clk).

La syntaxe générale pour décrire de la logique séquentielle syn-
chrone est :

always@( evenement_declenchant )

action_a_realiser ;

Code A.13: Forme générale pour dé-
crire de la logique séquentielle

A.5.1 Une bascule D

Le code suivant décrit une bascule D sensible au front montant
d’une horloge CLK :

logic D,Q ;

...

always@( posedge clk )

Q <= D ;

Code A.14: La description d’une bas-
cule D

Vous pouvez combiner la bascule D avec de la logique combina-
toire à son entrée. Le code suivant décrit une bascule D dont l’entrée
est le calcul du AND entre deux signaux A etB.

logic Q, A, B;

always@( posedge clk )

Q <= A & B;

Vous pouvez décrire un groupe de bascules D (un registre) en
utilisant la notation vectorielle vue précédemment. Le code suivant
décrit un registre 8 bits.
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logic [7:0] Q, D;

always@( posedge clk )

Q <= D;

Pour définir une bascule fonctionnant sur front descendant il suffit
de remplacer le mot-clé posedge par negedge.

A.5.2 Une bascule D avec initialisation asynchrone

Le processus always@(posedge clk) doit aussi pouvoir être dé-
clenché par le signal d’initialisation ou de remise à zéro. De plus ce
signal doit être prioritaire sur l’horloge.

La syntaxe suivante permet de décrire une bascule D avec une
initialisation asynchrone active dès le passage à l’état bas d’un signal
init et dont l’action est de mettre à 0 la sortie de la bascule.

logic Q, D, init;

always@( posedge clk or negedge init )

if ( ~init )

Q <= 0;

else

Q <= D;

Code A.15: Bascule D avec remise à
zéro asynchrone

Vous pouvez interpréter cette syntaxe de la façon suivante :

— S’il y a un évènement (front montant) sur l’horloge, ou un évè-
nement sur init (passage à l’état bas) alors il faut réévaluer le
contenu de la bascule D.

— S’il faut réévaluer et que init == 0 on passe la sortie de la bas-
cule à 0.

— S’il faut réévaluer et que init == 1 alors c’est le front montant
d’horloge qui a déclenché le processus et donc Q reçoit D.

Vous êtes évidemment libres de choisir :

— l’état actif de l’initialisation :

— posedge pour un signal actif à l’état haut (1), associé au test
if(init)

— negedge pour un signal actif à l’état bas (0), associé au test
if(~init)

— la valeur initiale : 0 ou 1
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A.6 Généralisation des processus always

Jusqu’à maintenant, vous n’avez décrit que des processus (always)
n’ayant qu’une seule action à réaliser. Il est possible de regrouper
plusieurs actions d’un processus dans un bloc.

La syntaxe est la suivante :

begin

premiere_action ;

deuxieme_action ;

...

end

logic [7:0] Q;

logic [4:0] D;

...

always@( posedge clk )

begin

Q[7:4] <= Q[3:0];

Q[3:0] <= D;

end

Code A.16: Exemple de bloc dans un
processus always

Les mots clés begin et end jouent le rôle des accolades ({ }) dans
des langages comme le C ou le Java.

Les affectations d’un même bloc sont effectuées en parallèle. Dans
les deux blocs suivant sont donc équivalents.

always@( posedge clk )

begin

b <= a;

c <= b;

end

always@( posedge clk )

begin

c <= b;

b <= a;

end
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A.7 Codage des états des automates finis

A.7.1 Définition de types énumérés pour décrire des états

SystemVerilog supporte la définition de signaux de type énuméré
de la façon suivante :

// sig est un signal pouvant prendre 7 valeurs :

// "SWAIT", "S1", "S2", "S3", "S4", "S5" ou "S6".

enum logic[2:0] {SWAIT, S1, S2, S3, S4, S5, S6} sig;

// On peut alors écrire les choses suivantes :

always@(*)

sig <= S1;

enum logic {V1, V2} sig1, sig2; // sig1 et sig2 sont deux signaux

//pouvant prendre 2 valeurs "V1" ou "V2".

// On peut alors écrire :

always@(*)

if (sig1 == sig2)

sig1 <= V2;

else

...

Code A.17: Exemple de déclaration
d’un type énuméré

— Par défaut, les valeurs énumérées correspondent aux codes 0, 1,
2, 3 . . . en partant de la première valeur.

— La taille nécessaire au codage des différentes valeurs est définie
dans la définition du type.

A.7.2 Codage de l’évolution d’un automate fini.

L’usage de la syntaxe case permet de traduire facilement la table
d’évolution des états. Pour cela vous pouvez regrouper dans un même
vecteur l’ensemble des signaux d’entrée et l’état courant de manière
à définir la table sous la forme :

always@(*)

case ({etat_courant, entree_1, entree_2})

{WAIT,1’b0, 1’b1} : next_state <= S1;

{S1, 1’b1, 1’b1} : next_state <= S2;

...

default : next_state <= current_state;

endcase

Code A.18: Exemple de transition
d’états
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A.7.3 Extension de l’usage du case : le casez

Il peut parfois être long et fastidieux de donner explicitement tous
les cas. Lorsque certains signaux ne sont pas utiles dans les équations
de transition, il est possible de les représenter par un “?”. Dans ce
cas le mot-clé case doit être remplacé par casez.

always@(*)

casez ({etat_courant, entree_1, entree_2})

{WAIT,1’b0, 1’b1} : next_state <= S1;

{S1, 1’b1, 1’b?} : next_state <= S2;

...

default : next_state <= current_state;

endcase

Code A.19: Exemple d’utilisation du
casez

Dans l’exemple précédent, on passe de l’état S1 à l’état S2 indé-
pendamment de la valeur de entree_2.





B
Sujets de travaux dirigés

Ce chapitre, comprend les sujets des trois séances de travaux dirigés du module ELECINF102.

— Le TD1 nécessite la compréhension des chapitres 1 (page 5) et 2 (page 25) ainsi que des annexes A.1 (page 87)
à A.5 (page 95).

— Le TD2 nécessite la compréhension des chapitres 1 (page 5) à 2 (page 25) ainsi que des annexes A.1 (page 87) à
A.5 (page 95).

— Le TD3 nécessite la compression des chapitres 1 (page 5) à 3 (page 41) ainsi que de l’annexe A (page 87) en
entier.

B.1 TD1 : Logique séquentielle synchrone

B.1.1 Bascule D avec enable

— Nous voulons construire une bascule D munie d’un signal reset, synchrone actif à l’état haut

— Cette bascule sera munie d’un signal supplémentaire enable

— Si le signal enable vaut 1, la bascule fonctionne normalement.

— Si le signal enable vaut 0, la bascule est gelée, la sortie Q garde sa valeur même après un front montant
de l’horloge.

1. Faites un schéma a base de portes simples et d’une bascule D.

2. Ecrivez le code SystemVerilog équivalent

B.1.2 Parallélisation

— Nous recevons, de manière synchrone, une séquence de données data_in codées sur 1 bit.

— À chaque cycle d’horloge un signal en_in indique si le bit data_in est une donnée valide.

— Nous voulons transformer cette séquence en séquences de données data_out de 4 bits, accompagnée
d’un signal en_out indiquant si la donnée data_out est valide.

1. Réalisez un chronogramme montrant un exemple de transmission.

2. Déterminez le ou les signaux suplémentaires nécessaires au fonctionnement du dispositif.

3. Déterminez les éléments logiques nécessaires à la réalisation du dispositif.

4. Faites un schéma.

5. Ecrivez le code SystemVerilog équivalent.
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B.1.3 Sérialisation

— Nous recevons, de manière synchrone, une séquence de données data_in codées sur 4 bits.

— À chaque cycle d’horloge un signal en_in indique si la donnée data_in est une donnée valide.

— Transformer cette séquence en séquences de données data_out de 1 bit, accompagnée d’un signal
en_out indiquant si la donnée data_out est valide.

1. Déterminez les conditions de bon fonctionnement du dispositif (oubliées dans l’énoncé).

2. Réalisez un chronogramme montrant un exemple de transmission.

3. Déterminez le ou les signaux suplémentaires nécessaires au fonctionnement du dispositif.

4. Déterminez les éléments logiques nécessaires à la réalisation du dispositif.

5. Faites un schéma.

6. Ecrivez le code SystemVerilog équivalent.

B.1.4 Détecteur de front montant

L’horloge, signal global prédéfini, est l’unique signal pouvant être utilisé comme entrée de synchroni-
sation sur une bascule. Il arrive cependant de devoir détecter le passage de 0 à 1 ou de 1 à 0 d’un signal
synchrone d’un cycle d’horloge au suivant.

A chaque étape, construire un schéma, puis un code SystemVerilog.

1. Comment peut-on faire pour détecter d’un cycle à l’autre de l’horloge, qu’un signal est passé de l’état
0 à l’état 1 ?

2. Si le signal entrant n’est pas synchrone de l’horloge, comment garantir que le signal généré dure
exactement un cycle ?

3. Comment modifier le montage pour détecter indifféremment un changement d’état de 0 à 1 ou de 1 à
0 ?

4. À quoi peut servir ce genre de dispositif ?

B.1.5 Filtrage à moyenne glissante

Nous recevons une séquence de données codées sur 8 bits.

1. Réalisez un filtre calculant la somme des 4 derniers échantillons reçus.

2. Réalisez un filtre calculant la moyenne des 4 derniers échantillons reçus.

3. Optimisez la structure pour limiter le nombre d’additionneurs nécessaires à moins de 3.
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B.2 TD2 : Représentation des nombres, opérateurs de calcul séquentiels et combinatoires

B.2.1 Un multiplieur de nombres représentés en virgule fixe

Nous disposons d’un module de calcul Multiplieur calculant le produit P de deux nombres A et B.
Les nombres A et B sont deux entiers signés codés sur 8 bits ;

Question 1 : Déterminez les valeurs minimales et maximales pouvant être atteintes par A et B.

Question 2 : Déterminez les valeurs minimales et maximales pouvant être atteintes par P. En déduire le
nombre de bits nécessaires au codage de P.

Nous voulons utiliser ce module pour traiter une représentation en virgule fixe de nombres réels. Pour
cela les nombres A et B seront interprétés de la façon suivante :

— Les 4 bits de poids fort représentent la partie entière du nombre.

— Les 4 bits de poids faible représentent la partie fractionnaire du nombre.

— Nous nommerons cette représentation FIX4.4

Question 3 : Déterminez sous la forme de fraction rationnelle les valeurs maximales et minimales pouvant
être atteintes par A et B.

Question 4 : Faut-il modifier le multiplieur pour calculer la multiplication ?

Question 5 : Où se situe la virgule dans le résultat P ?

Nous voulons coder le résultat en représentation FIX4.4, cela nécessite de tronquer la sortie P.
Question 6 : Quels bits de P devons nous conserver ?

Nous voulons mettre en place un dispositif de saturation si le nombre P n’est pas représentable en
FIX4.4.
Question 7 : Déterminez une condition simple permettant de détecter un dépassement de capacité sur
un nombre positif, et permettant de choisir la valeur maximale atteignable dans ce cas.

Question 8 : Déterminez une condition simple permettant de détecter un dépassement de capacité sur
un nombre négatif, et permettant de choisir la valeur minimale dans ce cas.
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B.2.2 Architecture de multiplieur combinatoire

Nous voulons construire un module de calcul Multiplieur calculant le produit P de deux nombres A
et B. Les nombres A et B sont deux entiers non signés codés sur 4 bits. Le multiolieur sera une structure
de traitement combinatoire.

Question 1 : En utisant les expressions analytiques A = ∑3
i=0 Ai.2i et B = ∑3

i=0 Bi.2i exprimez le résultat
P sous la forme de deux sommes imbriquées.

Question 2 : Posez le calcul de la multiplication de A par B comme vous l’avez appris à l’école primaire
en base 10 et en utilisant les produits partiels exprimés dans la question 1

Question 3 : Quelle fonction logique simple permet de calculer chaque produit partiel ?

Nous supposons que nous disposons des portes logiques suivantes :

— additioneur 1 bit : {cout, s} <= a + b + Cin

— fonctions logiques élémentataires à 2 entrées (et, ou, inverseur,...)

Question 4 : Faites le schéma d’une architecture de traitement combinatoire réalisant la multiplication en
utilisant ces portes logiques.

Question 5 : En supposant que le temps de calcul de chacune des portes logiques est de 1 (dans une
unité arbitraire), calculez le temps de calcul du multiplieur.

Question 6 : Généralisez le précédent résultat pour un multiplieur NxN.

B.2.3 Architecture de multiplieur séquentiel

Nous voulons maintenant calculer la multiplication de manière itérative et séquentielle. Un code Sys-
temVerilog est proposé (voir B.1)

Question 1 : Etudiez le code proposé, et tentez d’en comprendre le principe.

Question 2 : Complétez le chronogramme suivant.

clk

A X 5

B X 6

valid_in

cmpt

ena

somme

P

valid_out

Question 3 : Quel est le rôle des signaux valid_in et valid_out ?

Question 4 : Faites un schéma de la structure de calcul utilisée.

Question 5 : Déterminez approximativement le temps de calcul de la structure pour un multiplieur NxN.
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module multiplieur2( input logic [3:0] A,

input logic [3:0] B,

output logic [7:0] P ,

input logic valid_in,

output logic valid_out,

input logic clk) ;

logic [1:0] cmpt ;

logic ena;

logic [4:0] somme ;

always @(*) somme <= P[7:4] + (B[cmpt] ? A : 4’d0) ;

always @(posedge clk)

if(valid_in) begin

P <= 0 ;

cmpt <= 0 ;

ena <= 1 ;

valid_out <= 1’b0 ;

end else begin

P <= {somme,P[3:1]} ;

valid_out <= 1’b0;

if (ena) begin

cmpt <= cmpt + 1 ;

if(cmpt == 3) begin

ena <= 1’b0 ;

valid_out <= 1’b1;

end

end

end

endmodule

Code B.1: Code SystemVerilog d’un
multiplieur itératif
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B.3 TD3 : Automates matériels

B.3.1 Qu’est-ce qu’un bus de communication ?

Lorsque, au sein d’un système complexe, plusieurs dispositifs électroniques doivent communiquer
entre eux on peut imaginer de relier chaque élément à tous les autres. Cette situation, illustrée par la
figure B.1, est probablement la première qui vient à l’esprit. C’est aussi la plus puissante car elle permet
un nombre très important de communications simultanées.

Figure B.1: Liaisons point à point

Malheureusement elle est aussi très coûteuse car le nombre de connexions nécessaires est très impor-
tant. Il suffit d’imaginer pour s’en convaincre que les arcs du schéma ci-dessus véhiculent des informations
codées sur 32 bits. En outre elle n’offre pas une grande flexibilité car il n’est pas possible d’ajouter des
éléments à notre réseau (le nombre d’entrées et de sorties de chaque élément est fixé à la construction). Ce
système n’est pas très plug and play. C’est dommage car le plug and play est justement très à la mode. Une
autre solution, plus raisonnable et aussi plus courante, est le bus central comme illustré dans la figure B.2

Bus central

Figure B.2: Bus central

Les possibilités d’échanges sont limitées mais chaque élément peut tout de même communiquer avec
n’importe quel autre et le nombre de connexions est considérablement réduit. Il est en outre théorique-
ment possible d’ajouter à l’infini de nouveaux éléments au système. La gestion d’une telle organisation
des communications nous servira de thème tout au long de ce TD.

B.3.2 Le contrôleur de bus simple.

Nous nous proposons de concevoir un contrôleur de bus de communication. Le système au sein duquel
notre contrôleur doit s’intégrer comporte un arbitre de bus et un nombre indéterminé mais potentielle-
ment très grand de points d’accès au bus. Chaque point d’accès est composé d’un contrôleur et d’un
client. La figure B.3 représente le système de communication complet :

L’arbitre est chargé de répartir la ressource de communication (le bus) entre les différents points d’accès.
En effet, le système n’admet pas que plusieurs points d’accès émettent simultanément des informations
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Client A Controleur A Controleur BClient B

Point d’accès BPoint d’accès A

Bus

Arbitre

Figure B.3: Système de communication

sur le bus. Si cela se produisait il y aurait conflit et perte d’informations. La présence d’un arbitre est donc
nécessaire. C’est lui qui autorise successivement les points d’accès à écrire sur le bus en leur attribuant
un "jeton". Le point d’accès possesseur du jeton peut écrire sur le bus. Les autres ne peuvent que lire.
Lorsque le point d’accès a terminé sa transaction il rend le jeton à l’arbitre qui peut alors l’attribuer à un
autre point d’accès. L’absence de conflit est garantie par l’unicité du jeton.

Les clients sont les utilisateurs du bus. Lorsqu’un client désire écrire sur le bus il en informe son
contrôleur associé et attend que celui-ci obtienne le jeton et lui donne le feu vert.

Les contrôleurs servent d’interface entre l’arbitre et leur client. C’est l’un de ces contrôleurs que nous
allons concevoir. Ses entrées - sorties sont décrites dans le schéma illustré en figure B.4 et la table qui suit.

Client

Arbitre

Req

Gnt

Ack

PssTok

Clk Rst

Controleur

Figure B.4: Contrôleur de communica-
tion
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Nom Direction Description

CLK Entrée Horloge pour la synchronisation du contrôleur.

RST Entrée Signal d’initialisation asynchrone, actif à ’1’. Lorsque ce signal est à
état haut (’1’) le contrôleur est entièrement réinitialisé.

TOK Entrée Ce signal provient de l’arbitre et indique que le contrôleur peut dispo-
ser du bus. Il signifie donc que l’arbitre offre le jeton au contrôleur. Il
n’est actif que pendant une période d’horloge. Si le contrôleur n’a pas
besoin du jeton il le rend (voir le signal PSS). Sinon il le garde jusqu’à
ce qu’il n’en ait plus l’utilité.

REQ Entrée Ce signal est émis par le client et indique que ce dernier demande
à disposer du bus. Le client maintient ce signal jusqu’à la fin de sa
transaction sur le bus. Il ne le relache que lorsqu’il n’a plus besoin du
bus.

ACK Entrée Ce signal provient du client et indique que le client a pris le bus et
commence sa transaction. Il n’est actif que pendant une période d’hor-
loge.

PSS Sortie Ce signal est destiné à l’arbitre et l’informe que le contrôleur rend
le bus, soit parce que l’arbitre le lui a proposé alors qu’il n’en a pas
besoin, soit parce que la transaction du client est terminée. Il signifie
donc que le contrôleur rend le jeton à l’arbitre qui pourra ensuite en
disposer et l’attribuer à un autre contrôleur, voire au même. Il n’est
actif que pendant une période d’horloge.

GNT Sortie Ce signal est destiné au client et l’informe qu’il peut disposer du bus.
Il est maintenu tant que le client n’a pas répondu (par le signal ACK)
qu’il a pris le bus.

Le graphe d’états et l’automate

Question 1 : Dessinez un chronogramme représentant une ou plusieurs transactions complètes entre un
contrôleur, son client et l’arbitre.

Question 2 : Le contrôleur est un automate synchrone. Imaginez et dessinez son graphe.

Question 3 : Vérifiez la cohérence du graphe (complet, non contradictoire).

Question 4 : Ecrivez le code SystemVerilog de votre automate.

Une optimisation possible.

Les échanges entre l’arbitre et le contrôleur (signaux TOK et PSS) présentent l’inconvénient de ralentir
inutilement les opérations et donc de gaspiller des cycles d’utilisation du bus. En effet, un cycle est perdu
lorsqu’un contrôleur se voit proposer le jeton alors qu’il n’en a pas l’usage. Le chronogramme de la figure
illustre B.5 ce phénomène :

TOKA et TOKB sont les signaux TOK destinés à deux contrôleurs, A et B. PSSA est le signal PSS
émis par le contrôleur A et indiquant qu’il rend le jeton que l’arbitre vient de lui confier et dont il n’a pas
l’usage. On voit que l’arbitre, lui aussi synchrone sur front montant de l’horloge, ne peut pas proposer
immédiatement le jeton à un autre contrôleur.

Pour améliorer les performances du système nous voudrions obtenir le chronogramme illustré en figure
B.6 :
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Cycle perdu

TokB

PssA

TokA

Clk

Figure B.5: Illustration de la perte d’un
cycle

TokB

PssA

TokA

Clk

Figure B.6: Chronogramme optimisé

Question 5 : Proposez des modifications du contrôleur permettant d’obtenir ce nouveau comportement.
Question 6 : Décrivez l’automate en langage SystemVerilog.

B.3.3 Le problème de l’équité.

Le contrôleur équitable.

Le contrôleur que nous venons de concevoir n’est pas entièrement satisfaisant car il n’est pas équitable.
En d’autres termes, il ne garantit pas qu’un client n’accaparera pas le bus au détriment des autres. Il
ne garantit même pas qu’un client, après avoir obtenu l’accès au bus, l’utilisera effectivement puis le
relâchera. Il est en effet possible qu’un client ne réponde jamais au signal GNT de son contrôleur (ce qu’il
est censé faire à l’aide du signal ACK). Le système complet serait alors bloqué par un "mauvais" client
qui monopolise une ressource dont il n’a pas l’usage. Pour remédier à cet inconvénient il faut à nouveau
modifier le contrôleur.

Question 7 : Imaginez des solutions afin de rendre équitable le contrôleur optimisé du premier exercice.

L’arbitre équitable.

Pour obtenir que l’ensemble du système soit équitable, la modification du contrôleur seul ne suffit
pas. L’arbitre doit, lui aussi, adopter un comportement particulier. Question 8 : Pourquoi ? Donnez un

exemple de comportement non équitable possible de l’arbitre et ses conséquences.

Question 9 : Imaginez et décrivez des comportements possibles de l’arbitre équitable.





C
Exemples de constructions synchrones

Ce chapitre contient des exemples d’utilisation de la logique séquentielles synchrone. Vous y trouverez des schémas
ainsi que le code SystemVerilog correspondant.

C.1 Les bascules

C.1.1 Bascule D avec enable

Ici nous voulons construire une bascule D qui conserve son état si une condition d’activation n’est pas
réalisée. Dans la réalisation suivante, cette condition est matérialisée par l’entrée en de notre module
synchrone.

Comme le signal d’horloge a un rôle particulier, il ne faut pas
ajouter de logique sur l’entrée d’horloge.

La solution qu’il faut mettre en œuvre est l’ajout d’un multiplexeur
commandé par l’entrée en et qui permet, si en est à l’état logique 0 de
rediriger la sortie de la bascule vers son entrée et ainsi la conserver
au cycle suivant. Si en est à l’état logique 1, alors le signal d’entrée est
dirigé vers l’entrée de la bascule pour capturer une nouvelle valeur
au cycle suivant.

0

1
Q

D

en

Figure C.1: Schéma d’une bascule D
avec entrée d’activation

Le code SystemVerilog correspondant est donné en C.1. Il exprime
le fait qu’à chaque front de l’horloge on ne modifie la sortie Q que si
en est vrai. Exprimer la condition duale (le else) n’est pas obligatoire
car dans ce cas, la sortie Q conserve bien son état.



112 processeurs et architectures numériques (pan)

module dff_en ( input clk,

input en,

input D,

output logic Q );

always@(posedge clk)

if (en)

Q <= D;

// Sinon Q garde sa valeur précédente

endmodule

Code C.1: Description SystemVerilog
d’une bascule D avec entrée d’activa-
tion

C.2 Les compteurs

C.2.1 Compteur modulo 256

Ici nous voulons réaliser un compteur libre modulo 256 (qui est une puissance de 2).

Il suffit de reboucher la sortie d’un registre de 8 bits (car 256 =

28) sur l’entrée en utilisant un incrémenteur (additionneur avec la
seconde entrée forcée à 1).

Q
8

1

8

Figure C.2: Schéma d’un compteur mo-
dulo

Naturellement, comme on ne conserve que 8 bits en sortie de l’adi-
tionneur, nous obtiendront en sortie, cycliquement, toutes les valeurs
entre 0 et 255.

iAttention : Avec cette construction, nous ne maitrisons pas l’état
initial de la séquence. Il nous manque pour cela un mécanisme de
remise à zéro (reset).

Le code SystemVerilog représentant ce comportement est donné
en C.2.

module cpt_mod ( input clk,

output logic [7:0] Q );

always@(posedge clk)

Q <= Q + 1;

endmodule

Code C.2: Description SystemVerilog
d’un compteur modulo
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C.2.2 Compteur modulo 256 avec remise à zéro

Pour maitriser l’état initial du compteur il faut ajouter un méca-
nisme de remise à zéro (reset).

Grâce à un signal externe, on peut forcer l’état du registre du
compteur et garantir qu’il démarre d’une valeur connue.

Remise à zéro asynchrone Un signal de remise à zéro asynchrone et
un signal qui va agir directement sur la bascule. Son action est im-
médiate et n’est pas liée à l’état de l’horloge.

Les concepteurs des registres (bascules) prévoient donc une entrée
supplémentaire pour cet effet.

Dans le schéma C.3 nous avons un signal de remise à zéro asyn-
chrone actif sur niveau bas (schématisé par le cercle sur l’entrée
nrst). La sortie du registre est mise à zéro dès que le signal nrst
passe à 0. Pour que la sortie change, il faut attendre le premier cycle
d’horloge après le passage de nrst à 1.

1

8
Q

8

nrst Figure C.3: Schéma d’un compteur mo-
dulo avec remise à zéro asynchrone

En SystemVerilog, pour exprimer une remise à zéro asynchrone,
il faut faire apparaitre le signal de reset dans la liste de sensibilité du
processus (always) pour indiquer qu’il doit être pris en compte dès
qu’il devient actif.

module cpt_arst ( input clk,

input nrst,

output logic [7:0] Q );

always@(posedge clk or negedge nrst)

if (!nrst)

Q <= ’0;

else

Q <= Q + 1;

endmodule

Code C.3: Description SystemVerilog
d’un compteur modulo avec remise à
zéro asynchrone

Remise à zéro synchrone La remise à zéro peut aussi être provoquée
par un signal “normal” venant d’un autre bloc de logique synchrone.
Dans ce cas, on peut agit directement sur l’entrée du registre. L’effet
de ce signal de remise à zéro ne se produit alors qu’au front d’hor-
loge.
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La figure C.4 montre comment on peut implémenter une remise
à zéro synchrone. Si le signal nrst passe à 0, alors la sortie de la
porte ET (en réalité 8 portes en parallèle) passe à zéro quelle que
soit la sortie de l’aditionneur. Au front d’horloge suivant, la sortie
du registre passera donc à zéro.

On voit qu’il faut garantir que le signal nrst reste à 0 durant au
moins un cycle d’horloge. C’est forcement le cas si ce signal provient
lui-même d’un bloc de logique synchrone.

8
8

Q1

nrst

Figure C.4: Schéma d’un compteur mo-
dulo avec remise à zéro synchrone

Le code SystemVerilog diffère peu de la version précédente. Seul
le fait que l’entrée nrst n’apparait pas dans la liste de sensibilité du
processus ce qui fait que son état n’est pris en compte qu’au front de
l’horloge.

module cpt_srt ( input clk,

input nrst,

output logic [7:0] Q ); // La sortie

always@(posedge clk)

if (!nrst)

Q <= ’0;

else

Q <= Q + 1;

endmodule

Code C.4: Description SystemVerilog
d’un compteur modulo avec remise à
zéro synchrone

C.2.3 Compteur/Décompteur avec entrée d’activation

Ici nous construisons un compteur/décompteur contrôlé par le signal sv qui contrôle le sens d’évolution
du compteur.

Un signal de remise à zéro synchrone nrst permet de forcer l’état
initial et un signal d’activation en permet de contrôler son avance-
ment.

Le code SystemVerilog C.5 décrit ce comportement. Notez que les
actions des signaux de contrôle ont les priorités suivantes :

1. nrst : la remise à zéro doit être la plus prioritaire,

2. en : on évolue ou pas,

3. up : vers le haut ou le bas.
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0

1
0

1

1

1

Q
8

8

en
nrst

up

Figure C.5: Schéma d’un comp-
teur/décompteur

Cette même priorité se retrouve sur le schéma C.5. Plus le signal
est prioritaire, plus son action est proche du registre.

module cpt_updown ( input clk,

input nrst,

input en,

input up,

output logic [7:0] Q );

always@(posedge clk)

if (!nrst)

Q <= ’0;

else

if (en)

begin

if (up)

Q <= Q + 1;

else

Q <= Q - 1;

end

// sinon on ne change pas d’état

endmodule

Code C.5: Description SystemVerilog
d’un compteur/décompteur

C.2.4 Compteur jusqu’à 13

Ici nous voulons que le compteur ne dépasse pas une valeur arbitraire, qui n’est pas uns puissance de
deux, 13 par exemple.

. . .puis on re-part à zéro
Pour faire un compteur modulo une valeur arbitraire, qui n’est

pas une puissance de deux il faut ajouter de la logique combinatoire
pour comparer la valeur que registre à la valeur maximale désirée.

La sortie de ce comparateur agit alors comme un signal de remise
à zéro synchrone. C’est ce qui est représenté sur le schéma C.6. Notez
que la sortie du comparateur est combinée au signal de remise à zéro
externe, lui aussi synchrone.

Ce comportement est décrit par le code SystemVerilog C.6. 1
1. Ici le registre fait encore 8 bits de large
mais comme la sortie ne dépasse jamais
la valeur 13, nous aurions pu se suffire
de 4 bits.
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8
8

1

=13

Q

nrst

Figure C.6: Schéma d’un compteur mo-
dulo 13

module cpt_13_zero ( input clk,

input nrst,

output logic [7:0] Q );

always@(posedge clk)

if (!nrst)

Q <= ’0;

else

if(Q!=13)

Q <= Q + 1;

else

Q <= 0;

endmodule

Code C.6: Description SystemVerilog
d’un compteur modulo 13

. . .et on s’arrête
Si nous voulons une séquence unique qui s’arrête à une valeur

arbitraire il faut utilise la sortie du comparateur comme entrée d’ac-
tivation du compteur. Dès que la sortie du compteur atteint la valeur
max désirée, il est forcé à conserver sa valeur jusqu’à la prochaine
remise à zéro.

=13

Q
1

8
8

0

1

nrst

Figure C.7: Schéma d’un compteur qui
s’arrête à 13
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module cpt_13 ( input clk,

input nrst,

output logic [7:0] Q );

always@(posedge clk)

if (!nrst)

Q <= ’0;

else

if(Q!=13)

Q <= Q + 1;

// Sinon on reste à 13

endmodule

Code C.7: Description SystemVerilog
d’un compteur qui s’arrête à 13

C.3 Détecteur de fronts montants

Un détecteur de front est un module synchrone qui produit une impulsion dont a durée est exactement
une période d’horloge quand l’état d’un signal passe de 0 à 1.

Il ne faut pas utiliser le signal extérieur comme horloge ! I faut
observer son état à chaque front de l’horloge et comparer deux va-
leurs consécutives de son état.

Dans le schéma C.8, nous voulons détecter les fronts du signal key.
Pour cela, nous capturons sa valeur (nous l’échantillonnons) grâce à
une première bascule. La seconde bascule permet de conserver l’état
précédemment échantillonné.

Nous avons donc :

— key_s[0] le dernier état de key,

— key_s[1] l’état précédent de key.

top

key

key_s[1]

key_s[0] Figure C.8: Schéma d’un détecteur de
fronts montant

La porte Et permet de comparer ces deux états et la sortie top

passera à un si l’état est à 1 et l’état précédent est à 0. Comme nous
comparons des états (sortant de bascules) nous avons aussi la ga-
rantie que cette impulsion aura exactement une durée de 1 cycle de
l’horloge.

Le code SystemVerilog C.8 contient deux processus (always). Le
premier donnant le comportement du registre à décalage composé
des deux bascules. Le second, la comparaison combinatoire des états.
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module front( input clk,

input key,

output logic top

);

// on sauvegarde l’état de key

// dans un registre à décallage

logic [1:0]key_s;

always@(posedge clk)

begin

key_s[0] <= key;

key_s[1] <= key_s[0];

end

// On a un front montant si l’état actuel (0) est à 1

// et que l’état précédent (1) est encore à 0

always@(*)

top <= key_s[0] & !key_s[1];

endmodule

Code C.8: Description SystemVerilog
d’un détecteur de fronts montant

C.3.1 Utilisation d’un détecteur de fronts

Ici nous utilisons le détecteur de fronts précédemment décrit pour contrôler un l’avancement d’un comp-
teur modulo 256.

0

1
1

key

key_s[1]

key_s[0]

Q
8

8

en

Figure C.9: Schéma d’un compteur
contrôlé par une entrée extérieureLa sortie du détecteur de front est reliée à l’entrée d’activation (en)

du compteur. Ainsi, à chaque fois que l’entrée key passe de zéro à
un, le signal en passe à un durant exactement un cycle et le compteur
s’incrémente une fois. Indépendamment de la durée de l’état haut du
signal key.
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module front( input clk,

input key,

output logic [7:0] Q

);

logic [1:0]key_s;

logic en;

always@(posedge clk)

begin

key_s[0] <= key;

key_s[1] <= key_s[0];

end

always@(*)

en <= key_s[0] & !key_s[1];

always@(posedge clk)

if(en)

Q <= Q + 1;

endmodule

Code C.9: Description SystemVerilog
d’un compteur contrôlé par une entrée
extérieure

Dans le code SystemVerilog, le signal interne en est généré par le détecteur de front et sert à contrôler le
compteur.

Ce mécanisme nous permet de contrôler un système électronique synchrone sur une horloge rapide
(imaginez un processeur fonctionnant à plusieurs dizaines/centaines de MHz) à partir d’évènements lents
(un appui sur un bouton, le passage devant un capteur) tout en gardant un système synchrone.

C.4 PWM : Pulse Width Modulation

Le principe de fonctionnement d’un générateur de modulation largeur d’impulsion (PWM : Pulse Width Modu-
lation) est illustré par la figure C.10. Le rapport cyclique du signal pwm en sortie de ce module est contrôlé par la
valeur du signal de consigne donné en entrée.

M
pwm

consigne

pwm

consigne

Tpwm

Figure C.10: Princime d’un générateur
de PWM
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Pour obtenir ce résultat, nous utilisons un compteur périodique
dont la valeur se répète cycliquement (un compteur modulo). Pour
générer la sortie, nous comparons la valeur de la consigne à la sortie
du compteur. Si la sortie du compteur est inférieure à la consigne,
alors la sortie est mise à 1 sinon elle est mise à 0. La figure C.11

montre l’architecture d’un tel système.

<

1

8

consigne

cpt

8

8

pwm

Figure C.11: Schéma d’un générateur
de PWM

Le nombre de bits utiliser pour coder la consigne et la sortie du
compteur nous donnera le nombre de pas avec lequel on peut régler
la sortie de la PWM. Dans cet exemple, nous avons 256 niveaux et
nous avons utilisé 8 bits pour coder la consigne et pour le registre du
compteur. Aussi, l’horloge utilisée pour le compteur doit avoir une
période T 256 fois plus petite que la période Tpwm désirée pour la
PWM.

255

0

Tpwm = 256T

255

0

pwm

consigne

cpt

Figure C.12: Chronogramme de la
PWM

Le chronogramme de la figure C.12 montre l’évolution du comp-
teur ainsi que le signal généré en sortie pour deux valeurs de consigne.
Souvenez-vous que la sortie du compteur est discrète et que si nous
changions d’échelle de représentation nous observerions des marches.
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module pwm ( input clk,

input [7:0] consigne,

output logic pwm );

logic [7:0] cpt;

// Un compteur modulo 256

always@(posedge clk)

begin

cpt <= cpt + 1;

end

// la sortie vaut 1 si la valeur du compteur est

// inférieure à la consigne

always@(*)

pwm <= (cpt < consigne);

endmodule

Code C.10: Description SystemVerilog
d’un générateur de PWM

Le code SystemVerilog correspondant est donné dans la suite (code C.10).
Comme vous le constatez, la période de la PWM est liée à la pé-

riode d’horloge du système.

Question : Comment feriez-vous pour ralentir la période de la PWM d’un facteur 1024 sans changer
la fréquence de l’horloge de la logique synchrone ? Inspirez vous pour cela du détecteur de fronts qui
contrôle un compteur dans les exemples précédents.
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