
Systèmes d’exploitation
embarqués
SE302

Samuel TARDIEU
samuel.tardieu@telecom-paris.fr
Septembre 2019

Plan

Introduction

Gestion de la concurrence

Gestion de la mémoire

Quelques OS embarqués

2/72 Télécom Paris SE302 – Samuel Tardieu Septembre 2019

Système d’exploitation

Un système d’exploitation (Operating System, ou OS) fait le
lien entre le logiciel (application) et le matériel :

abstrait certaines caractéristiques du matériel ;
fournit des services communs (accès aux ressources,
synchronisation, gestion de fichier) ;
offre des possibilités de tests et de traces.

3/72 Télécom Paris SE302 – Samuel Tardieu Septembre 2019

Système embarqué

Généralement, un système embarqué :
doit être le moins cher possible ;
dispose de ressources limitées ;
ne doit pas consommer d’énergie inutilement (batterie).

4/72 Télécom Paris SE302 – Samuel Tardieu Septembre 2019

Un OS est-il obligatoire?

Absolument pas !
Certains langages sont un OS à eux tout seul (Forth).
Certains langages incluent des options de concurrence
plus ou moins avancées (Ada, Java, Rust).
Certains projets sont très simples.

5/72 Télécom Paris SE302 – Samuel Tardieu Septembre 2019

Un OS est-il utile?

Absolument !
La plupart des programmes embarqués ont des besoins
comparables (concurrence, temps-réel, USB, TCP/IP,
fichiers, Bluetooth, WiFi).
Il est plus facile d’utiliser une API portable plutôt que de
recoder des fonctionalités de base.
Pourquoi réinventer la roue systématiquement?
Pourquoi s’interdire de changer de CPU par la suite?

6/72 Télécom Paris SE302 – Samuel Tardieu Septembre 2019

Un OS résout-il tous les problèmes?

Non !
La gestion de la mémoire reste à la charge du développeur
(d’où un conseil : ne gérez pas la mémoire et privilégiez
les allocations statiques).
Les tâches ne s’ordonnent pas toutes seules : il faut en
choisir les priorités statiques et dynamiques.
Un OS n’empêche pas les bugs dans le code, mais
bénéficie généralement de plus d’utilisateurs que votre
code : profitez de l’effet de masse.

7/72 Télécom Paris SE302 – Samuel Tardieu Septembre 2019

Plan

Introduction

Gestion de la concurrence

Gestion de la mémoire

Quelques OS embarqués

8/72 Télécom Paris SE302 – Samuel Tardieu Septembre 2019

Architectures et parallélisme

On trouve plusieurs types de systèmes embarqués :
mono-cœur ;
SMP (symetric multiprocessing) ou multi-cœurs ;
NUMA (non-uniform memory architecture) : de la mémoire
locale est attachée aux différents processeurs, et
accessibles (moins rapidement) depuis les autres
processeurs.

Même dans les architectures mono-cœur, on souhaite souvent
exécuter plusieurs activités de manière concurrente.

9/72 Télécom Paris SE302 – Samuel Tardieu Septembre 2019

Boucle principale

Le schéma le plus simple est celui de la boucle principale :

static void tache_1() {
if (capteur_1_actif()) reagir_a_capteur_1();

}

int main() {
for (;;) {

tache_1(); tache_2(); ...; tache_n();
}

}

Inconvénients :
gaspillage des ressources par l’utilisation systématique du
polling ;
pas de gestion de priorité ou de fréquence relative.

10/72 Télécom Paris SE302 – Samuel Tardieu Septembre 2019

Boucle événementielle
On peut également attendre un événement signalé par le
matériel :

int main() {
for (;;) {

switch (wait_for_event()) {
case capteur_1: reagir_a_capteur_1(); break;
...
case capteur_n: reagir_a_capteur_n(); break;
}

}
}

Inconvénients :
pas de priorisation des événements ;
pas de possibilité de faire de longs calculs sans bloquer la
gestion des autres événements.

11/72 Télécom Paris SE302 – Samuel Tardieu Septembre 2019

Fonctionnement sur interruptions

On peut avoir :
une tâche principale qui s’exécute en permanence ;
des routines lancées lorsqu’une interruption survient.

C’est ainsi que fonctionnent des systèmes mono-tâche pour
« émuler » le multi-tâches (sur interruption de timer par
exemple).

Inconvénients :
une seule tâche principale.

12/72 Télécom Paris SE302 – Samuel Tardieu Septembre 2019

Changement de contexte

On souhaiterait pouvoir :
sauvegarder l’état d’un traitement donné pour en effectuer
un autre et retrouver son état ;
effectuer des traitements longs en donnant leur chance
aux autres tâches à réaliser.

Pour cela, chaque tâche doit disposer de son contexte :
l’état des registres du processeur dont le pointeur ordinal
(program counter) et le pointeur de pile (stack pointer) ;
la pile d’appel des sous-programmes, qui doit donc être
propre à chaque tâche.

13/72 Télécom Paris SE302 – Samuel Tardieu Septembre 2019

Coroutines

Les coroutines sont un modèle de parallélisme coopératif :
chaque tâche indique (avec yield()) qu’elle accepte de
donner la main à une autre ;
les problèmes de synchronisation n’existent pas, les points
de synchronisation étant placés par l’utilisateur.

Certains modèles de coroutines sans pile existent :
la consommation mémoire est réduite ;
les variables locales sont interdites ;
yield() ne peut être appelé que depuis le
sous-programme principal de la coroutine ;
sur certaines architectures avec une pile dédiée (PIC18F),
le changement de contexte est bien plus rapide.

14/72 Télécom Paris SE302 – Samuel Tardieu Septembre 2019

Interlude

Comment faire des coroutines en C?

15/72 Télécom Paris SE302 – Samuel Tardieu Septembre 2019

Co-routines en C : Duff’s device
On voudrait écrire 3 macros CRBEGIN, CREND et YIELD permettant
d’écrire le code ci-dessous. À chaque YIELD(), la fonction sort,
et lorsqu’elle est rappelée elle revient là où elle était (les
paramètres de YIELD() doivent tous être différents et positifs).

void func() {
// Print "Hello", then print "world", then print integers.
CRBEGIN();
printf("Hello\n"); YIELD(1);
printf("world\n"); YIELD(2);
static int i;
for (i = 0; ; i++) {
printf("i = %d\n", i);
YIELD(3);

}
CREND();

}

16/72 Télécom Paris SE302 – Samuel Tardieu Septembre 2019

Co-routines en C : Duff’s device (cnt’d)

Le programme de test suivant (après inclusion de stdio.h) :

int main() {
for (;;) { func(); printf("XXX\n"); }

}

produira :

Hello
XXX
world
XXX
i = 0
XXX
i = 1
XXX

etc.

17/72 Télécom Paris SE302 – Samuel Tardieu Septembre 2019

Co-routines en C : Duff’s device (cnt’d)
#define CRBEGIN() do { static unsigned state = 0; \

switch (state) { case 0:
#define YIELD(s) do { state = s; return; case s: ;} while (0)
#define CREND() } } while (0)

void func() {
// Print "Hello", then print "world", then print integers.
CRBEGIN();
printf("Hello\n"); YIELD(1);
printf("world\n"); YIELD(2);
static int i;
for (i = 0; ; i++) {
printf("i = %d\n", i);
YIELD(3);

}
CREND();

}

18/72 Télécom Paris SE302 – Samuel Tardieu Septembre 2019

Co-routines en C : Duff’s device (cnt’d)

Version après expansion (gcc -E) :

void func() {
// Print "Hello", then print "world", then print integers.
do { static unsigned state = 0; switch (state) { case 0:;
printf("Hello\n"); do { state = 1; return; case 1: ;} while (0);
printf("world\n"); do { state = 2; return; case 2: ;} while (0);
static int i;
for (i = 0; ; i++) {
printf("i = %d\n", i);
do { state = 3; return; case 3: ;} while (0);

}
} } while (0);

}

19/72 Télécom Paris SE302 – Samuel Tardieu Septembre 2019

Co-routines en C : Duff’s device (cnt’d)
void func () { // Version reformattée et annotée

do {
static unsigned state = 0;
switch (state) { // switch va sauter au case correspondant à state
case 0:

; // Le ";" ici n'a pas d'importance
printf("Hello\n");
do {
state = 1;
return;
case 1:; // Oui, le case peut être imbriqué dans d'autres constructions

} while (0);
printf("world\n");
do {
state = 2;
return;
case 2:;

} while (0);
static int i;
for (i = 0; ; i++) {
printf("i = %d\n", i);
do {

state = 3; // La myopie est un défaut visuel, pas une pathologie occulaire.
return; // 29% de la population française serait myope.
case 3: ; // La vision de loin est floue, alors que celle de près est nette.

} while (0); // N'hésitez pas à consulter pour faire corriger ce défaut.
}

}
} while (0);

}

20/72 Télécom Paris SE302 – Samuel Tardieu Septembre 2019

Quelques explications

#define d1(i) f(i); g(i)
#define d2(i) do { f(i); g(i); } while (0)

if (i > 0) d1(i); // Ici, g(i) sera toujours exécuté
if (i > 0) d2(i); // Ici, f(i) et g(i) sont bien groupés

Il faut privilégier la construction do { ... } while (0) à
chaque fois qu’on a plusieurs instructions dans une macro. Une
simple paire d’accolades ne suffiraient pas si cette macro est
suivi d’un else car le point virgule serait interdit.

#define YIELD(s) do { state = s; return; case s: ;} while (0)

Le ; après case s: est nécessaire, car un ‘case‘ ne peut être la
dernière instruction d’un bloc.

21/72 Télécom Paris SE302 – Samuel Tardieu Septembre 2019

Fin de l’interlude

Il est tout aussi facile de faire renvoyer une valeur par la
coroutine à chaque fois qu’elle appelle YIELD() : cela donne un
générateur.

Vive le C (et merci à Tom Duff).

22/72 Télécom Paris SE302 – Samuel Tardieu Septembre 2019

Priorités
Les priorités permettent de choisir la prochaine tâche à
exécuter :

les priorités peuvent être statiques ou dynamiques ;
le temps maximum entre deux changements de contexte
indique le temps de réaction à une condition extérieure ;
on peut créer une idle task de priorité minimale qui met le
processeur en veille en attendant qu’un événement
modifie le système ;
cette même idle task peut également effectuer des
opérations de nettoyage (agrégation des blocs mémoire
libres) ;
le passage régulier dans l’idle task peut indiquer une
non-surcharge du système et servir à signaler un
watchdog.

23/72 Télécom Paris SE302 – Samuel Tardieu Septembre 2019

Systèmes préemptifs

Un système multi-tâches est dit « préemptif » lorsqu’une tâche
peut être interrompue sans l’avoir elle-même demandé (yield)
ou autorisé (par un appel au système) :

réaction plus rapide à des événements asynchrones ;
réveil d’une tâche plus prioritaire à l’expiration d’un délai
fixé (alarme) ;
possibilité ou non de round-robin entre des tâches de
même priorité (quantum de temps) ;
nécessité d’utiliser des outils de synchronisation pour
utiliser des données communes ou communiquer entre les
tâches.

24/72 Télécom Paris SE302 – Samuel Tardieu Septembre 2019

Multi-tâches et synchronisation

L’utilisation de plusieurs tâches (ou threads) peut perturber
l’exécution d’un programme fonctionnant correctement en
mono-tâche.

void wire(account *src, account *dst, unsigned int amount) {
if (src->balance >= amount) {

// (1) If interrupted here, src->balance may have been
// modified by another thread when coming back.
src->balance -= amount;
// (2) If interrupted here, other threads will see a
// total amount smaller than the real one.
dst->balance += amount;

}
}

On a besoin ici d’utiliser une section critique.

25/72 Télécom Paris SE302 – Samuel Tardieu Septembre 2019

Section critique

Une section critique représente un ou plusieurs chemins de
code dans lesquels une seule tâche peut se trouver à la fois.

Implémentations possibles :
inhibition temporaire des interruptions ;
inhibition temporaire de l’ordonnanceur préemptif, si les
routines d’interruption n’utilisent pas les données ;
utilisation d’un verrou, avec ou sans réentrance, avec ou
sans héritage de priorité.

Dans toutes ces solutions, on risque de bloquer une tâche
prioritaire.

26/72 Télécom Paris SE302 – Samuel Tardieu Septembre 2019

Sémaphore

Un sémaphore représente un ensemble de ressources et
comprend, outre son initialisation, deux opérations :

V(), release() ou signal() : libère une ressource, jamais
bloquant.
P(), take() ou wait() : demande une ressource, et bloque
l’appelant si aucune n’est disponible ; ne revient de l’appel
que lorsque la ressource a été acquise.

Une ressource n’appartient à personne. Les opérations
d’acquisition et de libération peuvent être effectuées par des
threads différents.

27/72 Télécom Paris SE302 – Samuel Tardieu Septembre 2019

Utilisation des sémaphores

Producteur/consommateur : en présence d’un entrepôt
(buffer), un sémaphore représente les cases libres
pour stocker de nouvelles données (bloquant
potentiellement un producteur trop rapide) et un
autre les cases occupées (bloquant
potentiellement un consommateur trop rapide).

Générateur de FPS : un timer génère un tick 60 fois par
seconde, la boucle principale de rendu d’un jeu
attend qu’un tick soit généré pour afficher la
nouvelle frame.

Nous aurons l’occasion d’utiliser largement les sémaphores
lors de nos manipulations.

28/72 Télécom Paris SE302 – Samuel Tardieu Septembre 2019

Exemple de producteur/consommateur

On représente ici un tampon circulaire de 64 caractères, par
exemple pour représenter une transmission entre deux tâches
dont une gère un port de communication (le producteur) et
l’autre un afficheur LCD (le consommateur).

#define PLACES 64
static char buffer[PLACES];
static semaphore_t producer_sem;
static semaphore_t consumer_sem;

void init() {
// Buffer is empty, nothing to consume.
init_semaphore(&consumer_sem, 0);
init_semaphore(&producer_sem, PLACES);

}

29/72 Télécom Paris SE302 – Samuel Tardieu Septembre 2019

Exemple de producteur/consommateur

void produce(char c) {
static int producer_index = 0;
P(&producer_sem);
buffer[producer_index] = c;
V(&consumer_sem);
producer_index = (producer_index + 1) % PLACES;

}

char consume() {
static int consumer_index = 0;
P(&consumer_sem);
char c = buffer[consumer_index];
V(&producer_sem);
consumer_index = (consumer_index + 1) % PLACES;
return c;

}

30/72 Télécom Paris SE302 – Samuel Tardieu Septembre 2019

Types de sémaphores

Un sémaphore peut-être :
illimité (unbounded) : V() incrémente systématiquement le

compteur du sémaphore ;
limité (bounded) : V() incrémente le compteur du sémaphore

jusqu’à une certaine limite et signale si cette limite
est dépassée ;

binaire (binary) : V() positionne le compteur du sémaphore à 1
(et peut être codé plus efficacement qu’un
sémaphore limité général avec une limite à 1).

31/72 Télécom Paris SE302 – Samuel Tardieu Septembre 2019

Verrou (ou mutex)

Un verrou protège une section critique, et est pris puis libéré
par un thread. Seul un thread peut posséder le verrou à un
moment donné et peut possiblement le demander plusieurs fois
de manière imbriquée (réentrance).

En interne, un verrou possède une file d’attente contenant les
références des threads en attente du verrou.

Il est parfois possible de rencontrer des sémaphores utilisés
comme verrou, mais le verrou est une structure de données
différente qui possède d’autres caractéristiques (possesseur
identifié, réentrance, etc.). Il ne faut donc pas utiliser un
sémaphore comme un verrou.

32/72 Télécom Paris SE302 – Samuel Tardieu Septembre 2019

Problème potentiel

Imaginons la situation suivante :
un verrou X ;
une tâche Ψbasse de basse priorité acquiert X à t0 ;
une tâche Ψhaute de haute priorité démarre à t1 et réclame
X à t2 ;
une tâche Ψmedium démarre à t3 (avant que la tâche Ψbasse
ait relâché X) et dure très longtemps.

On peut arriver à une situation où la tâche Ψmedium bloque de
par sa seule existence la tâche plus prioritaire Ψhaute sans pour
autant posséder de ressource dont cette dernière a besoin
pour progresser.

33/72 Télécom Paris SE302 – Samuel Tardieu Septembre 2019

Inversion de priorité
L’inversion de priorité est une situation dans laquelle une tâche
moins prioritaire bloque, indirectement, une tâche plus
prioritaire, en empêchant la libération d’un verrou.

t

Ψbasse

Ψmedium

Ψhaute

t0 t1 t2 t3

P(X)

P(X) Élu

Prêt

Bloqué

34/72 Télécom Paris SE302 – Samuel Tardieu Septembre 2019

Inversion de priorité
L’inversion de priorité est une situation dans laquelle une tâche
moins prioritaire bloque, indirectement, une tâche plus
prioritaire, en empêchant la libération d’un verrou.

t

Ψbasse

Ψmedium

Ψhaute

t0 t1 t2 t3

P(X)

P(X) Élu

Prêt

Bloqué

Inv
er

sio
n

de prio
rit

é

34/72 Télécom Paris SE302 – Samuel Tardieu Septembre 2019

Héritage de priorité
On utilise alors l’héritage de priorité : lorsqu’une tâche plus
prioritaire attend un verrou acquis par une tâche moins
prioritaire, cette dernière prend la priorité de la première.

t

Ψbasse

Ψmedium

Ψhaute

t0 t1 t2 t3 t4 t5 t6

P(X) V(X)

P(X) V(X) Élu

Prêt

Bloqué

35/72 Télécom Paris SE302 – Samuel Tardieu Septembre 2019

Interblocage

Si des tâches utilisent plusieurs sémaphores ou verrous et
cherchent à réserver les ressources au même moment, on peut
aboutir à des interblocages :

un deadlock lorsqu’aucune des tâches ne peut progresser ;
un livelock lorsque les deux tâches progressent mais
passent leur temps uniquement à réserver (et libérer) les
ressources.

Certains systèmes détectent les situations de deadlock en
phase de développement.

36/72 Télécom Paris SE302 – Samuel Tardieu Septembre 2019

Synchronisation et interruptions

Les routines d’interruption (Interrupt Service Routine ou ISR),
prioritaires, empêchent la progression normale du programme
et limitent la gestion par priorités. Pour cela, on divise
généralement le traitement en deux parties :

FLIH (first-level interrupt handler), consistant à débloquer une
tâche qui effectuera le traitement complet de l’interruption
et à enregistrer sa prise en compte au niveau matériel ;

SLIH (second-level interrupt handler), tâche ordinaire, disposant
de sa priorité propre, qui effectue le traitement,
possiblement long, de la condition signalée.

Un événement peu important sera acquitté rapidement au
niveau du matériel mais sera possiblement traité beaucoup
plus tard lorsqu’il ne restera rien de plus important à faire.

37/72 Télécom Paris SE302 – Samuel Tardieu Septembre 2019

Synchronisation et interruptions
La signalisation est faite à l’aide d’un sémaphore S :

le FLIH donne le sémaphore : V(S) (non bloquant) ;
le SLIH consomme le sémaphore : P(S) (potentiellement
bloquant).

Élu

Prêt

Bloqué

t

ΨSLIH

Ψhaute

ISR (FLIH)

t0 t1 t2 t3 t4 t5

P(S) P(S)

V(S)

38/72 Télécom Paris SE302 – Samuel Tardieu Septembre 2019

Notes sur les interruptions

Il faut garder en tête les points suivants :
Les interruptions sont plus prioritaires que les tâches du
système, elles interrompent le système d’exploitation.
Une routine de traitement (handler) d’interruption doit
s’exécuter le plus rapidement possible et transmettre les
données à des tâches classiques.
Il ne faut jamais appeler d’opération bloquante dans une
routine d’interruption.

Si par exemple une routine d’interruption reçoit un caractère
sur un port série mais que la file d’attente pour la tâche de
traitement est pleine, elle doit décider d’abandonner ce
caractère, d’en abandonner un autre ou de mettre le système
en anomalie.

39/72 Télécom Paris SE302 – Samuel Tardieu Septembre 2019

Différents sémaphores et verrous

Dans les systèmes embarqués, on trouve généralement
différents types de sémaphores :

sémaphores dont le nombre de ressources est plafonné ou
non, utilisés principalement pour la synchronisation
(FLIH/SLIH ou entre tâches) ;
verrous avec ou sans héritage de priorité ;
verrous multi-entrées avec héritage de priorité.

L’opération bloquante P(S) sur une entité S est généralement
assortie d’un timeout :

timeout à zéro : retour immédiat ;
timeout non nul : temps d’attente limité ;
timeout « infini » : appel bloquant.

40/72 Télécom Paris SE302 – Samuel Tardieu Septembre 2019

Files d’attente

Pour passer des informations de manière protégée, les files
d’attente (ou queue) permettent de déposer et de récupérer de
manière atomique des données ordonnées.

Chaque file d’attente est créée avec éventuellement une
taille maximale et un type de données.
L’écriture et la lecture sont bloquantes, suivant un modèle
producteur/consommateur.
Les opérations bloquantes sont assorties d’un timeout.

Un FLIH peut placer, en mode non-bloquant, certaines
données à traiter dans une file d’attente qui sera consultée et
vidée par le SLIH.

41/72 Télécom Paris SE302 – Samuel Tardieu Septembre 2019

Ressources et priorités

Lorsqu’une tâche Ψ1 libère une ressource sur laquelle une
tâche Ψ2 est en attente, Ψ2 passe immédiatement dans l’état
prêt. Si Ψ2 est plus prioritaire que Ψ1, cela induit un transfert de
contrôle immédiat (changement de contexte) de Ψ1 vers Ψ2.
Les raisons d’un changement de contexte sont donc :

la disponibilité d’une ressource sur laquelle une autre
tâche était en attente, depuis une autre tâche ou une
routine d’interruption (FLIH) ;
l’expiration d’un délai, qui consiste en fait à la libération
d’une ressource déclenchée depuis une interruption liée à
un timer, ce qui nous ramène dans le premier cas.

Une tâche en attente d’une ressource ne consommera pas
inutilement de temps CPU.

42/72 Télécom Paris SE302 – Samuel Tardieu Septembre 2019

Exemple : afficheur LCD

Un microcontrôleur pilote un afficheur LCD en lui envoyant des
octets correspondant :

à un caractère à afficher à la position courante du curseur ;
à un ordre de déplacement spécifiant la ligne et la colonne.

On souhaite que plusieurs tâches puissent afficher à des
endroits différents de l’écran.

43/72 Télécom Paris SE302 – Samuel Tardieu Septembre 2019

Exemple : afficheur LCD

On utilise les entités suivantes :
une file d’attente contenant les données à envoyer à
l’afficheur LCD;
une tâche recevant successivement les octets de la file
d’attente et les envoyant à l’afficheur ;
un verrou permettant un accès exclusif à la file d’attente,
pour que le remplissage se fasse de manière cohérente.

Ainsi, les différentes chaînes de caractère à afficher ne peuvent
pas se mélanger.

44/72 Télécom Paris SE302 – Samuel Tardieu Septembre 2019

Synchronisation et priorités

Si la tâche qui gère l’afficheur est plus prioritaire que la tâche
qui souhaite afficher quelque chose, l’affichage peut
commencer dès l’entrée du premier octet dans la file d’attente
et n’être limité que par les performances de l’afficheur
lui-même.

Si les priorités sont égales, il est conseillé de donner la main au
consommateur, afin qu’il vide la file d’attente et limite les
inversions de priorité par la suite.

45/72 Télécom Paris SE302 – Samuel Tardieu Septembre 2019

Système temps-réel

Un système est dit temps-réel lorsque chaque événement est
traité dans un délai maximum connu à l’avance :

Un système réagissant la plupart du temps en 100ns mais
dans 0,001% des cas en un temps non borné n’est pas
temps-réel, bien qu’il soit rapide.
Un système réagissant systématiquement en moins de 10s
à un événement est temps-réel, bien qu’extrêmement lent.

46/72 Télécom Paris SE302 – Samuel Tardieu Septembre 2019

Catégorisation des systèmes temps-réel

Il existe plusieurs types de systèmes temps-réel :
temps-réel dur : un résultat arrivant après l’échéance est
inutile (un système de freinage ABS qui ne réagirait pas à
temps) ;
temps-réel mou : un résultat arrivant après l’échéance
induit des performances dégradées (omissions d’images
dans un décodeur vidéo).

La plupart des systèmes nécessitant du temps-réel
comprennent un mélange de trois sous-composants :

domaine temps-réel dur pour les opérations critiques ;
domaine temps-réel mou ;
domaine non-temps-réel, pour l’écriture des fichiers de
traces par exemple.

47/72 Télécom Paris SE302 – Samuel Tardieu Septembre 2019

Délais et tâches périodiques

Une tâche peut demander à attendre pendant un certain délai :
relatif, c’est-à-dire un certain temps ;
absolu, c’est-à-dire jusqu’à une date donnée.

Une tâche périodique utilisera l’un ou l’autre selon ses
besoins :

un délai absolu permet d’obtenir une exécution à un
moment précis indépendamment des retards subis lors
d’itération précédentes (gestion d’une horloge) ;
un délai relatif permet d’espacer des événements d’un
intervalle de temps donné (keep-alive sur un lien réseau).

Une tâche périodique est caractérisée par sa fréquence et son
temps d’exécution d’une itération.

48/72 Télécom Paris SE302 – Samuel Tardieu Septembre 2019

Tâches périodiques et échéances

Étant donné un ensemble fini de tâches périodiques Ψi arrivant
à intervalles Ti et nécessitant un temps d’exécution Ci , il est
parfois possible de garantir qu’aucune tâche n’accumulera de
retard en leur affectant des priorités statiques, à l’aide de
l’algorithme RMS (rate monotonic scheduling).
On peut toujours trouver un tel jeu de priorités si

U =
n∑

i=1

Ci

Ti︸︷︷︸
ui

≤ n
(

n
√

2− 1
)

On remarquera qu’on a limn→+∞ n(n√2− 1) = ln 2 ≈ 69, 31%. Cela signifie qu’avec un système avec une
charge des tâches temps-réel U inférieure à 69,31% on trouvera toujours un moyen d’ordonnancer un tel jeu de
tâches à base de priorités statiques.

49/72 Télécom Paris SE302 – Samuel Tardieu Septembre 2019

Précautions à prendre

Lors de l’utilisation de l’algorithme RMS, deux précautions
particulières doivent être prises :

Le temps nécessaire aux changements de contexte doit
être ajouté au temps d’exécution des tâches.
Si des moyens de synchronisation sont utilisés, ils doivent
implémenter l’héritage de priorité pour éviter les inversions
de priorité.

De plus, si toutes les tâches réussissent à remplir leur première
échéance (c’est-à-dire à terminer leur premier cycle avant
l’arrivée suivante), on peut prouver qu’elles y parviendront
systématiquement.

50/72 Télécom Paris SE302 – Samuel Tardieu Septembre 2019

Tâches sporadiques

Une tâche sporadique représente l’exécution d’un code en
réaction à un événement. Elle est caractérisée par son temps
d’exécution et l’intervalle de temps minimal entre deux
exécutions.
On peut faire rentrer les tâches sporadiques dans l’algorithme
RMS en les transformant en tâches périodiques. Si nécessaire,
il faut adopter une politique spécifique en cas de
déclenchement trop fréquent :

ignorer les déclenchements supplémentaires (en reportant
éventuellement une erreur) ;
sauver dans une file d’attente les déclenchements
supplémentaires pour leur faire respecter l’intervalle
minimal d’inter-arrivée.

51/72 Télécom Paris SE302 – Samuel Tardieu Septembre 2019

Plan

Introduction

Gestion de la concurrence

Gestion de la mémoire

Quelques OS embarqués

52/72 Télécom Paris SE302 – Samuel Tardieu Septembre 2019

Gestion de la mémoire

La plupart des microcontrôleurs embarquent quelques k
de mémoire :

• 256k sur les STM32F427IG ;
• 16k sur les nRF51822-QFAA-R7 ;
• 25 octets sur le PIC12F508.

Ajouter de la RAM externe est coûteux :
• utilisation d’entrées-sorties supplémentaires sur le

processeur ;
• bus complet pas forcément disponible ;
• complication du routage ;
• intégrité du signal.

Il faut gérer précautionneusement cette ressource
précieuse.

53/72 Télécom Paris SE302 – Samuel Tardieu Septembre 2019

Allocation de la pile (mono-tâche)

Dans une architecture mono-tâche, la pile et le tas peuvent
croître en sens inverse.

0k 20k
Mémoire

.data .bss tas→ ← pile

libre occupé

Tant que les deux zones ne se rencontrent pas, tout va bien.
Avec une MMU (memory management unit), chaque processus
voit une zone de mémoire virtuelle identique, et se comporte
comme un programme mono-tâche par défaut. C’est le défaut
sous Unix par exemple.

54/72 Télécom Paris SE302 – Samuel Tardieu Septembre 2019

Allocation de la pile (multi-tâches)

Dans une architecture multi-tâches, chaque tache Ψi nécessite
une pile d’exécution. L’allocation de cette pile est critique :

trop petite, elle causera une corruption mémoire ;
trop grande, elle consommera trop de mémoire.

0k 20k
Mémoire

.data .bss pile Ψ1 pile Ψ2 pile Ψ3 tas

(typiquement)

libre occupé

La taille à choisir dépend des profondeurs d’appel de chaque
tâche et de la taille occupée par les variables locales.

55/72 Télécom Paris SE302 – Samuel Tardieu Septembre 2019

Où placer les données dynamiques?

Il est fortement déconseillé d’allouer des grosses structures ou
des grands tableaux sur la pile (comme variables locales de
fonctions). Il faut préférer :

la section data ou bss lorsque la fonction ne peut être
appelée que par un seul thread à la fois, grâce au mot clé
static en C par exemple ;
le tas lorsque la fonction peut être appelée depuis
plusieurs threads ou si elle est directement ou
indirectement récursive (fonction réentrante).

56/72 Télécom Paris SE302 – Samuel Tardieu Septembre 2019

Gestion dynamique de la mémoire (tas)

Utilisation d’une liste chaînée des blocs libres (free-list)

0k 20k
Mémoire

3k 7k 1k 6k 3k

libre occupé

Stockage de la taille réservée en mémoire (la taille libérée
n’est pas passée à free().

Taille Lien . . .

Taille Zone utilisable

Pointeur renvoyé par malloc()
Taille utilisée par free()

57/72 Télécom Paris SE302 – Samuel Tardieu Septembre 2019

Fragmentation

Au cours de son utilisation, la mémoire disponible peut devenir
fragmentée.

0k 20k
Mémoire

3k 7k 1k 6k 3k

libre occupé

Comment allouer 5k alors que seuls deux blocs non contigus
de 3k et un de 1k sont disponibles?

58/72 Télécom Paris SE302 – Samuel Tardieu Septembre 2019

Politiques d’allocation

Dans la situation suivante, dans quel bloc allouer une zone de
600 octets demandée par le programme?

0k 20k
Mémoire

3k 7k 1k 6k 3k

libre occupé

Plusieurs stratégies possibles :
Best fit
Worst fit
First fit
First fit équivalent à une des deux premières solutions en
triant la liste des blocs libres

59/72 Télécom Paris SE302 – Samuel Tardieu Septembre 2019

Gestion de la libération

Plusieurs stratégies possibles :
Agrégation des blocs libres, peut nécessiter un tri de la
liste ; peu déterministe.
Libération sans agrégation des blocs libres, peut
nécessiter un tri de la liste.
Pas de libération.

Toutes ces stratégies sont couramment utilisées. La dernière
permet l’allocation dynamique en début de programme, qui ne
commencera ses véritables fonctions qu’après que l’ensemble
des allocations ont été effectuées.

60/72 Télécom Paris SE302 – Samuel Tardieu Septembre 2019

Gestion par bitmaps
La mémoire peut-être gérée avec des bitmaps :

blocs de taille fixe et contigus (buffers réseau par
exemple) ;
un bit par bloc indique si le bloc est libre ou non ;
possibilité d’utiliser plusieurs zones avec des blocs de taille
différente.

0

64 B

0

64 B

0

64 B

0

64 B

0

64 B

0

64 B

1

64 B

1

64 B

libre occupé

61/72 Télécom Paris SE302 – Samuel Tardieu Septembre 2019

Gestion par file

Une collection de buffers peut-être gérée avec des files :
une file (FIFO) ou une pile (LIFO) stocke les pointeurs sur
les blocs libres ;
un bloc libéré est replacé dans la file ;
l’utilisation d’une file d’attente permet d’attendre qu’un bloc
devienne disponible.

64 B 64 B 64 B 64 B64 B 64 B 64 B 64 B

P P P P

Pile de blocs libres

libre occupé

62/72 Télécom Paris SE302 – Samuel Tardieu Septembre 2019

Allocation statique

L’absence d’allocation dynamique a des (énormes) avantages :
détermination de la position définitive de chaque bloc lors
de l’édition de liens et temps d’accès réduit ;
vérification de la disponibilité de la quantité nécessaire de
mémoire lors de l’édition de liens ;
aucune possibilité de fragmentation ou de manque de
mémoire lors de l’exécution.

Cette solution doit être privilégiée lorsque c’est possible. Cela
peut influencer le choix du système d’exploitation.

63/72 Télécom Paris SE302 – Samuel Tardieu Septembre 2019

Utilisation de la MPU

L’utilisation d’une MPU (Memory Protection Unit) permet :
la protection des zones mémoire pour éviter qu’une tâche
n’accède ou n’écrase la mémoire associée à une autre
tâche ;
la détection des débordements de tampons.

Tous les systèmes n’utilisent pas la MPU même lorsqu’elle est
présente, pour des raisons de simplicité ou de performances
(les pages devant être protégées et déprotégées lors du
changement de contexte).

64/72 Télécom Paris SE302 – Samuel Tardieu Septembre 2019

Utilisation de la MMU

L’utilisation d’une MMU (Memory Management Unit) permet :
la réduction de la fragmentation par l’utilisation de pages et
de la correspondance entre adresse logique et adresse
physique ;
la possibilité de disposer de zones thread-local sans
indirection supplémentaire.

65/72 Télécom Paris SE302 – Samuel Tardieu Septembre 2019

Plan

Introduction

Gestion de la concurrence

Gestion de la mémoire

Quelques OS embarqués

66/72 Télécom Paris SE302 – Samuel Tardieu Septembre 2019

Linux / Android

logiciel libre ;
grand nombre d’architectures de processeurs supportées ;
disponibilité d’un grand nombre de gestionnaires de
périphériques (device drivers), et excellente
documentation disponible pour en écrire de nouveaux ;
système multi-tâches préemptif et multi-utilisateur (utile
pour la protection du système) ;
pas de garantie de temps-réel dur par défaut ;
nécessite beaucoup de RAM.

67/72 Télécom Paris SE302 – Samuel Tardieu Septembre 2019

RTEMS (par OAR)

logiciel libre, disponible pour de nombreuses architectures ;
exécutif léger, se combinant lors de la compilation et de
l’édition de liens avec l’application de l’utilisateur ;
système temps-réel multi-tâche préemptif ;
support de la programmation concurrente en Ada ;
implémente tous les services POSIX d’un système
mono-processus ;
très utilisé dans le milieu des expérimentations physiques,
notamment en milieu spatial ;
utilisé dans le projet Mars Reconnaissance Orbiter.

68/72 Télécom Paris SE302 – Samuel Tardieu Septembre 2019

FreeRTOS

logiciel libre (licence MIT depuis l’acquisition par Amazon) ;
supporte un grand nombre de micro-contrôleurs ;
système temps-réel multi-tâches préemptif, coroutines
sans pile ou les deux à la fois ;
se combine avec l’application finale lors de la compilation
et de l’édition de liens ;
très petit, très rapide et très bien documenté ;
s’interface avec AWS sous le nom de Amazon FreeRTOS ;
dans ce cadre, peut utiliser des shadows d’Amazon pour
les IoT et de la mise à jour OTA.

69/72 Télécom Paris SE302 – Samuel Tardieu Septembre 2019

ChibiOS

logiciel libre (GPLv3/Apache 2.0 + autres à la demande) ;
supporte un grand nombre de micro-contrôleurs ;
système temps-réel multi-tâches préemptif lié avec
l’application ;
très petit et très rapide ;
initialisations statique possible de toutes les structures de
données ;
possède un HAL (hardware abstraction layer) permettant
de s’abstraire des opérations de bas niveau et un EX
(external devices) ;
a deux versions (RT et NIL) en fonction des ressources ;
s’intègre avec d’autres logiciels libres (gestion de fichiers,
du réseau, etc.).

70/72 Télécom Paris SE302 – Samuel Tardieu Septembre 2019

Mbed OS
logiciel libre (Apache 2.0) ;
projet collaboratif géré par ARM;
supporte les processeurs à base de Cortex-M (32 bits) ;
système temps-réel multi-tâches préemptif lié avec
l’application ;
permet la mise à jour distante du firmware (Pelion device
management) ;
dispose d’outils en ligne de commande pour gérer le cycle
de développement ;
dispose d’un compilateur en ligne accessible dans un
navigateur ;
supporte un grand nombre de protocoles de
communication (UART, USB, WiFi, BLE, 6LoWPAN, LoRa,
NFC, . . .).

71/72 Télécom Paris SE302 – Samuel Tardieu Septembre 2019

Etc., etc., etc.

Il existe beaucoup d’autres systèmes d’exploitation pour
systèmes embarqués non décrits ici, entre autres :

iOS, Windows 10 Mobile, BlackBerry 10 (systèmes lourds :
téléphones, tablettes, livres électroniques, télévision
connectée)
Contiki (réseaux de capteurs) ;
eCos (micro-satellites) ;
VxWorks (transport, avionique, robotique, équipements
réseau, imprimantes).

72/72 Télécom Paris SE302 – Samuel Tardieu Septembre 2019

	Introduction
	Gestion de la concurrence
	Gestion de la mémoire
	Quelques OS embarqués

