Systemes d’exploitation
embarqués

B rian

Introduction

TELECOM

EEERI

2/72 SE302 — Samuel Tardieu Septembre 2019

I Sysicme d’exploitation

Un systéme d’exploitation (Operating System, ou OS) fait le
lien entre le logiciel (application) et le matériel :

B abstrait certaines caractéristiques du matériel ;

m fournit des services communs (acces aux ressources,
synchronisation, gestion de fichier) ;

® offre des possibilités de tests et de traces.

TELECOM

EEERI "'/

3/72 SE302 — Samuel Tardieu Septembre 2019

B Systcme embarqué

Généralement, un systéme embarqué :
B doit étre le moins cher possible ;
B dispose de ressources limitées;
B ne doit pas consommer d’énergie inutilement (batterie).

= T TE————

I Un OS est-il obligatoire ?

Absolument pas!
® Certains langages sont un OS a eux tout seul (Forth).

m Certains langages incluent des options de concurrence
plus ou moins avancées (Ada, Java, Rust).

m Certains projets sont trés simples.

o
iR

5/72 SE302 — Samuel Tardieu Septembre 2019

I Un OS est-il utile ?

Absolument!

B |a plupart des programmes embarqués ont des besoins
comparables (concurrence, temps-réel, USB, TCP/IP,
fichiers, Bluetooth, WiFi).

m || est plus facile d’utiliser une API portable plutét que de
recoder des fonctionalités de base.

B Pourquoi réinventer la roue systématiquement ?
B Pourquoi s’interdire de changer de CPU par la suite ?

TELECOM

EHH

6/72 SE302 — Samuel Tardieu Septembre 2019

I un OS résout-il tous les problémes ?

Non!

B |a gestion de la mémoire reste a la charge du développeur
(d’ou un conseil : ne gérez pas la mémoire et privilégiez
les allocations statiques).

B |es tAches ne s’ordonnent pas toutes seules : il faut en
choisir les priorités statiques et dynamiques.

B Un OS n’empéche pas les bugs dans le code, mais
bénéficie généralement de plus d’utilisateurs que votre
code : profitez de I'effet de masse.

TELECOM

CEIET

7172 SE302 — Samuel Tardieu Septembre 2019

B rian

Gestion de la concurrence

WEAG o

8/72 SE302 — Samuel Tardieu Septembre 2019

I Architectures et parallélisme

On trouve plusieurs types de systémes embarqués :
E mono-coeur;
B SMP (symetric multiprocessing) ou multi-cceurs ;

® NUMA (non-uniform memory architecture) : de la mémoire
locale est attachée aux différents processeurs, et
accessibles (moins rapidement) depuis les autres
processeurs.

Méme dans les architectures mono-coeur, on souhaite souvent
exécuter plusieurs activités de maniére concurrente.

o T E———— G

I Boucle principale

Le schéma le plus simple est celui de la boucle principale :

static void tache_1() {
if (capteur_1_actif()) reagir_a_capteur_1();
}

int main() {
for (;;) {
tache_1(); tache_2(); ...; tache_n();
3
3

Inconvénients :

B gaspillage des ressources par I'utilisation systématique du
polling ;
B pas de gestion de priorité ou de fréquence relative.

FEITIR

10/72 SE302 — Samuel Tardieu Septembre 2019

I Boucle événementielle

On peut également attendre un événement signalé par le
matériel :

int main() {
for (5;) {
switch (wait_for_event()) {
case capteur_1: reagir_a_capteur_1(); break;

case capteur_n: reagir_a_capteur_n(); break;
3
}
3

Inconvénients :
B pas de priorisation des événements;

B pas de possibilité de faire de longs calculs sans bloquer la
gestion des autres événements.

w2 T E———— G

I Fonctionnement sur interruptions

On peut avoir :

B une tache principale qui s’exécute en permanence;
B des routines lancées lorsqu’une interruption survient.

C’est ainsi que fonctionnent des systémes mono-tache pour
« émuler » le multi-taches (sur interruption de timer par
exemple).

Inconvénients :
B une seule tache principale.

o2 T E———— G

I Changement de contexte

On souhaiterait pouvoir :

B sauvegarder I'état d’'un traitement donné pour en effectuer
un autre et retrouver son état;

m effectuer des traitements longs en donnant leur chance
aux autres taches a realiser.

Pour cela, chaque tache doit disposer de son contexte :
B |'état des registres du processeur dont le pointeur ordinal
(program counter) et le pointeur de pile (stack pointer) ;

B |a pile d’appel des sous-programmes, qui doit donc étre
propre a chaque tache.

TELECOM

CEIET

13/72 SE302 — Samuel Tardieu Septembre 2019

I Coroutines

Les coroutines sont un modéle de parallélisme coopératif :

B chaque tache indique (avec yield()) qu’elle accepte de
donner la main a une autre;

B |es problémes de synchronisation n’existent pas, les points
de synchronisation étant placés par I'utilisateur.

Certains modéles de coroutines sans pile existent :
B |a consommation mémoire est réduite ;
B |es variables locales sont interdites ;
B yield() ne peut étre appelé que depuis le
sous-programme principal de la coroutine;

B sur certaines architectures avec une pile dédiée (PIC18F),
le changement de contexte est bien plus rapide.

w2 T E———— G

I nteriude

Comment faire des coroutines en C?

CEETR

15/72 SE302 — Samuel Tardieu Septembre 2019

I Co-routines en C : Duff’s device

On voudrait écrire 3 macros CRBEGIN, CREND et YIELD permettant
d’écrire le code ci-dessous. A chaque YIELD(), la fonction sort,
et lorsqu’elle est rappelée elle revient la ou elle était (les
parameétres de YIELD() doivent tous étre différents et positifs).

void func() {
// Print "Hello”, then print "world”, then print integers.
CRBEGIN();
printf(”"Hello\n"); YIELD(1);
printf("world\n"); YIELD(2);
static int i;
for (i = 0; ; i++) {
printf("i = %d\n", 1i);
YIELD(3);

3
CREND();

EETT R

16/72 SE302 — Samuel Tardieu Septembre 2019

I Co-routines en C : Duff’s device (cnt'd)

Le programme de test suivant (apres inclusion de stdio.h) :

int main() {
for (;;) { func(); printf("XXX\n"); 3}
}

produira :

Hello
XXX
world
XXX
i=o0
XXX
i=1
XXX

etc.

17/72 SE302 — Samuel Tardieu Septembre 2019

] L

I Co-routines en C : Duff’s device (cnt'd)

#define CRBEGIN() do { static unsigned state = 0; \

switch (state) { case 0:
#define YIELD(s) do { state = s; return; case s: ;} while (@)
#define CREND() } } while (@)

void func() {

// Print "Hello”, then print "world”, then print integers.

CRBEGIN();

printf(”"Hello\n"); YIELD(1);

printf("world\n"); YIELD(2);

static int i;

for (i = 0; ; i++) {
printf("i = %d\n", 1i);
YIELD(3);

}

CREND();

b

18/72 SE302 — Samuel Tardieu Septembre 2019

—mMI’34¢

I Co-routines en C : Duff’s device (cnt'd)

Version aprés expansion (gcc -E) :

void func() {

// Print "Hello”, then print "world”, then print integers.
do { static unsigned state = 0; switch (state) { case 0:;
printf("Hello\n"); do { state = 1; return; case 1: ;} while (0);
printf("world\n"); do { state = 2; return; case 2: ;} while (0);
static int i;
for (i = 0; ; i++) {

printf("i = %d\n", 1i);

do { state = 3; return; case 3: ;} while (0);

3
} } while (0);

FETTR A

19/72 SE302 — Samuel Tardieu Septembre 2019

I Co-routines en C : Duff’s device (cnt'd)

void func () { // Version reformattée et annotée
do {
static unsigned state = 0;
switch (state) { // switch va sauter au case correspondant a state
case 0:
H // Le ";" ici n'a pas d'importance
printf("Hello\n");
do {
state = 1;
return;
case 1:; // Oui, le case peut étre imbriqué dans d'autres constructions
} while (0);
printf("world\n");
do {
state = 2;
return;
case 2:;
} while (0);
static int i;
for (i = 0; ; i++) {
printf("i = %d\n", i);

do {
state = 3; // La myopie est un défaut visuel, pas une pathologie occulaire.
return; // 29% de la population francaise serait myope.
case 3: ; // La vision de loin est floue, alors que celle de prés est nette.
} while (0); // N'hésitez pas a consulter pour faire corriger ce défaut.

}

i
} while (0);
b

' TELECOM|
20 T TE————

EEERI

I Quelques explications

#define d1(i) f(i); g(i)
#define d2(i) do { f(i); g(i); } while (@)

if (i > 0) d1(i); // Ici, g(i) sera toujours exécuté
if (i > @) d2(i); // Ici, f(i) et g(i) sont bien groupés

[l faut privilégier la constructiondo { ... } while (@) a
chaque fois qu’on a plusieurs instructions dans une macro. Une
simple paire d’accolades ne suffiraient pas si cette macro est
suivi d’un else car le point virgule serait interdit.

#define YIELD(s) do { state = s; return; case s: ;} while (0)

Le ; aprés case s: est nécessaire, car un ‘case’ ne peut étre la
derniére instruction d’un bloc.

TeLecoM I

TR

21/72 SE302 — Samuel Tardieu Septembre 2019

I Fih de l'interlude

Il est tout aussi facile de faire renvoyer une valeur par la
coroutine a chaque fois qu’elle appelle YIELD() : cela donne un

générateur.

Vive le C (et merci a Tom Duff).

2o T TE————

I Priorités
Les priorités permettent de choisir la prochaine tache a
exécuter :

les priorités peuvent étre statiques ou dynamiques;

le temps maximum entre deux changements de contexte
indique le temps de réaction a une condition extérieure;;

on peut créer une idle task de priorité minimale qui met le
processeur en veille en attendant qu’'un événement
modifie le systéme;

cette méme idle task peut également effectuer des
opérations de nettoyage (agrégation des blocs mémoire
libres);

le passage régulier dans I'idle task peut indiquer une
non-surcharge du systéme et servir a signaler un
watchdog.

— T E———— G

I Systemes préemptifs

Un systeme multi-tdches est dit « préemptif » lorsqu’une tache
peut étre interrompue sans I'avoir elle-méme demandé (yield)
ou autorisé (par un appel au systéeme) :

B réaction plus rapide a des événements asynchrones;
® réveil d’'une tache plus prioritaire a I'expiration d’'un délai
fixé (alarme);

B possibilité ou non de round-robin entre des taches de
méme priorité (quantum de temps);

B nécessité d'utiliser des outils de synchronisation pour
utiliser des données communes ou communiquer entre les
taches.

2u T E———— G

I \uiti-taches et synchronisation

Lutilisation de plusieurs taches (ou threads) peut perturber
I'exécution d’'un programme fonctionnant correctement en
mono-tache.

void wire(account *src, account *dst, unsigned int amount) {
if (src->balance >= amount) {
// (1) If interrupted here, src->balance may have been
// modified by another thread when coming back.
src->balance -= amount;
// (2) If interrupted here, other threads will see a
// total amount smaller than the real one.
dst->balance += amount;
3
3

On a besoin ici d’utiliser une section critique.

= T TE————

I Secction critique

Une section critique représente un ou plusieurs chemins de
code dans lesquels une seule tache peut se trouver a la fois.

Implémentations possibles :
B inhibition temporaire des interruptions;
B inhibition temporaire de I'ordonnanceur préemptif, si les
routines d’interruption n’utilisent pas les données;

m ytilisation d’'un verrou, avec ou sans réentrance, avec ou
sans héritage de priorité.

Dans toutes ces solutions, on risque de bloquer une tache
prioritaire.

— T E———— G

B scmaphore

Un sémaphore représente un ensemble de ressources et
comprend, outre son initialisation, deux opérations :

B V(), release() ou signal() : libére une ressource, jamais
bloquant.

B P(), take() ouwait() : demande une ressource, et bloque
I'appelant si aucune n’est disponible ; ne revient de 'appel
que lorsque la ressource a été acquise.

Une ressource n‘appartient a personne. Les opérations
d’acquisition et de libération peuvent étre effectuées par des
threads différents.

272 T E———— G

I utilisation des sémaphores

Producteur/consommateur : en présence d’un entrep6t
(buffer), un sémaphore représente les cases libres
pour stocker de nouvelles données (bloquant
potentiellement un producteur trop rapide) et un
autre les cases occupées (bloquant
potentiellement un consommateur trop rapide).

Générateur de FPS : un timer génére un tick 60 fois par
seconde, la boucle principale de rendu d’un jeu
attend qu’un tick soit généré pour afficher la
nouvelle frame.

Nous aurons I'occasion d’utiliser largement les sémaphores
lors de nos manipulations.

TELECOM

EHH

28/72 SE302 — Samuel Tardieu Septembre 2019

I cExemple de producteur/consommateur

On représente ici un tampon circulaire de 64 caractéres, par
exemple pour représenter une transmission entre deux taches
dont une gére un port de communication (le producteur) et
l'autre un afficheur LCD (le consommateur).

#define PLACES 64

static char buffer[PLACES];
static semaphore_t producer_sem;
static semaphore_t consumer_sem;

void init() {
// Buffer is empty, nothing to consume.
init_semaphore(&consumer_sem, 0);
init_semaphore(&producer_sem, PLACES);

b

= T TE————

I cExemple de producteur/consommateur

void produce(char c) {
static int producer_index = 0;
P(&producer_sem);
buffer[producer_index] = c;
V(&consumer_sem) ;
producer_index = (producer_index + 1) % PLACES;

}

char consume() {
static int consumer_index = 0;
P(&consumer_sem) ;
char c¢ = buffer[consumer_index];
V(&producer_sem);
consumer_index = (consumer_index + 1) % PLACES;
return c;

a2 T TE————

I Types de sémaphores

Un sémaphore peut-étre :

illimité (unbounded) : V() incrémente systématiquement le
compteur du sémaphore;

limité (bounded) : V() incrémente le compteur du sémaphore
jusqu’a une certaine limite et signale si cette limite
est dépassée;

binaire (binary) : V() positionne le compteur du sémaphore a 1
(et peut étre codé plus efficacement qu’un
sémaphore limité général avec une limite a 1).

31/72 SE302 — Samuel Tardieu Septembre 2019

EEERI

TeLecoM I

B Verrou (ou mutex)

Un verrou protége une section critique, et est pris puis libéré
par un thread. Seul un thread peut posséder le verrou a un
moment donné et peut possiblement le demander plusieurs fois
de maniére imbriquée (réentrance).

En interne, un verrou posséde une file d’attente contenant les
références des threads en attente du verrou.

Il est parfois possible de rencontrer des sémaphores utilisés
comme verrou, mais le verrou est une structure de données
différente qui posséde d’autres caractéristiques (possesseur
identifié, réentrance, etc.). Il ne faut donc pas utiliser un
sémaphore comme un verrou.

s T E———— G

I Probleme potentiel

Imaginons la situation suivante :
B yn verrou X;
B une tache V},,s de basse priorité acquiert X a fy ;
B une tache Wy, de haute priorité démarre a t; et réclame
Xab;
B une tadche VW, cqium démarre a t3 (avant que la tache Wy aese
ait relaché X) et dure trés longtemps.

On peut arriver a une situation ou la tache W ,cqium bloque de
par sa seule existence la tache plus prioritaire Wy,,.tc Sans pour
autant posséder de ressource dont cette derniére a besoin
pour progresser.

— T E———— G

I nversion de priorité

Linversion de priorité est une situation dans laquelle une tache
moins prioritaire bloque, indirectement, une tache plus
prioritaire, en empéchant la libération d’'un verrou.

| .
| | POO ‘ Elu
! ! Prét
\Uhautc : I | U i -
‘ ‘ ‘ ‘ Bloqué
I I I
I I I
wmedium | | |
| | |
| | |
\Ubasse :
P(X) | | |
I I I I
I I I I
1 1 1 1
) ty 1) I3 t

TELECOM I

EEW

34/72 SE302 — Samuel Tardieu Septembre 2019

I nversion de priorité

Linversion de priorité est une situation dans laquelle une tache
moins prioritaire bloque, indirectement, une tache plus
prioritaire, en empéchant la libération d’'un verrou.

L
I
\Uhaute : I |
I I I
I I I
I I I
\Umedium | | I
l l l
Wbasse :
P(X) | |
I I I I
I I I I
1 1 1 1
tht 4 b ts t

™= T E———— G

I Héritage de priorité

On utilise alors I'héritage de priorité : lorsqu’une tache plus
prioritaire attend un verrou acquis par une tache moins
prioritaire, cette derniére prend la priorité de la premiere.

S I
I T T N
\Uhautc : I | U | 0 I Pret -
I i I I I I I ElEs
I I I I I
I I I I I
wmedium | | | I |
l l l ! N
\Ubasse : : : :
P(X) | | : v(x) : :
I I I I I I I
I I I I I I I
1 1 1 1 1 1 1
) ty 1) I3 b 5 ts t

s T E———— G

I nterblocage

Si des taches utilisent plusieurs sémaphores ou verrous et
cherchent a réserver les ressources au méme moment, on peut
aboutir a des interblocages :

B un deadlock lorsqu’aucune des taches ne peut progresser;

B un livelock lorsque les deux taches progressent mais
passent leur temps uniquement a réserver (et libérer) les
ressources.

Certains systemes détectent les situations de deadlock en
phase de développement.

— T E———— G

I Synchronisation et interruptions

Les routines d’'interruption (Interrupt Service Routine ou ISR),
prioritaires, empéchent la progression normale du programme
et limitent la gestion par priorités. Pour cela, on divise
généralement le traitement en deux parties :

FLIH (first-level interrupt handler), consistant a débloquer une
tache qui effectuera le traitement complet de I'interruption
et a enregistrer sa prise en compte au niveau matériel ;

SLIH (second-level interrupt handler), tache ordinaire, disposant
de sa priorité propre, qui effectue le traitement,
possiblement long, de la condition signalée.

Un événement peu important sera acquitté rapidement au

niveau du matériel mais sera possiblement traité beaucoup
plus tard lorsqu’il ne restera rien de plus important a faire.

TELECOM

EHH

37/72 SE302 — Samuel Tardieu Septembre 2019

I Synchronisation et interruptions
La signalisation est faite a I'aide d’'un sémaphore S :
B |e FLIH donne le sémaphore : V(S) (non bloquant);
B |e SLIH consomme le sémaphore : P(S) (potentiellement

bloguant).
1 1 Ve ! 1 1 Elu
ISR (FLIH) | ::' : | Prét
| ‘ ‘ ‘ | | |[Blogue
\Uhaute : :
Vsrm : : |
P(S) : : | : | P(S)
fo t t t3 t ts

TELECOM

CEIET

38/72 SE302 — Samuel Tardieu Septembre 2019

I Notes sur les interruptions

Il faut garder en téte les points suivants :

B | es interruptions sont plus prioritaires que les taches du
systéme, elles interrompent le systéme d’exploitation.

® Une routine de traitement (handler) d’interruption doit
s’exécuter le plus rapidement possible et transmettre les
données a des taches classiques.

B || ne faut jamais appeler d’opération bloquante dans une
routine d’interruption.

Si par exemple une routine d’interruption recgoit un caractéere
sur un port série mais que la file d’attente pour la tache de
traitement est pleine, elle doit décider d’abandonner ce
caractére, d’en abandonner un autre ou de mettre le systeme
en anomalie.

FEETR

39/72 SE302 — Samuel Tardieu Septembre 2019

I Différents sémaphores et verrous

Dans les systemes embarqués, on trouve généralement
différents types de sémaphores :

® sémaphores dont le nombre de ressources est plafonné ou
non, utilisés principalement pour la synchronisation
(FLIH/SLIH ou entre taches);

B verrous avec ou sans héritage de priorité ;
B verrous multi-entrées avec héritage de priorité.

Lopération bloquante P(S) sur une entité S est généralement
assortie d'un timeout :

B timeout a zéro : retour immédiat;;
B timeout non nul : temps d’attente limité ;
B timeout « infini » : appel bloquant.

TELECOM

CEIET

40/72 SE302 — Samuel Tardieu Septembre 2019

I Files d’attente

Pour passer des informations de maniére protégée, les files
d’attente (ou queue) permettent de déposer et de récupérer de
maniere atomique des données ordonnées.

® Chaque file d’attente est créée avec éventuellement une
taille maximale et un type de données.

B ['écriture et la lecture sont bloquantes, suivant un modéle
producteur/consommateur.

B |es opérations bloquantes sont assorties d’un timeout.

Un FLIH peut placer, en mode non-bloquant, certaines
données a traiter dans une file d’attente qui sera consultée et
vidée par le SLIH.

a2 T E———— G

I Ressources et priorités

Lorsqu’une tache W, libére une ressource sur laquelle une
tache VW, est en attente, ¥, passe immédiatement dans I'état
prét. Si W, est plus prioritaire que V1, cela induit un transfert de
contréle immédiat (changement de contexte) de W4 vers V».
Les raisons d’'un changement de contexte sont donc :

B |a disponibilité d’'une ressource sur laquelle une autre
tache était en attente, depuis une autre tache ou une
routine d’interruption (FLIH) ;

B I'expiration d’un délai, qui consiste en fait a la libération
d’une ressource déclenchée depuis une interruption liée a
un timer, ce qui nous raméne dans le premier cas.

Une tache en attente d’une ressource ne consommera pas
inutilement de temps CPU.

= T E———— G

N Exemple : afficheur LCD

Un microcontréleur pilote un afficheur LCD en lui envoyant des
octets correspondant :

B 3 un caractére a afficher a la position courante du curseur;
B 3 un ordre de déplacement spécifiant la ligne et la colonne.

On souhaite que plusieurs taches puissent afficher a des
endroits différents de I'écran.

= T E———— G

N Exemple : afficheur LCD

On utilise les entités suivantes :

B une file d’attente contenant les données a envoyer a
I'afficheur LCD;

B une tache recevant successivement les octets de la file
d’attente et les envoyant a I'afficheur;

B un verrou permettant un acces exclusif a la file d’attente,
pour que le remplissage se fasse de maniére cohérente.

Ainsi, les différentes chaines de caractere a afficher ne peuvent
pas se mélanger.

w2 T E———— G

I Synchronisation et priorités

Si la tache qui gére l'afficheur est plus prioritaire que la tache
qui souhaite afficher quelque chose, I'affichage peut
commencer dés I'entrée du premier octet dans la file d’attente
et n’étre limité que par les performances de I'afficheur
lui-méme.

Si les priorités sont égales, il est conseillé de donner la main au
consommateur, afin qu’il vide la file d’attente et limite les
inversions de priorité par la suite.

TELECOM

CEIET

45/72 SE302 — Samuel Tardieu Septembre 2019

I Sysicme temps-réel

Un systeme est dit temps-réel lorsque chaque événement est
traité dans un délai maximum connu a 'avance :

B Un systeme réagissant la plupart du temps en 100ns mais
dans 0,001% des cas en un temps non borné n’est pas
temps-réel, bien qu’il soit rapide.

B Un systeme réagissant systématiquement en moins de 10s
a un événement est temps-réel, bien qu’extrémement lent.

w2 T E———— G

I cCatcgorisation des systémes temps-réel

Il existe plusieurs types de systémes temps-réel :

® temps-réel dur : un résultat arrivant aprés I'échéance est
inutile (un systéme de freinage ABS qui ne réagirait pas a
temps);

B temps-réel mou : un résultat arrivant aprés I'échéance
induit des performances dégradées (omissions d’'images
dans un décodeur vidéo).

La plupart des systémes nécessitant du temps-réel
comprennent un mélange de trois sous-composants :

B domaine temps-réel dur pour les opérations critiques;;

B domaine temps-réel mou;

B domaine non-temps-réel, pour I'écriture des fichiers de
traces par exemple.

ELECOM|
a2 T E—— T

FEETR

I Délais et taches périodiques

Une tache peut demander a attendre pendant un certain délai :
B relatif, c’est-a-dire un certain temps;;
B absolu, c’est-a-dire jusqu’a une date donnée.

Une tache périodique utilisera I'un ou l'autre selon ses

besoins :

B un délai absolu permet d’obtenir une exécution a un
moment précis indépendamment des retards subis lors
d’itération précédentes (gestion d’'une horloge) ;

B un délai relatif permet d’espacer des événements d’'un
intervalle de temps donné (keep-alive sur un lien réseau).
Une tache périodique est caractérisée par sa fréquence et son
temps d’exécution d’'une itération.

w2 T E———— G

I Tiches périodiques et échéances

Etant donné un ensemble fini de taches périodiques V; arrivant
a intervalles T; et nécessitant un temps d’exécution C;, il est
parfois possible de garantir qu’aucune tache n’accumulera de
retard en leur affectant des priorités statiques, a I'aide de
I'algorithme RMS (rate monotonic scheduling).

On peut toujours trouver un tel jeu de priorités si

i=1 v
uj
On remarquera qu'on a limp— 4 oo N(2 — 1) = In2 = 69, 31%. Cela signifie qu’avec un systeme avec une

charge des taches temps-réel U inférieure a 69,31% on trouvera toujours un moyen d’ordonnancer un tel jeu de
taches a base de priorités statiques.

T
49/72 Télécom Paris SE302 — Samuel Tardieu Septembre 2019
=

I Precautions a prendre

Lors de I'utilisation de I'algorithme RMS, deux précautions
particulieres doivent étre prises :

B | e temps nécessaire aux changements de contexte doit
étre ajouté au temps d’exécution des taches.

B Si des moyens de synchronisation sont utilisés, ils doivent
implémenter I'héritage de priorité pour éviter les inversions
de priorité.

De plus, si toutes les taches réussissent a remplir leur premiére
échéance (c’est-a-dire a terminer leur premier cycle avant
I'arrivée suivante), on peut prouver qu’elles y parviendront
systématiquement.

s> T E———— G

I Tiches sporadiques

Une tache sporadique représente I'exécution d’'un code en
réaction a un événement. Elle est caractérisée par son temps
d’exécution et I'intervalle de temps minimal entre deux
exécutions.
On peut faire rentrer les taches sporadiques dans 'algorithme
RMS en les transformant en taches périodiques. Si nécessaire,
il faut adopter une politique spécifique en cas de
déclenchement trop fréquent :

B ignorer les déclenchements supplémentaires (en reportant

éventuellement une erreur) ;
B sauver dans une file d’attente les déclenchements

supplémentaires pour leur faire respecter l'intervalle
minimal d’inter-arrivée.

TELECOM I

A

51/72 SE302 — Samuel Tardieu Septembre 2019

B rian

Gestion de la mémoire

s T TE—————

I Gestion de la mémoire

B | a plupart des microcontroleurs embarquent quelques k
de mémoire :
» 256k sur les STM32F4271G;
+ 16k sur les nRF51822-QFAA-R7;
» 25 octets sur le PIC12F508.
m Ajouter de la RAM externe est colteux :
« utilisation d’entrées-sorties supplémentaires sur le
processeur ;
* bus complet pas forcément disponible ;
» complication du routage ;
* intégrité du signal.
m || faut gérer précautionneusement cette ressource
précieuse.

WAL

53/72 SE302 — Samuel Tardieu Septembre 2019

I Allocation de la pile (mono-tache)

Dans une architecture mono-tache, la pile et le tas peuvent
croitre en sens inverse.

| data | .bss | tas— | | < pile \
Ok 20k

Mémoir
emore

Tant que les deux zones ne se rencontrent pas, tout va bien.
Avec une MMU (memory management unit), chaque processus
voit une zone de mémoire virtuelle identique, et se comporte
comme un programme mono-tache par défaut. C’est le défaut
sous Unix par exemple.

a2 T E———— G

I Allocation de la pile (multi-taches)

Dans une architecture multi-taches, chaque tache V; nécessite
une pile d’exécution. Lallocation de cette pile est critique :

B trop petite, elle causera une corruption mémoire ;
B trop grande, elle consommera trop de mémoire.

(typiquement)

\ .data | .bss | pile W, | pile ¥ | pile V3 | tas \
Ok — 20k
Mémoire

La taille a choisir dépend des profondeurs d’appel de chaque
tache et de la taille occupée par les variables locales.

TELECOM

EEERI "'/

55/72 SE302 — Samuel Tardieu Septembre 2019

I Ou placer les données dynamiques ?

Il est fortement déconseillé d’allouer des grosses structures ou
des grands tableaux sur la pile (comme variables locales de
fonctions). Il faut préférer :

B |a section data ou bss lorsque la fonction ne peut étre
appelée que par un seul thread a la fois, grace au mot clé
static en C par exemple;

B |e tas lorsque la fonction peut étre appelée depuis
plusieurs threads ou si elle est directement ou
indirectement récursive (fonction réentrante).

FETTR A

56/72 SE302 — Samuel Tardieu Septembre 2019

I Gestion dynamique de la mémoire (tas)

m Utilisation d’une liste chainée des blocs libres (free-list)

4 N[R

3k | 7k 11K 6k | 3k |

0k Memo 20k
emoire

B Stockage de la taille réservée en mémoire (la taille libérée
n'est pas passée a free().

| Taille | Lien | \

| Taille | Zone utilisable \

b Pointeur renvoyé par malloc()
Taille utilisée par free()

57/72 SE302 — Samuel Tardieu Septembre 2019

TELECOM

EEERI "'/

I rragmentation

Au cours de son utilisation, la mémoire disponible peut devenir
fragmentée.

B 7K i - o
> — 20k
Mémoire

Comment allouer 5k alors que seuls deux blocs non contigus
de 3k et un de 1k sont disponibles ?

TELECOM

CEIET

58/72 SE302 — Samuel Tardieu Septembre 2019

I Politiques d’allocation

Dans la situation suivante, dans quel bloc allouer une zone de
600 octets demandée par le programme ?

B 7k [1K] 6k B
Ok e 20k
emore

Plusieurs stratégies possibles :
B Best fit
m Worst fit
B First fit

B First fit équivalent a une des deux premiéres solutions en
triant la liste des blocs libres

FEETR

59/72 SE302 — Samuel Tardieu Septembre 2019

I Gestion de la libération

Plusieurs stratégies possibles :

B Agrégation des blocs libres, peut nécessiter un tri de la
liste ; peu déterministe.

B Libération sans agrégation des blocs libres, peut
nécessiter un tri de la liste.

B Pas de libération.

Toutes ces stratégies sont couramment utilisées. La derniere
permet I'allocation dynamique en début de programme, qui ne
commencera ses véritables fonctions qu’apres que I'ensemble
des allocations ont été effectuées.

o2 T E———— G

I Gestion par bitmaps

La mémoire peut-étre gérée avec des bitmaps :

B blocs de taille fixe et contigus (buffers réseau par
exemple) ;

B un bit par bloc indique si le bloc est libre ou non;

B possibilité d’utiliser plusieurs zones avec des blocs de taille
différente.

[o[1]ofofo[1]0]0] e o]

)/

| 64B | 64B | 64B | 64B | 64B | 64B | 64B | 64B |

FEETR

61/72 SE302 — Samuel Tardieu Septembre 2019

B Gestion par file

Une collection de buffers peut-étre gérée avec des files :

m une file (FIFO) ou une pile (LIFO) stocke les pointeurs sur
les blocs libres;

B un bloc libéré est replacé dans la file;

m ['utilisation d’'une file d’attente permet d’attendre qu’un bloc
devienne disponible.

Pile de blocs libres

(o]
N
o
(o]
N
o
(o)}
N
o
(o]
N
o
(o)}
~
o
(o]
N
o
(o]
N
o
(o]
N
]

CEETR

62/72 SE302 — Samuel Tardieu Septembre 2019

I Allocation statique

Labsence d’allocation dynamique a des (énormes) avantages :
B détermination de la position définitive de chaque bloc lors
de I'édition de liens et temps d’accés réduit;
m vérification de la disponibilité de la quantité nécessaire de
mémoire lors de I'édition de liens;

B aucune possibilité de fragmentation ou de manque de
mémoire lors de I'exécution.

Cette solution doit étre privilégiée lorsque c’est possible. Cela
peut influencer le choix du systeme d’exploitation.

TELECOM

CEIET

63/72 SE302 — Samuel Tardieu Septembre 2019

I Uiilisation de la MPU

Lutilisation d’'une MPU (Memory Protection Unit) permet :

B |a protection des zones mémoire pour éviter qu’une tache
n’accéde ou n’écrase la mémoire associée a une autre
tache;

B |a détection des débordements de tampons.

Tous les systemes n’utilisent pas la MPU méme lorsqu’elle est
présente, pour des raisons de simplicité ou de performances

(les pages devant étre protégées et déprotégées lors du
changement de contexte).

oam2 T E———— G

I Uiilisation de la MMU

Lutilisation d’'une MMU (Memory Management Unit) permet :

B |a réduction de la fragmentation par I'utilisation de pages et
de la correspondance entre adresse logique et adresse
physique;

B |a possibilité de disposer de zones thread-local sans
indirection supplémentaire.

ELECOM|
— T E—— T

WAL

B rian

Quelques OS embarqués

WEAG o

66/72 SE302 — Samuel Tardieu Septembre 2019

I Lihux/ Android

® |ogiciel libre;
B grand nombre d’architectures de processeurs supportées ;

® disponibilité d’'un grand nombre de gestionnaires de
périphériques (device drivers), et excellente
documentation disponible pour en écrire de nouveaux ;

B systeme multi-taches préemptif et multi-utilisateur (utile
pour la protection du systéme) ;

B pas de garantie de temps-réel dur par défaut;

B nécessite beaucoup de RAM.

TELECOM

EEERI "'/

67/72 SE302 — Samuel Tardieu Septembre 2019

I RTEMS (par OAR)

B |ogiciel libre, disponible pour de nombreuses architectures;

m exécutif Iéger, se combinant lors de la compilation et de
I'édition de liens avec I'application de I'utilisateur;

B systeme temps-réel multi-tadche préemptif ;
B support de la programmation concurrente en Ada;

B implémente tous les services POSIX d’'un systeme
MONO-Processus ;

B trés utilisé dans le milieu des expérimentations physiques,
notamment en milieu spatial ;

m ytilisé dans le projet Mars Reconnaissance Orbiter.

oo T E———— G

I FrceRTOS

B |ogiciel libre (licence MIT depuis I'acquisition par Amazon) ;
B supporte un grand nombre de micro-contréleurs;

B systeme temps-réel multi-taches préemptif, coroutines
sans pile ou les deux a la fois;

B se combine avec I'application finale lors de la compilation
et de I'édition de liens;

B tfres petit, trés rapide et trés bien documenté;
B s’interface avec AWS sous le nom de Amazon FreeRTOS ;

B dans ce cadre, peut utiliser des shadows d’Amazon pour
les 10T et de la mise a jour OTA.

= T E———— G

I chibios

B |ogiciel libre (GPLv3/Apache 2.0 + autres a la demande) ;

B supporte un grand nombre de micro-contréleurs;

B systeme temps-réel multi-tdches préemptif lié avec
I'application;;

B trés petit et trés rapide ;

B jnitialisations statique possible de toutes les structures de
données;

B posséde un HAL (hardware abstraction layer) permettant
de s’abstraire des opérations de bas niveau et un EX
(external devices) ;

B a deux versions (RT et NIL) en fonction des ressources;
B s’integre avec d’autres logiciels libres (gestion de fichiers,

du réseau, etc.).

70/72 SES302 — Samuel Tardieu Septembre 2019 - "

EEER

I 1bed OS

71/72 SE302 — Samuel Tardieu Septembre 2019

logiciel libre (Apache 2.0);

projet collaboratif géré par ARM;

supporte les processeurs a base de Cortex-M (32 bits) ;
systeme temps-réel multi-tadches préemptif lié avec
I'application;;

permet la mise a jour distante du firmware (Pelion device
management) ;

dispose d’outils en ligne de commande pour gérer le cycle
de développement;;

dispose d’'un compilateur en ligne accessible dans un
navigateur;

supporte un grand nombre de protocoles de
communication (UART, USB, WiFi, BLE, 6LoWPAN, LoRa,
NFC, ...).

EEERI

TeLecoM I

B Eic, cic., etc.

Il existe beaucoup d’autres systémes d’exploitation pour
systemes embarqués non décrits ici, entre autres :
® {OS, Windows 10 Mobile, BlackBerry 10 (systémes lourds :
téléphones, tablettes, livres électroniques, télévision
connectée)
B Contiki (réseaux de capteurs);
®m eCos (micro-satellites) ;

m VxWorks (transport, avionique, robotique, équipements
réseau, imprimantes).

TELECOM

EHH

72/72 SE302 — Samuel Tardieu Septembre 2019

	Introduction
	Gestion de la concurrence
	Gestion de la mémoire
	Quelques OS embarqués

