
Jean-Luc Danger 2017 Page 1 Télécom-ParisTech

Architectures ARM
6 novembre 2019

Jean-Luc DANGER

Tarik GRABA

Jean-Luc Danger ,Tarik Graba Page 2 Télécom-ParisTech

La gamme des processeurs ARM

Jean-Luc Danger ,Tarik Graba Page 3 Télécom-ParisTech

ARM licenses (public)

 ARMv8-A

 NVIDIA, Applied Micro, Cavium, AMD, Broadcom, Calxeda, HiSilicon,

Samsung and STMicroelectronics

 Cortex-A15 4 ST-Ericson, TI, Samsung, nVIDIA

 Cortex-A9 9 NEC, nVIDIA, STMicroelectronics, TI, Toshiba …

 Cortex-A8 9 Broadcom, Freescale, Matsushita, Samsung,

STMicroelectronics, Texas Instruments, PMC-Sierra

 Cortex-A5 3 AMD ---

 Cortex-R4 14 Broadcom, Texas Instruments, Toshiba, Inf

 Cortex-M4 5 Freescale, NXP, Atmel, ST

 Cortex-M3 29 Actel, Broadcom, Energy Micro, Luminary, Micro, NXP,

STMicroelectronics, TI, Toshiba, Zilog, …

 Cortex-M0 14 Austria-microsystems, Chungbuk Technopark,NXP, Triad

Semiconductor, Melfas, ST

 Cortex-M0+ Freescale, NXP

 ARM7 172, ARM9 271, ARM11 82

Source : G.N. Khan

Jean-Luc Danger ,Tarik Graba Page 4 Télécom-ParisTech

Plan

 ARM historique : l’ARM7TDMI

 Les Cortex

 Cortex M family

 Cortex A family

 System bus

Jean-Luc Danger ,Tarik Graba Page 5 Télécom-ParisTech

Qu’est ce qu’un ARM7TDMI?

 Processeur à Architecture « Von Neumann »

 Même bus mémoire pour instructions et données

 3 étages de pipeline : Fetch, Decode, Execute

 Instructions sur 32 Bits

 2 instructions d'accès à la mémoire LOAD et STORE

 T : support du mode "Thumb" (instructions sur 16 bits)

 D : extensions pour la mise au point

 M : Multiplieur et instructions pour résultats sur 64 bits.

 I : émulateur embarqué ("Embedded ICE")

Jean-Luc Danger ,Tarik Graba Page 6 Télécom-ParisTech

Vue d’une puce utilisant un ARM7

ARM710 (25mm² en 0.5µm (1995), 2.9 mm² en 0.18µm (2000))

Jean-Luc Danger ,Tarik Graba Page 7 Télécom-ParisTech

Vue simplifiée du Cœur ARM7TDMI

nRESET

nMREQ

SEQ

ABORT

nIRQ

nFIQ

nRW

MAS[1:0]

LOCK

nCPI
CPA

CPB

nWAIT

MCLK

nOPC

BIGEND

ISYNC

nTRANS

nM[4:0]

Logique
de

Contrôle

Multiplieur

Incrémenteur
d’Adresse

D[31:0]

Barrel
shifter

UAL 32 bits

Registre
d’Écriture
Données

Registre de

Lecture
Données

Registre
d’Adresse

A[31:0]

B
u
s

A

B
u
s

B

B
u
s

U
A
L

PC

Mise à jour
PC

Décodage Registre
Instruction

Banc de Registres

Jean-Luc Danger ,Tarik Graba Page 8 Télécom-ParisTech

Banc de registres

r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

r15 (pc)

 16 Registres génériques

 De 0 à 15

 Le PC en fait partie

 Les instructions utilisent forcement
un registre :

 Lire une donnée en mémoire
dans un registre (LOAD)

 Calcul entre registres

 Écrire le contenu d’un registre en
mémoire (STORE)

Jean-Luc Danger ,Tarik Graba Page 9 Télécom-ParisTech

Le Pipeline d’Instructions

FETCH

DECODE

EXECUTE

L’instruction est lue dans la mémoire

Décodage de l’instruction

Registre(s) lu(s) du banc de registres
Opérations de décalage et ALU
Écriture du résultat vers le banc de registres

PC PC

PC - 4 PC-2

PC - 8 PC - 4

Mode: ARM Thumb

La famille ARM7 utilise un pipeline à 3 étages pour augmenter la
vitesse du flot d’instructions dans le microprocesseur.

 Le PC pointe sur l’instruction en cours de lecture (FETCHed), et non sur

l’instruction en cours d’exécution.

Jean-Luc Danger ,Tarik Graba Page 10 Télécom-ParisTech

Exemple: Pipeline Optimal

 il faut 6 cycles pour exécuter 6 instructions =>CPI “Cycles Per Instruction=1

 Toutes les opérations ne jouent que sur des registres (1 cycle)

 Instruction

Cycle 1 2 3 4 5 6

Fetch Decod
e

Execut
e Fetch Decod
e

Execut
e Fetch Decod
e

Execut
e Fetch Decod
e

Execut
e Fetch Decod
e

Execut
e Fetch Decod
e

Execut
e Fetch Decod
e Fetch

 ADD

 SUB

 MOV

 AND

 ORR

 EOR

 CMP

 RSB

Jean-Luc Danger ,Tarik Graba Page 11 Télécom-ParisTech

 Exemple: Pipeline avec LOAD

Cycle

 Instruction

Fetch Decod
e

Execut
e Fetch Decod
e

Execut
e Fetch Decod
e

Execut
e

Data Writeback

Fetch Decod
e

Execut
e Fetch Decod
e Fetch

 ADD

 SUB

 LDR

 MOV

 AND

 ORR

[mem]=>tampon

tampon=>registre

 L’instruction LDR lit une donnée en mémoire et la charge dans un registre

 il faut 6 cycles pour exécuter 4 instructions => CPI = 1,5

"Pipeline stall"

 1 2 3 4 5 6

Jean-Luc Danger ,Tarik Graba Page 12 Télécom-ParisTech

Exemple: Séquence d’Instructions

charger le mot de l’adresse [R8+0x10] dans R0

R1 = R0 + (R4 << 2)

ranger le contenu de R1 à l’adresse [R8+0x14]

LDR R0, [R8, 0x10]

ADD R1, R0, R4, LSL #2

STR R1, [R8, 0x14]

PC = 0x22220000

R4 = 0x00000721

R8 = 0x55551000

[0x55551010] = 0x00000834

Conditions initiales :

Les diagrammes suivants supposent que les instructions précédentes

s’exécutent en un cycle mais ne montrent pas leur comportement.

Jean-Luc Danger ,Tarik Graba Page 13 Télécom-ParisTech

Génération des Adresses

PC[31:2] (mode ARM)
PC[31:1] (mode Thumb)

 Bus ALU[31:0]

+1

A[31:0]
Registre

d’Adresse

PC

Load

Store

Branch

Exceptions

Incrémentation PC

 Mise à jour PC

Vecteurs

0x1C

0x00

Jean-Luc Danger ,Tarik Graba Page 14 Télécom-ParisTech

Multiplicateur

Séquence d’Instructions : Cycle 1

Incrémenteur
d’Adresse

D[31:0]

Barrel
Shifter

UAL 32 bits

Registre
d’Ecriture
Données

Registre de

Lecture
Données

Registre d’Adresse

Banc de Registres

A[31:0]

B
u
s

A

B
u
s

B

B
u
s

U
A
L

Mise à jour
PC

Incrémenteur

Cycle 1

 Lecture de l’instruction LDR

0x22220000

0x22220004

LDR R0, [R8, 0x10]

LDR R0, [R8, 0x10]

ADD R1, R0, R4, LSL #2

STR R1, [R8, 0x14]

Conditions initiales :
PC = 0x22220000

R0 =

R1 =

R4 = 0x00000721

R8 = 0x55551000

[0x55551010] = 0x00000834

Décodage Registre
Instructions

PC

Jean-Luc Danger ,Tarik Graba Page 15 Télécom-ParisTech

Décodage Registre
Instructions

Multiplicateur

Séquence d’Instructions : Cycle 2

Incrémenteur
d’Adresse

D[31:0]

UAL 32 bits

Registre
d’Ecriture
Données

Registre de

Lecture
Données

Registre d’Adresse

Banc de Registres

A[31:0]

B
u
s

A

B
u
s

B

PC

Mise à jour
PC

Incrémenteur

0x22220008

LDR R0, [R8, 0x10]

Cycle 2

 Décodage de l’instruction LDR
 Lecture de l’instruction ADD

ADD R1, R0, R4, LSL #2

0x22220004

B
u
s

U
A
L

LDR R0, [R8, 0x10]

ADD R1, R0, R4, LSL #2

STR R1, [R8, 0x14]

PC = 0x22220004

R0 =

R1 =

R4 = 0x00000721

R8 = 0x55551000

[0x55551010] = 0x00000834

Barrel
Shifter

Jean-Luc Danger ,Tarik Graba Page 16 Télécom-ParisTech

Décodage Registre
Instructions

Multiplicateur

Séquence d’Instructions : Cycle 3

Incrémenteur
d’Adresse

D[31:0]

UAL 32 bits

Registre
d’Ecriture
Données

Registre de

Lecture
Données

Registre d’Adresse

Banc de Registres

A[31:0]

B
u
s

A

B
u
s

B

Mise à jour
PC

Incrémenteur

Cycle 3

 1er cycle d’exécution de LDR

 Calcul de l’adresse en
mémoire de données

 Décodage de l’instruction ADD
 Lecture de l’instruction STR

0x55551000 0x00000010

0x55551010

R8

B
u
s

U
A
L

LDR R0, [R8, 0x10]

ADD R1, R0, R4, LSL #2

STR R1, [R8, 0x14]

PC = 0x2222000C

R0 =

R1 =

R4 = 0x00000721

R8 = 0x55551000

[0x55551010] = 0x00000834

ADD R1, R0, R4, LSL #2

STR R1, [R8, #14]

0x22220008

0x2222000C

0x10

Barrel
Shifter

PC

Jean-Luc Danger ,Tarik Graba Page 17 Télécom-ParisTech

Décodage Registre
Instructions

Multiplicateur

Séquence d’Instructions : Cycle 4

Incrémenteur
d’Adresse

D[31:0]

UAL 32 bits

Registre
d’Ecriture
Données

Registre de

Lecture
Données

Registre d’Adresse

Banc de Registres

A[31:0]

B
u
s

A

B
u
s

B

Mise à jour
PC

Incrémenteur

Cycle 4

 2ème cycle d’exécution de LDR

 Lecture de la mémoire de
données

0x55551010

0x00000834

B
u
s

U
A
L

LDR R0, [R8, 0x10]

ADD R1, R0, R4, LSL #2

STR R1, [R8, 0x14]

PC = 0x2222000C

R0 =

R1 =

R4 = 0x00000721

R8 = 0x55551000

[0x55551010] = 0x00000834

Barrel
Shifter

ADD R1, R0, R4, LSL #2

STR R1, [R8, #14]

PC

Jean-Luc Danger ,Tarik Graba Page 18 Télécom-ParisTech

Décodage Registre
Instructions

Multiplicateur

Séquence d’Instructions : Cycle 5

Incrémenteur
d’Adresse

D[31:0]

UAL 32 bits

Registre
d’Ecriture
Données

Registre de

Lecture
Données

Registre d’Adresse

Banc de Registres

A[31:0]

B
u
s

A

B
u
s

B

B
u
s

A
U

Mise à jour
PC

Incrémenteur

Cycle 5

 3ème cycle d’exécution de LDR

:
 Transfert de la donnée dans

le registre-destination

0x00000834

R0

B
u
s

U
A
L

LDR R0, [R8, 0x10]

ADD R1, R0, R4, LSL #2

STR R1, [R8, 0x14]

PC = 0x2222000C

R0 = 0x00000834

R1 =

R4 = 0x00000721

R8 = 0x55551000

[0x55551010] = 0x00000834

Barrel
Shifter

STR R1, [R8, #14]

ADD R1, R0, R4, LSL #2

PC

Jean-Luc Danger ,Tarik Graba Page 19 Télécom-ParisTech

Décodage Registre
Instructions

Multiplicateur

Séquence d’Instructions : Cycle 6

Incrémenteur
d’Adresse

D[31:0]

UAL 32 bits

Registre
d’Ecriture
Données

Registre de

Lecture
Données

Registre d’Adresse

Banc de Registres

A[31:0]

B
u
s

A

B
u
s

B

Mise à jour
PC

Incrémenteur

Cycle 6

 Exécution de ADD
 Décodage de l’instruction STR
 Lecture de l’instruction suivant

STR STR R1, [R8, #14]

Instruction str+1

0x2222000C

R1

0x22220010

R0 R4

0x00000834

0x00000721

0x00001C84

0x000024B8

B
u
s

U
A
L

LDR R0, [R8, 0x10]

ADD R1, R0, R4, LSL #2

STR R1, [R8, 0x14]

PC = 0x22220010

R0 = 0x00000834

R1 = 0x000024B8

R4 = 0x00000721

R8 = 0x55551000

[0x55551010] = 0x00000834

Barrel
Shifter

PC

Jean-Luc Danger ,Tarik Graba Page 20 Télécom-ParisTech

Décodage Registre
Instructions

Multiplicateur

Séquence d’Instructions : Cycle 7

Incrémenteur
d’Adresse

D[31:0]

UAL 32 bits

Registre
d’Ecriture
Données

Registre de

Lecture
Données

Registre d’Adresse

Banc de Registres

A[31:0]

B
u
s

A

B
u
s

B

Mise à jour
PC

Incrémenteur

Cycle 7

 1er cycle d’exécution de STR

 Calcul de l’adresse en
mémoire de données

 Décodage de l’instruction
suivant STR

 Lecture de l’instruction
STR+2

0x55551000 0x00000014

Instruction str+2

0x55551014

R8

0x22220010

0x22220014

B
u
s

U
A
L

LDR R0, [R8, 0x10]

ADD R1, R0, R4, LSL #2

STR R1, [R8, 0x14]

PC = 0x22220014

R0 = 0x00000834

R1 = 0x000024B8

R4 = 0x00000721

R8 = 0x55551000

[0x55551010] = 0x00000834

Instruction str+1

0x14

Barrel
Shifter

PC

Jean-Luc Danger ,Tarik Graba Page 21 Télécom-ParisTech

Décodage Registre
Instructions

Multiplicateur

Séquence d’Instructions : Cycle 8

Incrémenteur
d’Adresse

D[31:0]

UAL 32 bits

Registre
d’Ecriture
Données

Registre de

Lecture
Données

Registre d’Adresse

Banc de Registres

A[31:0]

B
u
s

A

B
u
s

B

Mise à jour
PC

Incrémenteur

Cycle 8

 2ème cycle d’exécution de STR

 Ecriture en mémoire de
données

Instruction str+2

0x55551014

R1

0x000024B8

B
u
s

U
A
L

LDR R0, [R8, 0x10]

ADD R1, R0, R4, LSL #2

STR R1, [R8, 0x14]

PC = 0x22220014

R0 = 0x00000834

R1 = 0x000024B8

R4 = 0x00000721

R8 = 0x55551000

[0x55551014] = 0x000024B8

Barrel
Shifter

Instruction str+1

PC

Jean-Luc Danger ,Tarik Graba Page 22 Télécom-ParisTech

Accès à la Mémoire et aux E/S

 2 instructions d'accès :

 LOAD (LDR) et STORE (STR)

 L’adressage mémoire se fait sur 32 bits

 => 4 Go.

 Type des données :

 octets

 demi-mots (16 bits)

 mots (32 bits)

 Les mots doivent être alignés sur des adresses

multiples de 4 et les demi-mots, de 2.

 Les E/S sont dans la « mappe » mémoire

Jean-Luc Danger ,Tarik Graba Page 23 Télécom-ParisTech

Organisation de la mémoire

octets

« Little Endian »

0x04

0x08

0x0C

0x10

0x11

0x12

0x13

0x14

0x15

0x16

0x17

0x18

0x19

0x1A

La mémoire peut être vue comme une ligne d’octets repliée en mots.
2 façon d’organiser 4 octets en mot :

mots

octets

« Big Endian »

0x04

0x08

0x0C

0x10

0x14

0x15

0x16

0x17

0x18

0x19

0x1A

mots

0x10

0x11

0x12

0x10

0x13

Jean-Luc Danger ,Tarik Graba Page 24 Télécom-ParisTech

Les Modes du Microprocesseur

 Un microprocesseur ARM a 7 modes opératoires de base :

 User : mode sans privilège où la plupart des tâches s’exécutent

 FIQ : on y entre lors d’une interruption de priorité haute (rapide)

 IRQ : on y entre lors d’une interruption de priorité basse (normale)

 Supervisor : on y entre à la réinitialisation et lors d’une interruption
logicielle SWI “SoftWare Interrupt”

 Abort : utilisé pour gérer les violations d’accès mémoire

 Undef : utilisé pour gérer les instructions non définies (“undefined”)

 System : mode avec privilège utilisant les mêmes registres que le
mode User

Jean-Luc Danger ,Tarik Graba Page 25 Télécom-ParisTech

Les Registres

Mode
Utilisateur

r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

r15 (pc)

cpsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

spsr

Registres actifs

Bancs de
Registres

(Spécifiques à un mode)

FIQ IRQ SVC Undef Abort

Jean-Luc Danger ,Tarik Graba Page 26 Télécom-ParisTech

Les Registres d’État CPSR et SPSR

• Indicateurs conditionnels

– N = Résultat Négatif

– Z = Résultat nul (Zéro)

– C = Retenue (Carry)

– V = Débordement
(oVerflow)

• Validation des interruptions

– I = 1 dévalide IRQ.

– F = 1 dévalide FIQ.

• Mode Thumb

– T

• Indicateurs de mode

– Indiquent le mode actif

27 31

N Z C V

28 6 7

I F T mode

16 23

8 15

5 4 0 24

f s x c

 N o n D é f i n i

Jean-Luc Danger ,Tarik Graba Page 27 Télécom-ParisTech

Jeu d’Instructions ARM(1)

 Les instructions sont sur 32 bits

 La plupart des instructions s’exécutent en un seul cycle

 Les instructions peuvent être exécutées

conditionnellement

 Architecture Load/Store

 Instructions de traitement de données

─ SUB r0,r1,#5 ; r0= r1-5

─ ADD r2,r3,r3,LSL #2 ; r2=R3+4*r3=5*r3

─ ANDS r4,r4,#0x20 ; r4=r4 ET 0x20

─ ADDEQ r5,r5,r6 ; r5=r5+r6 si Z

Exécution si le résultat précédent est 0

Positionnement des indicateurs

Jean-Luc Danger ,Tarik Graba Page 28 Télécom-ParisTech

Jeu d’Instructions ARM(2)

 Instructions spécifiques d’accès à la mémoire
─ LDR r0,[r1],#4 ; r0=mem(r1), r1= r1+4

─ STRNEB r2,[r3,r4] ; mem(r3+r4)=r2

─ LDRSH r5,[r6,#8]! ; r5=mem(r6+8), r6=r6+8

─ STMFD sp!,{r0,r2-r4} ; transferts multiples

─ ;empilage : mem(sp+i)=liste de registres

Si Z=0

En octet

En 16 bits

Avec extension

de signe sur les

16MSBs

r6=r6+8 en fin d’exécution

r4
r3
r2
r0

10F0

10EC

10E8

10E4

10E0

10DC

SP au début

SP à la fin

Opération réciproque de dépilage :
LDMFD sp!,{r0,r2-r4}
; liste de registres=mem(sp+i

Jean-Luc Danger ,Tarik Graba Page 29 Télécom-ParisTech

:

:

BL func1

:

:

Jeu d’Instructions ARM(3)

 Branchement et sous programmes :

 B <étiquette>

 Calculé par rapport au PC. Étendue du branchement: ±32 Mbyte.

 BL <subroutine>

 Stocke l’adresse de retour dans le registre LR

 Le retour se fait en rechargeant le registre LR dans le PC

 Pour les fonctions non terminales, LR devra être sauvegardé

STMFD sp!,{regs,lr}

:

BL func2

:

LDMFD sp!,{regs,pc}

f1 f2

:

:

:

:

:

MOV pc, lr

Restauration

du contexte

Sauvegarde

du contexte
et du LR car f1

n'est pas terminale

Comme f2 est
une fonction terminale
(c’est-à-dire appelée
par aucune autre),

LR n’a pas besoin d’être
sauvegardé
sur la pile.

Jean-Luc Danger ,Tarik Graba Page 30 Télécom-ParisTech

 Exemple: Pipeline avec Saut

Fetch Decod
e

Execut
e Fetch Decod
e

Execut
e Fetch Decod
e Fetch

Cycle 1 2 3 4 5

0x8000 BL

0x8004 X

0x8008 XX

0x8FEC ADD

0x8FF0 SUB

0x8FF4 MOV

Addresse Instruction

Fetch Decod
e

Execute Linkret Adjust

Fetch Decod
e Fetch

LR=PC LR=LR-4

 L’instruction BL effectue un appel de sous-programme

 Le pipeline est cassé (Stall) et 2 cycles sont perdus

Jean-Luc Danger ,Tarik Graba Page 31 Télécom-ParisTech

Exécutions conditionnelles

 La plupart des instructions peuvent être exécutées

conditionnellement aux indicateurs Z,C,V,N
─ CMP r0,#8 ; r0=8?

─ BEQ fin ; si oui (Z=1) PC=fin

─ ADD r1,r1,#4 ;

 Équivalent à

─ CMP r0,#8 ; r0=8?

─ ADDNE r1,r1,#4 ; si non (Z=0)

+ petit et

+ rapide

Conditions courantes : EQ, NE,PL,MI,CS,VS

=0, 0,0,<0,carry set, debordement

Jean-Luc Danger ,Tarik Graba Page 32 Télécom-ParisTech

Exceptions

L’activation d’une exception donne lieu au passage dans une mode particulier et au

branchement dans un programme par le biais d’une table de vecteurs.

7 sortes :

TYPE

RESET

Instruction indéfinie

Interruption logicielle SWI

Problème Fetch instruction

Problème Fetch donnée

Interruption matérielle IRQ

Interruption matérielle FIRQ

VECTEUR

0x00000000

0x00000004

0x00000008

0x0000000C

0x00000010

0x00000018

0x0000001C

MODE

Supervisor

Undef

Supervisor

Abort

Abort

IRQ

FIQ

Retour en USER

MOVS PC,r14

MOVS PC,r14

SUBS PC,r14,#4

SUBS PC,r14,#8

SUBS PC,r14,#4

SUBS PC,r14,#4

Le CSPR et le PC sont

restaurés en même temps

Jean-Luc Danger ,Tarik Graba Page 33 Télécom-ParisTech

Processus de gestion des Exceptions

Exception
handler

Main

Application
1. Save processor status

 Copies CPSR into SPSR_<mode>

 Stores the return address in LR_<mode>

 Adjusts LR based on exception type

2. Change processor status for exception

 Mode field bits

 ARM or Thumb state

 Interrupt disable bits (if appropriate)

 Sets PC to vector address

3. Execute exception handler

 <users code>

4. Return to main application

 Restore CPSR from SPSR_<mode>

 Restore PC from LR_<mode>

 1 and 2 performed automatically by the core

 3 and 4 responsibility of software

Jean-Luc Danger ,Tarik Graba Page 34 Télécom-ParisTech

 Exemple: Pipeline avec Interruption

Cycle 1 2 3 4 5 6 7 8

IRQ

Adresse Instruction

0x8000 ADD

0x8008 MOV

0x0018 B (to 0xAF00)

0x8004 SUB

0x001C XX

0x0020 XXX

0xAF00 STMFD

0xAF04 MOV

0xAF08 LDR

Fetch Decod
e

Execut
e

Linkret

Linkre
t

Adjust

Fetch

Fetch

Execute

IRQ

Decode
IRQ

Adjust

Fetch Decod
e

Execute

Fetch Decod
e

Fetch

Fetch Decod
e

Execut
e Fetch Decod
e

Fetch

Linkre
t

Fetch 0x800C X

Vecteur interruption

PC=vecteur

PC=adresse de branchement

 Latence minimum pour le service de l’interruption IRQ = 7 cycles

Jean-Luc Danger ,Tarik Graba Page 35 Télécom-ParisTech

Coprocesseurs

 16 coprocesseurs peuvent être définis pour étendre le jeu

d’instruction ARM

 Les coprocesseurs accèdent à la mémoire et aux registres

directement par le biais d’instructions spécifiques

 Le coprocesseur 15 est dédié au contrôleur cache et MMU

Mécanisme de
poignée de main

cœur ARM Coprocesseur X

Bus de
donnée

Coprocesseur Y

Jean-Luc Danger ,Tarik Graba Page 36 Télécom-ParisTech

Mode Thumb

 Jeu d’instructions codé sur 16 bits

 Optimisé pour la densité de code à partir de code C (gain 30%)

 Augmente les performances pour des espaces mémoires réduits

 Sous ensemble des fonctionnalités du jeu d’instructions ARM

 Passage du mode ARM à Thumb

 l’instruction BX

0 1
5

3
1

0

ADDS r2,r2,#1

ADD r2,#1

 Exécution conditionnelle pas utilisée

 Registres Source et Destination identiques
(accumulateur)

 Seul les premiers registres sont utilisés

 Les constantes sont de taille limitée

 Pas de Barrel shifter dans une même
instruction

Limitations

Jean-Luc Danger ,Tarik Graba Page 37 Télécom-ParisTech

Port JTAG

 Contrôleur interne ou "TAP controller" pour

 Test de la connectivité (par Boundary Scan testing)

 Accès aux ressources internes des processeurs pour le

débogage

 Fonctions personnalisées

Ligne à tester

chip1

TDI TD0

chip2

TDI TD0

Boundary Scan Test :

Jean-Luc Danger ,Tarik Graba Page 38 Télécom-ParisTech

JTAG architecture

Jean-Luc Danger ,Tarik Graba Page 39 Télécom-ParisTech

Débogage Embarqué

Interface
JTAG
5 fils

Données

Adresses

Contrôles

BREAKPT
Logique

EmbeddedICE

cœur

ARM

7TDMI

Outil de Débogage
tournant sur

l’ordinateur hôte

TAP

Convertisseur
de protocole

D[31:0]

A[31:0]

ARM7TDMI

Jean-Luc Danger ,Tarik Graba Page 40 Télécom-ParisTech

Unité de Gestion des Points d’Arrêt

Contrôle

Valeur
Adresses

Valeur
Données

Masque

Adresses

Masque

Données

Masque

Contrôle

A[31:0]

C

o

m

p

a

r

a

t

e

u

r

D[31:0]

RANGEOUT

ENABLE Valeur
Contrôle

Jean-Luc Danger ,Tarik Graba Page 41 Télécom-ParisTech

ARM9TDMI

 Implémentation à double bus (architecture Harvard)

 Augmente la bande passante entre le microprocesseur et la

mémoire
─ Interface mémoire Instructions

─ Interface mémoire Données

 Permet l’accès simultané aux mémoires Instructions et

Données

 => Modifications pour améliorer le nombre de cycles par

instruction (CPI “Cycles Per Instruction”) jusqu’à ~1.5

 5 niveaux de pipeline

 => Modifications pour améliorer la fréquence maximum de

l’horloge

Jean-Luc Danger ,Tarik Graba Page 42 Télécom-ParisTech

Modifications du Pipeline pour le ARM9TDMI

Instruction
Fetch Reg Select

Reg
Read Shift ALU

Reg
Write

Instruction
Fetch

 Shift
+ ALU

Memory
Access

Reg
Write Reg

Read
Reg

Decode

FETCH DECODE EXECUTE

FETCH DECODE EXECUTE MEMORY WRITE

Pipeline du ARM9TDMI

Pipeline du ARM7TDMI

ARM or Thumb
Inst Decode

ThumbARM
decompress

ARM decode

Jean-Luc Danger ,Tarik Graba Page 43 Télécom-ParisTech

ARM9TDMI architecture

5 étages de pipeline

1

2

3

4

5

Jean-Luc Danger ,Tarik Graba Page 44 Télécom-ParisTech

Plan

 ARM historique : l’ARM7TDMI

 Les Cortex

 Cortex M family

 Cortex A family

 System bus

Jean-Luc Danger ,Tarik Graba Page 45 Télécom-ParisTech

La gamme des processeurs ARM

Jean-Luc Danger ,Tarik Graba Page 46 Télécom-ParisTech

Halfword and

signed halfword /

byte support

Thumb

instruction set

(v4T)

Improved interworking

(switch between

ARM/thumb)

FP unit

CLZ (counts # of 0)

Saturated arithmetic

DSP MAC

Extensions:

 * Jazelle (5TEJ)

SIMD

Thumb-2

TrustZone

Multi-processing

v6 Memory architecture

Unaligned data support

Extensions:

*Thumb-2 (6T2)

*TrustZone® (6Z)

*Multicore (6K)

*Thumb only (6M)

 Implementations of the same architecture can be different:

 Cortex-A8 - architecture v7-A, with a 13-stage pipeline

 Cortex-A9 - architecture v7-A, with an 8-stage pipeline

SIMD-Neon

Virtualization

3 Profiles:

7-A Applications

7-R Real-time

7-M Microcontroller

v4 v5 v6 v7

Development of the ARM Architecture

v8

AArch32 :

compatibilité

ARMv7 + nouvelles

instructions

AArch64 : 64 bit-

data + 32 registres

de 64 bits(à la

place de 16 de 32

bits)

Crypto
Bytecode

Executed in HW

CORTEX

Jean-Luc Danger ,Tarik Graba Page 47 Télécom-ParisTech

Which architecture is my processor?

Jean-Luc Danger ,Tarik Graba Page 48 Télécom-ParisTech

Architecture ARMv7 profiles

 Application profile (ARMv7-A)

 Memory management support (MMU)

 Highest performance

─ Influenced by multi-tasking OS system requirements

 TrustZone: Insulation zones for security

 Jazelle-RCT: supports for java JIT compilation

 Real-time profile (ARMv7-R)

 Protected memory (MPU)

 Low latency and predictability ‘real-time’ needs

 Microcontroller profile (ARMv7-M, ARMv7E-M, ARMv6-M)

 Lowest gate count

 Low energy

Jean-Luc Danger ,Tarik Graba Page 49 Télécom-ParisTech

Thumb vs Thumb2

Jean-Luc Danger ,Tarik Graba Page 50 Télécom-ParisTech

Perfomance/Code for instruction sets

Jean-Luc Danger ,Tarik Graba Page 51 Télécom-ParisTech

Plan

 ARM historique : l’ARM7TDMI

 Les Cortex

 Cortex M family

 Cortex A family

 System bus

Jean-Luc Danger ,Tarik Graba Page 52 Télécom-ParisTech

ARMv7-M Profile Overview

 v7-M Cores targeted to the microcontroller market
─ Simpler to program – entire application can be programmed in C

─ Fewer features needed than in application processors

 Register and ISA changes from other ARM cores
─ Only one set of registers

─ xPSR has different bits than CPSR

 Different modes and exception models
─ Only two modes: Thread mode and Handler mode

─ Vector table is a set of addresses, not instructions

─ Exceptions automatically save state (r0-r3, r12, lr, xPSR, pc) on the stack

 Different system control/memory layout
─ Cores have a fixed memory map

─ No coprocessor 15

─ Memory mapped control registers

Jean-Luc Danger ,Tarik Graba Page 53 Télécom-ParisTech

Cortex-M0

Cortex M3
Total 60k*
Gates

 ARMv6-M Architecture
 16-bit Thumb-2 with system control

instructions

 Fully programmable in C

 3-stage pipeline

 von Neuman architecture

 AHB-Lite bus interface

 Fixed memory map

 1-32 interrupts
 Configurable priority levels

 Non-Maskable Interrupt support

 Low power support

 Core configured with or without

debug
 Variable number of watchpoints and

breakpoints

Jean-Luc Danger ,Tarik Graba Page 54 Télécom-ParisTech

Cortex-M3

Cortex M3
Total 60k*
Gates

 ARMv7-M Architecture

 Thumb-2 only

 Fully programmable in C

 3-stage pipeline

 von Neumann architecture

 Optional MPU

 AHB-Lite bus interface

 Fixed memory map

 1-240 interrupts

 Configurable priority levels

 Non-Maskable Interrupt support

 Debug and Sleep control

 Serial wire or JTAG debug

 Optional ETM (traces for

debug)

Jean-Luc Danger ,Tarik Graba Page 55 Télécom-ParisTech

Cortex M3 pipeline

Branchement

spéculatif =>

-1 cycle

LD/ST dans

la même

phase EXE

Jean-Luc Danger ,Tarik Graba Page 56 Télécom-ParisTech

Processor Register Set

 Registers R0-R12

 General-purpose registers

 R13 is the stack pointer (SP) - 2 banked

versions

 R14 is the link register (LR)

 R15 is the program counter (PC)

 PSR (Program Status Register)

 Not explicitly accessible

 Saved to the stack on an exception

 Subsets available as APSR, IPSR, and EPSR

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R15 (PC)

PSR

R13 (SP)

R14 (LR)

Jean-Luc Danger ,Tarik Graba Page 57 Télécom-ParisTech

Special Purpose Registers

 Special Purpose Interrupt Mask Registers: PRIMASK,

FAULTMASK, BASEPRI

─ Used to modify exception priorities by special CPSx instructions

 Special Purpose CONTROL Register

─ 2 bits:

• Bit 0 defines Thread mode privilege

• Bit 1 defines Thread mode stack

 The Special Purpose Registers are not memory-mapped

─ Accessed via specific instructions

─ MRS – Move special purpose register to general-purpose register

─ MSR – Move general-purpose register to special purpose register

Jean-Luc Danger ,Tarik Graba Page 58 Télécom-ParisTech

System Timer – SysTick

 Flexible system timer

 24-bit self-reloading down counter

─ Reload on count == 0

─ Optionally cause SysTick interrupt on count == 0

 Reload register

 Calibration value

 Clock source is CPU clock or optional external timing

reference

 Software selectable if provided

 Reference pulse widths High/Low must exceed processor clock

period

─ Counted by sampling on processor clock

 Calibration Register provides value required for 10ms interval

 STCALIB inputs tied to appropriate value

Jean-Luc Danger ,Tarik Graba Page 59 Télécom-ParisTech

Modes Overview

ARM Processor

Application Code

Thread

Mode

Exception Code

Handler

Mode

Exception

Entry
Exception

Return

Reset

Not shown: Handler mode can also be re-entered on exception return

Jean-Luc Danger ,Tarik Graba Page 60 Télécom-ParisTech

Instruction Set Examples:

 Data Processing:

 MOV r2, r5 ; r2 = r5

 ADD r5, #0x24 ; r5 = r5 + 36

 ADD r2, r3, r4, LSL #2 ; r2 = r3 + (r4 * 4)

 LSL r2, #3 ; r2 = r2 * 8

 MOVT r9, #0x1234 ; upper halfword of r9 = #0x1234

 MLA r0, r1, r2, r3 ; r0 = (r1 * r2) + r3

 Memory Access:

 STRB r2, [r10, r1] ; store lower byte in r2 at {r10 + r1}

 LDR r0, [r1, r2, LSL #2] ; load r0 with data at address {r1 + r2 * 4}

 Program Flow:

 BL <label> ; PC relative branch to <label> location, and

return address stored in LR (r14)

Jean-Luc Danger ,Tarik Graba Page 61 Télécom-ParisTech

Exception Handling

 Exception main types:
─ Reset

─ Non-maskable Interrupts (NMI)

─ Faults

─ SVCall

─ External Interrupt

─ SysTick Interrupt

 Exceptions processed in Handler mode (except Reset)

 Exceptions always run privileged

 Interrupt handling

 Interrupts are a sub-class of exception

 Automatic save and restore of processor registers (xPSR, PC,

LR, R12, R3-R0)

 Allows handler to be written entirely in ‘C’

Jean-Luc Danger ,Tarik Graba Page 62 Télécom-ParisTech

External Interrupts

 External Interrupts handled by Nested Vectored

Interrupt Controller (NVIC)

─ Tightly coupled with processor core

 One Non-Maskable Interrupt (NMI) supported

 ARMv7-M supports up to 496 interrupts

…
…

Cortex-Mx

Processor Core

INTISR[0]

…

…

INTISR[N]

INTNMI

NVIC

Cortex-Mx Integration Layer

Jean-Luc Danger ,Tarik Graba Page 63 Télécom-ParisTech

Exception Handling Example

Core Execution

Higher Priority

Base CPU

IRQ2

IRQ1

Foreground ISR2 ISR1 ISR2 Foreground

Time

IRQ3

ISR3

(ISR 2 resumes)

Jean-Luc Danger ,Tarik Graba Page 64 Télécom-ParisTech

Vector Table for ARMv7-M

 First entry contains initial Main SP

 All other entries are addresses for
exception handlers

 Table has up to 496 external
interrupts

 Table may be relocated

 Use Vector Table Offset Register

 Still require minimal table entries at
0x0 for booting the core

 Each exception has a vector number

 Used in Interrupt Control and State
Register to indicate the active or
pending exception type

 Table can be generated using C code

 The compiler knows the SP at boot
time

 Example provided later

Reserved (x4)

Usage Fault

Mem Manage Fault

Hard Fault

NMI

Reset

Initial Main SP

0x1C to 0x28

0x18

0x14

0x10

0x0C

0x08

0x04

0x00

16 + N

…

16

15

14

13

12

11 SVC

Debug Monitor

Reserved

PendSV

SysTick

External 0

Bus Fault

…

External N 0x40 + 4*N

…

0x40

0x3C

0x38

0x34

0x30

0x2C

7-10

6

5

4

3

2

1

N/A

Address Vector #

Jean-Luc Danger ,Tarik Graba Page 65 Télécom-ParisTech

Reset Behavior

1. A reset occurs (Reset input was asserted)

2. Load MSP (Main Stack Pointer) register initial value from address 0x00

3. Load reset handler vector address from address 0x04

4. Reset handler executes in Thread Mode

5. Optional: Reset handler branches to the main program

0x04

0x00

1

Reset Handler

Initial value of MSP

Reset Handler Vector

r13 (MSP)

2

4

3

Main

5

Jean-Luc Danger ,Tarik Graba Page 66 Télécom-ParisTech

Exception Behaviour

1. Exception occurs

 Current instruction stream stops

 Processor accesses vector table

2. Vector address for the exception loaded from the vector table

3. Exception handler executes in Handler Mode

4. Exception handler returns to main

Exception Handler

Exception Vector

2

3

Main

1

4

Jean-Luc Danger ,Tarik Graba Page 67 Télécom-ParisTech

Interrupt Service Routine Entry

 When receiving an interrupt
─ the processor will finish the current instruction for most instructions

─ To minimize interrupt latency, the processor can take an interrupt during

the execution of a multi-cycle instruction - see next slide

 Processor state automatically saved to the current stack
─ 8 registers are pushed: PC, R0-R3, R12, LR, xPSR

─ Follows ARM Architecture Procedure Calling Standard (AAPCS)

 During (or after) state saving the address of the ISR is read

from the Vector Table

 Link Register is modified for interrupt return

 First instruction of ISR executed
─ For Cortex-M3 or Cortex-M4 the total latency is normally 12 cycles,

 ISR executes from Handler mode with Main stack

Jean-Luc Danger ,Tarik Graba Page 68 Télécom-ParisTech

Nested Vectored Interrupt Controller

Jean-Luc Danger ,Tarik Graba Page 69 Télécom-ParisTech

Returning From Interrupt

 Return from interrupt with the following instructions

 The PC is loaded with “magic” value of 0xFFFF_FFFX (same format as

EXC_RETURN)
─ LDR PC, 0xFF..FX or LDM/POP or BX LR (most common)

Jean-Luc Danger ,Tarik Graba Page 70 Télécom-ParisTech

Returning From Interrupt

 Return from interrupt with the following instructions

 The PC is loaded with “magic” value of 0xFFFF_FFFX (same format as

EXC_RETURN)
─ LDR PC, 0xFF..FX or LDM/POP or BX LR (most common)

 If no interrupts are pending, foreground state is restored

 Stack and state specified by EXC_RETURN is used

 Context restore on Cortex-M3 and Cortex-M4 requires 10 cycles

 If other interrupts are pending, the highest priority may be serviced

 Serviced if interrupt priority is higher than the foreground’s base priority

 Process is called Tail-Chaining as foreground state is not yet restored

 Latency for servicing new interrupt is only 6 cycles on M3/M4 (state already

saved)

 If state restore is interrupted, it is abandoned

 New ISR executed without state saving (original state still intact and valid)

 Must still fetch new vector and refill pipeline (6-cycle latency on M3/M4)

Jean-Luc Danger ,Tarik Graba Page 71 Télécom-ParisTech

The vector table at address
0x0 is minimally required to
have 4 values: stack top,
reset routine location,
NMI ISR location,
HardFault ISR location

Vector Table in C

Once interrupts
are enabled, the
vector table
(whether at 0 or in
SRAM) must then
have pointers to all
enabled (by mask)
exceptions

The SVCall ISR
location must be
populated if the SVC
instruction will be
used

typedef void(* const ExecFuncPtr)(void) __irq;

#pragma arm section rodata="exceptions_area”

ExecFuncPtr exception_table[] = {

 (ExecFuncPtr)&Image$$ARM_LIB_STACK$$ZI$$Limit, /* Initial SP */

 ExecFuncPtr)__main, /* Initial PC */

 NMIException,

 HardFaultException,

 MemManageException,

 BusFaultException,

 UsageFaultException,

 0, 0, 0, 0, /* Reserved */

 SVCHandler,

 DebugMonitor,

 0, /* Reserved */

 PendSVC,

 SysTickHandler

 /* Configurable interrupts start here...*/

};

#pragma arm section

Jean-Luc Danger ,Tarik Graba Page 72 Télécom-ParisTech

Processor Memory Map

Code

SRAM

System

Peripheral

External
Peripheral

External
SRAM

FFFF_FFFF

2000_0000

4000_0000

6000_0000

A000_0000

E000_0000

0000_0000

512MB

1GB

1 GB

512MB

512MB

512MB

ITM

Internal Private Peripheral Bus

E000_E000

E000_3000

E000_2000

E000_1000

E000_0000

E000_F000

E00F_F000

E004_2000

E004_1000

E004_0000

E00F_FFFF
External Private Peripheral Bus

DWT

FPB

NVIC

RESERVED

RESERVED

UNUSED

TPIU

ETM

ROM Table

E003_FFFF

(XN)

Jean-Luc Danger ,Tarik Graba Page 73 Télécom-ParisTech

Cortex-M4

Cortex M3
Total 60k*
Gates

 ARMv7E-M Architecture

 Thumb-2 only

 DSP extensions

 Optional FPU (Cortex-M4F)

 Otherwise, same as Cortex-M3

 Implements full Thumb-2

instruction set

 Saturated math (e.g. QADD)

 Packing and unpacking (e.g. UXTB)

 Signed multiply (e.g. SMULTB)

 SIMD (e.g. ADD8)

Jean-Luc Danger ,Tarik Graba Page 74 Télécom-ParisTech

Cortex-M4F Floating Point Registers

 FPU provides a further 32

single-precision registers

 Can be viewed as either

 32 x 32-bit registers

 16 x 64-bit doubleword

registers

 Any combination of the above

S31

S30

S29

S28

S3

S2

S1

S0

S7

S6

S5

S4

~
~

~
~

D15

D14

D1

D0

D3

D2

~
~

~
~

Jean-Luc Danger ,Tarik Graba Page 75 Télécom-ParisTech

Binary Upwards Compatibility

ARMv6-M

Architecture

ARMv7-M

Architecture

Jean-Luc Danger ,Tarik Graba Page 76 Télécom-ParisTech

Plan

 ARM historique : l’ARM7TDMI

 Les Cortex

 Cortex M family

 Cortex A family

 System bus

Jean-Luc Danger ,Tarik Graba Page 77 Télécom-ParisTech

Cortex-A8
 ARMv7-A Architecture

 Thumb-2

 Thumb-2EE (Jazelle-
RCT)

 TrustZone extensions

 MMU

 64-bit or 128-bit AXI
Interface

 L1 caches

 16 or 32KB each

 Unified L2 cache

 0-2MB in size

 8-way set-associative

 Optional features

 VFPv3 Vector Floating-Point

 NEON media processing engine

 Dual-issue, super-scalar 13-stage pipeline

 Branch Prediction & Return Stack

 NEON and VFP implemented at end of pipeline

Jean-Luc Danger ,Tarik Graba Page 78 Télécom-ParisTech

Cortex-A9

 ARMv7-A Architecture

 Thumb-2, Thumb-2EE

 TrustZone support

 Variable-length Multi-issue

pipeline

 Register renaming

 Speculative data prefetching

 Branch Prediction & Return

 Stack

 64-bit AXI instruction and

data interfaces

 TrustZone extensions

 L1 Data and Instruction

caches

 16-64KB each

 4-way set-associative

 Optional features:

 PTM instruction to Trace execution

 IEM power saving support

 Full Jazelle DBX support

 VFPv3-D16 Floating-Point Unit (FPU) or

NEON™ media processing engine

Jean-Luc Danger ,Tarik Graba Page 79 Télécom-ParisTech

Cortex-A15 MPCore

 1-4 processors per cluster

 Fixed size L1 caches (32KB)

 Integrated L2 Cache

 512KB – 4MB

 System-wide coherency

support with AMBA 4 ACE

 Backward-compatible with

AXI3 interconnect

 Integrated Interrupt Controller

 0-224 external interrupts for

entire cluster

 CoreSight debug

 Advanced Power Management

 Large Physical Address Extensions (LPAE) to ARMv7-A Architecture

Jean-Luc Danger ,Tarik Graba Page 80 Télécom-ParisTech

Cortex A9 Microarchitecture Overview

 Variable length, out of order, superscalar pipeline

 Two instructions are fetched in one cycle

 Issue up to 4 instructions per cycle into:

─ Primary data processing pipeline

─ Secondary data processing pipeline

─ Load-store pipeline

─ Compute engine (FPU/NEON) pipeline

 Speculative execution

 Supporting virtual renaming of physical registers and removing

pipelines stalls due to data dependencies

Jean-Luc Danger ,Tarik Graba Page 81 Télécom-ParisTech

Cortex A9 Pipeline

Jean-Luc Danger ,Tarik Graba Page 82 Télécom-ParisTech

CortexA9 Microarchitecture

Instruction

Fetch

Decode

Issue Rename Execute Writeback

Memory

Coresight/JTAG
debug

Jean-Luc Danger ,Tarik Graba Page 83 Télécom-ParisTech

Instruction Fetch

 Instruction cache size:

 16KB, 32KB, or 64KB

 Superscalar pipeline:

 fetching two instructions at once

 Dynamic Branch Prediction

Jean-Luc Danger ,Tarik Graba Page 84 Télécom-ParisTech

Branch Prediction

 Dynamic Branch

Prediction:

 Global History Buffer: 1K ~

16K entries

 Branch-Target Address

Cache: 512 ~ 4K entries

 Return stack of 4 x 32 bits

 Fast-loop mode:
 instruction loop that are

smaller than 64 bytes often

complete without additional

instruction cache accesses

Jean-Luc Danger ,Tarik Graba Page 85 Télécom-ParisTech

Branch Prediction : BTAC cache

Jean-Luc Danger ,Tarik Graba Page 86 Télécom-ParisTech

Branch Prediction : History Buffer

Jean-Luc Danger ,Tarik Graba Page 87 Télécom-ParisTech

Instruction Decode

Super Scalar

Decoder

Capable of

decoding two full

instructions per

cycle

Jean-Luc Danger ,Tarik Graba Page 88 Télécom-ParisTech

Renaming

 Removes hazard in pipeline by solving data dependencies

 Use simplified stalling logic

 Can unroll simple code loops

Jean-Luc Danger ,Tarik Graba Page 89 Télécom-ParisTech

Issue

 Issue can be fed maximum of 2 instructions per cycle

 Issue can dispatch up to 4 instructions per cycle

 Out of order selection of instructions from queue

Jean-Luc Danger ,Tarik Graba Page 90 Télécom-ParisTech

Execute

 Variable length Executing Stage (1 ~ 3 cycles)

 Most Instructions finish within 1 cycle

 Instruction which folds shifts and rotates can take 3 cycles

─ ADD r0, r1, r2 (1 cycle)

─ ADD r0, r1, r2 LSL #2 (2 cycle)
• Corresponds to a = b + (c << 2);

─ ADD r0, r1, r2 LSL r3 (3 cycle)
• Corresponds to a = b + (c << d);

Jean-Luc Danger ,Tarik Graba Page 91 Télécom-ParisTech

NEON

 Wide SIMD data processing architecture

 32 registers x 64 bit wide or 16 registers x 128 bit wide

 NEON instructions perform “Packed SIMD” processing

─ Registers can be considered as “vector” of same data type

─ Instructions perform the same operation in all lanes

http://www.arm.com/files/pdf/AT_-_NEON_for_Multimedia_Applications.pdf

Jean-Luc Danger ,Tarik Graba Page 92 Télécom-ParisTech

NEON Execute

 NEON Media Processing Engine supports vector

computations on:

 half-precision (16bit), single-precision (32bit), double-precision

(64bit) floating-point numbers

 8, 16, 32 and 64 bit signed and unsigned integers

 Supported Operations Include:

 addition, subtraction, multiplication

 maximum or minimum of a vector of operands

 Inverse square-root approximation (y = x^-(1/2))

 many more

Jean-Luc Danger ,Tarik Graba Page 93 Télécom-ParisTech

Memory

 Data prefetcher

 monitor cache line requests by processor and cache misses to

determine how much data to prefetch

 can prefetch up to 8 independent data streams

 load-store instructions forwarded for resolution within

memory system

 2-level TLB structure (Translation Lookaside Buffer)

 micro TLB to reduce power consumed in translation and protection

look-ups

 main TLB

Jean-Luc Danger ,Tarik Graba Page 94 Télécom-ParisTech

Cortex MPCore Processors

 Standard Cortex

cores, with

additional logic to

support MPCore

 Available as 1-4

CPU variants

 Include integrated

 Interrupt controller

 Snoop Control Unit

(SCU)

 Timers and

Watchdogs

Jean-Luc Danger ,Tarik Graba Page 95 Télécom-ParisTech

Memory Hierarchy

CPU

Instructi
on

Cache

Data
Cache

CPU

Instructi
on

Cache

Data
Cache

CPU

Instructi
on

Cache

Data
Cache

CPU

Instructi
on

Cache

Data
Cache

Snoop Control Unit (SCU)
Accelerator

Coherence Port

L2 Cache

Main Memory

Cortex A9 MPcore

Jean-Luc Danger ,Tarik Graba Page 96 Télécom-ParisTech

L1 and L2 Caches

 Typical memory system can have multiple levels of cache

 Level 1 memory system typically consists of L1-caches, MMU/MPU and

TCMs

 Level 2 memory system depends on the system design

 Memory attributes determine cache behavior at different levels

 Controlled by the MMU/MPU

 Inner Cacheable attributes define memory access behavior in the L1 memory

system

 Outer Cacheable attributes define memory access behavior in the L2

memory system (if external) and beyond (as signals on the bus)

ARM Core

I-Cache RAM

D-Cache RAM

M
M

U
/M

P
U

B
IU

Off-chip

Memory

L2 Cache

L1 L2 L3

On-chip

SRAM

Jean-Luc Danger ,Tarik Graba Page 97 Télécom-ParisTech

L1 caches

• Non-unified
- 32 bytes line length

- can be disabled independently

• 16, 32 or 64KB

• 4 - way associative

• support for Security Extensions

• I cache: VIP(virtual address)

• D cache: PIPT (physical address)
- reduce number of caches flushes and

refills and save energy

CPU

D$ I$

CPU

D$ I$

CPU

D$ I$

CPU

D$ I$

 SCU ACP

L2 Cache

Main Memory

Cortex A9 MPcore

AXI RW
64-bit bus

AXI RW
64-bit bus

Jean-Luc Danger ,Tarik Graba Page 98 Télécom-ParisTech

 Example 32KB ARM cache

31 13 12 5 4 2 1 0

Address

Cache line

3 8

Tag Set (= Index) Word Byte

Dat
a

Tag
Line 0

Line 1

Line
30 Line
31

v d
Dat
a

Tag
Line 0

Line 1

Line
30 Line
31

v d
Dat
a

Tag
Line 0

Line 1

Line
30 Line
31

v d
Data Tag

Line 0

Line 1

Line 254

Line 255

v d

v - valid bit d - dirty bit(s)

0 1 2 3 4 5 6 7 d

19

 Cache has 8 words of data in each
line

 Each cache line contains Dirty bit(s)

 Indicates whether a particular cache
line was modified by the ARM core

 Each cache line can be Valid or
invalid

 An invalid line is not considered
when performing a Cache Lookup

V
ic

ti
m

C
o
u
n
te

r

Jean-Luc Danger ,Tarik Graba Page 99 Télécom-ParisTech

L2 cache

• shared, unified

• Off-chip

• 128KB to 8MB

• 4 to 16-way associative

CPU

D$ I$

CPU

D$ I$

CPU

D$ I$

CPU

D$ I$

 SCU ACP

L2 Cache

Main Memory

Cortex A9 MPcore

AXI RW
64-bit bus

AXI RW
64-bit bus

Jean-Luc Danger ,Tarik Graba Page 100 Télécom-ParisTech

Snoop Control Unit

 Integral part of cache memory systems

 Connects processors to memory system through AXI

interfaces

 SCU functions :

 maintain data cache coherency

 initiate L2 memory accesses

 arbitrate between processors’ simultaneous request for L2

accesses

 manages accesses from ACP

 Does not support instruction cache coherency

Jean-Luc Danger ,Tarik Graba Page 101 Télécom-ParisTech

Accelerator Coherence Port

• optional AXI 64-bit slave port

• allows to connect to non-cached system mastering

peripherals and accelerators

 —DMA engine or cryptographic accelerator

• SCU enforces memory coherency

Jean-Luc Danger ,Tarik Graba Page 102 Télécom-ParisTech

Plan

 ARM historique : l’ARM7TDMI

 Les Cortex

 Cortex M family

 Cortex A family

 System bus

Jean-Luc Danger ,Tarik Graba Page 103 Télécom-ParisTech

On chip

memory

ARM-based system

ARM

Processor
core

A
M

B
A

 A
X

I

External

Memory
Interfac
e

APB
Bridge

A
M

B
A

 A
P

B

CoreLink
Interrupt
Controller

Other

CoreLink
Peripherals

DMA

Port
Clocks and

Reset
Controller

 ARM core deeply embedded within an

SoC

 External debug and trace via JTAG or

CoreSight interface

 Design can have both external and

internal memories

 Varying width, speed and size –

depending on system requirements

 Can include ARM licensed CoreLink

peripherals

 Interrupt controller, since core only

has two interrupt sources

 Other peripherals and interfaces

 Can include on-chip memory from

ARM Artisan Physical IP Libraries

 Elements connected using AMBA

(Advanced Microcontroller Bus

Architecture)

DEBUG

nIRQ

nFIQ

FLASH

SDRAM

ARM based
SoC

Custom
Peripheral
s

Jean-Luc Danger ,Tarik Graba Page 104 Télécom-ParisTech

High Performance

ARM processor

High-bandwidth

on-chip RAM

High

Bandwidth

External
Memory

Interface

DMA

Bus Master

APB

Bridge

Timer

Keypad

UART

PIO

AHB

APB

High Performance

Pipelined

Burst Support

Multiple Bus Masters

Low Power

Non-pipelined

Simple Interface

An Example of AMBA System

Jean-Luc Danger ,Tarik Graba Page 105 Télécom-ParisTech

HWDATA

Arbiter

Decoder

Master

#1

Master

#3

Master

#2

Slave

#1

Slave

#4

Slave

#3

Slave

#2

Address/Control

Write Data

Read Data

HADDR

HWDATA

HRDATA

HADDR

HRDATA

AHB Structure

Jean-Luc Danger ,Tarik Graba Page 106 Télécom-ParisTech

AXI Multi-Master System Design

ARM

Slave

#1

Master 2

Slave

#2

Slave

#3

Slave

#4

Inter-connection architecture

Master interface

Slave interface

Compared to AHB,
AXI allows multi-
channel
communication

