TELECOM

Paris

aaaa .
-
e

%

N2 IP PARIS

¥,
]

Architectures ARM

6 novembre 2019

Jean-Luc DANGER
Tarik GRABA

Armv5

Arm9e68E-S
Arm946E-S
Arm926EJ-S

Armv4

Arm7TDMI
Arm920T

© 2017 Arm Limited

Cortex-M

La gamme des processeurs ARM

)
= o

Armve Armv7-A Armv8-A
Cortex-A17 Cortex-A73 Cortex-A75
< Cortex-A15 Cortex-A57 Cortex-A72
L]
Arm11MPCore >
Arm1176JZ(F)-S g Eo :e"'ig Cortex-A53 Cortex-A55
Arm1136J(F)-S o ortex-
(@)
Cortex-A7 Cortex-A35
Cortex-A5 Cortex-A32
o Armv7-R Armva-R
= Cortex-R8
Arm1156T2(F)-S g Cortex-R7 Cortex-R52
o Cortex-R5
Q Cortex-R4
Armve-M Armv7-M Armva-M
[Cortex-M7
Cortex-M4 Cortex-M33
Cortex-M3
Cortex-MO+
Cortex-MO Cortex-M23

Jean-Luc Danger ,Tarik Graba

High
performance

Ultra high
efficiency

Real time

High
performance

Performance
efficiency

Lowest power

and area

N 1P PARIS

ARM licenses (public)

d ARMvS-A

» NVIDIA, Applied Micro, Cavium, AMD, Broadcom, Calxeda, HiSilicon,
Samsung and STMicroelectronics

Cortex-Al15 4 ST-Ericson, TI, Samsung, nVIDIA
Cortex-A9 9 NEC, nVIDIA, STMicroelectronics, Tl, Toshiba ...

Cortex-A8 9 Broadcom, Freescale, Matsushita, Samsung,
STMicroelectronics, Texas Instruments, PMC-Sierra

Cortex-A5 3 AMD ---
Cortex-R4 14 Broadcom, Texas Instruments, Toshiba, Inf
Cortex-M4 5 Freescale, NXP, Atmel, ST

Cortex-M3 29 Actel, Broadcom, Energy Micro, Luminary, Micro, NXP,
STMicroelectronics, Tl, Toshiba, Zilog, ...

Cortex-MO 14 Austria-microsystems, Chungbuk Technopark,NXP, Triad
Semiconductor, Melfas, ST

d Cortex-M0O+ Freescale, NXP
O ARM7 172, ARM9 271, ARM11 82 Source : G.N. Khan

Télécom-ParisTech Jean-Luc Danger ,Tarik Graba W ie paRIS

oDCoo00 0000

U

Plan

d ARM historique : FPARM7TDMI

 Les Cortex
» Cortex M family
» Cortex A family

 System bus

Paris
Télécom-ParisTech Jean-Luc Danger ,Tarik Graba W ie paRIS

Qu’est ce qu’un ARM7TDMI?

 Processeur a Architecture « Von Neumann »
» Méme bus mémoire pour instructions et données

] 3 étages de pipeline : Fetch, Decode, Execute

d Instructions sur 32 Bits

2 instructions d'acces a la mémoire LOAD et STORE
T : support du mode "Thumb" (instructions sur 16 bits)
D : extensions pour la mise au point

O M : Multiplieur et instructions pour résultats sur 64 bits.
| : émulateur embarqué ("Embedded ICE")

Paris
Télécom-ParisTech Jean-Luc Danger ,Tarik Graba %1 paris

Vue d’une puce utilisant un ARM7

ARM710 (25mm2 en 0.5um (1995), 2.9 mm2 en 0.18um (2000))

Télécom-ParisTech Jean-Luc Danger ,Tarik Graba

Vue simplifiée du Coeur ARM7TDMI

A[31:0] ﬁ

Incrémenteur
d’Adresse

< Mise a jour

I Registre <
d’Adresse
—/ T PC
Banc de Registres
B :
’
5 =) . <:>
I I <:> Multiplieur
A 5
|
B Barrel |1—
shifter [N]

W U C W

1y

\ UAL 32 bits /

PC
<‘|:| . Registre
D
UL Instruction<::>
AN
<: Registre de <::
Lecture
Données
Registre
(Ecriture
nées

[;>
D[31:0]

Logique
de
Controle

«—

JTITT 1

T v

Jean-Luc Danger ,Tarik Graba

BIGEND
MCLK
nWAIT

nRW
MAS[1:0]

ISYNC
nIRQ
nFIQ
NnRESET
ABORT
nTRANS

NMREQ
SEQ
LOCK
nM[4:0]

nOPC
nCPI
CPA
CPB

TELECOM
Paris

@} 1P PARIS

Banc de registres

z0 « 16 Registres génériques
rl
r2 — De O é. 15
= - Le PC en fait partie
r4
= « Les instructions utilisent forcement
- un registre :
r7
e - Lire une donnée en mémoire
S dans un registre (LOAD)
rl0
ril - Calcul entre registres
12 L . . :
— s - Ecrire le contenu d’'un registre en
a0 mémoire (STORE)
rl5 (pc)

Télécom-ParisTech Jean-Luc Danger ,Tarik Graba

TELECOM

Paris

mEET

@} 1P PARIS

Le Pipeline d’Instructions

La famille ARM7 utilise un pipeline a 3 étages pour augmenter la
vitesse du flot d'instructions dans le microprocesseur.

Mode: ARM Thumb

L'instruction est lue dans la mémoire

PC PC FETCH
Décodage de l'instruction
PC-4 PC-2 DECODE

. Registre(s) lu(s) du banc de registres
EXECUTE Opérations de déecalage et ALU

]
N

PC

1
(00]

PC

O Le PC pointe sur l'instruction en cours de lecture (FETCHed), et non sur
I'instruction en cours d’exécution.

Télécom-ParisTech Jean-Luc Danger ,Tarik Graba

Ecriture du résultat vers le banc de registres

TELECOM

Paris

mEET

@} 1P PARIS

Cycle

Exemple: Pipeline Optimal

Instruction

ADD
SUB
MOV
AND
ORR
EOR
CMP
RSB

Fetch

Decod

Execut

Fetch

Decod

Execut

Fetch

Decod

Execut

Fetch

Decod

Execut

Fetch

Decod

Execut

Fetch

Decod

Execut

Fetch

Decod

Fetch

O il faut 6 cycles pour exécuter 6 instructions =>CPI “Cycles Per Instruction=1

 Toutes les opérations ne jouent que sur des registres (1 cycle)

Page 10 Télécom-ParisTech

Jean-Luc Danger ,Tarik Graba

Exemple: Pipeline avec LOAD

Cycle 1 2 3 4 5 6

Instruction

[mem]=>tampon

ADD Fetch | Decod|Execut l tampon=>registre
SUB Fetch | Decod |Execut !
LDR . Fetch | Decod|Execut| Data |writeback
MOV . Fetch | Decod Execut
AND L Fetch Decod
ORR _ L Fetch

\)

Y
"Pipeline stall"

O L’instruction LDR lit une donnée en mémoire et la charge dans un registre
O il faut 6 cycles pour exécuter 4 instructions => CPI =1,5

Paris
Télécom-ParisTech Jean-Luc Danger ,Tarik Graba W 1p PRI

Exemple: Séequence d’Instructions

LDR RO, [R8, 0x10] charger le mot de I'adresse [R8+0x10] dans RO
ADD R1l, RO, R4, LSL #2 | R1=R0+ (R4 << 2)
STR R1, [R8, 0x14] ranger le contenu de R1 a I'adresse [R8+0x14]

Conditions initiales :

PC = 0x22220000
R4 = 0x00000721
R8 = 0x55551000
[0x55551010] = 0x00000834

Les diagrammes suivants supposent que les instructions précédentes
s’exécutent en un cycle mais ne montrent pas leur comportement.

Pari
Télécom-ParisTech Jean-Luc Danger ,Tarik Graba W ie paRIS

Génération des Adresses

PC { PC[31:2] (mode ARM)

PC[31:1] (mode Thumb) —
Load

Store } Bus ALU[31:0] —
Branch
0x00 —

Exceptions | Vecteurs
0x1C

Incrémentation PC

Mise a jour PC

s

Registre
d’Adresse

Page 13 Télécom-ParisTech

Jean-Luc Danger ,Tarik Graba

=) A[31:0]

mEET

@‘g IP PARIS

Séquence d’Instructions : Cycle 1

______ [

] Registre d‘ed resse

Incrémenteur |

= Y

Banc de Registres

B

u

> B Multiplicateur

U u <,|:> P

A S

- A
Barrel
Shifter

i

VAR

T v cCc®@

\ UAL 32 bits

/

Page 14 Télécom-ParisTech

Incrémenteur
> MGadresse LDR RO, [R8, 0x10]
I ADD R1, RO, R4, LSL #2
STR R1l, [R8, 0x14]
Cycle 1
Misepf‘z:iour . Lecture de l'instruction LDR
Décodage Registre
Instructions
_
Registre de <—
Lecture
Données
Registre Conditions initiales :
d’Ecriture PC = 0x22220000
nnees [> RO =
v Rl =
NNZ R4 = 0x00000721
= 0x55551000 Paris
D[31:0] [0x55551010] 0x00000834 %Sﬁel
Jean-Luc Danger ,Tarik Graba W& 1P PARIS

Séquence d’Instructions : Cycle 2

______ [

%

Registre d‘ed resse

Incrémenteur |

Ve

Banc de Registres

=
o

&

Multiplicateur <:>

—r>C wcw
> 0w cw

Barrel
Shifter

\/

1§

UAL

\

32 bits

/

i

T v cCc®@

Instructions

Registre de

Page 15 Télécom-ParisTech

Lecture
Données

Registre
d’Ecriture
nnées

V

D[31:0]

Jean-Luc Danger ,Tarik Graba

Incrementeur | | 1pR RO, [R8, 0x10]
[ADD R1, RO, R4, LSL #2
STR R1, [R8, 0x14]
Cycle 2
Mise a jour . Décodage de l'instruction LDR
PC . Lecture de l'instruction ADD
Décodage Registre

PC = 0x22220004
RO =
Rl =
R4 = 0x00000721
R8 = 0x55551000 Paris
[0x55551010] = 0x00000834 ¥Ef

@IP PARIS

Séquence d’Instructions : Cycle 3

A[,,1 o

> Incrémenteur

d’Adresse
[|

Registre d‘ed resse

Incrémenteur |

Y e

Banc de Registres

Mise a jour
PC

ILDR RO, [R8, 0x10]

ADD Rl1, RO, R4, LSL #2

STR R1, [R8, 0x14]
Cycle 3

—)

R8
1/\'
B
u
S =
U E <;‘:> Multiplicateur E
A S S
L A B<— Registre de
Barrel Lecture
Shifter Données
: — d’Ecriture
\ UAL 32 bits / nnées
% Vv

D[31:0]

Télécom-ParisTech Jean-Luc Danger ,Tarik Graba KR * 1P PARIS

« 1e cycle d’exécution de LDR
o Calcul de I'adresse en
mémoire de données
. Décodage de l'instruction ADD
o Lecture de l'instruction STR

PC = 0x2222000C

RO =

Rl =

R4 = 0x00000721
0x55551000 Paris

[0x55551010] 0x00000834 ggml

Séquence d’Instructions : Cycle 4

______ [

Incrémenteur
— > Cremente LDR RO, [R8, 0x10]
T g [1 ADD Rl, RO, R4, LSL #2
[egistre d’Adresse Incrémenteur |
= STR R1, [R8, 0x14]
I IPC Cycle 4
Banc de Registres <Misep<"2:iour . 2%me cycle d’exécution de LDR
N o Lecture de la mémoire de
A données
B
u
S
B o B
. 0 <‘|:> Multlpllcateur<:> y
A S S
L A B<— Registre de
Barrel |[/1—
Shifter N—
U Registre
- — d’Ecriture PC = 0x2222000C
\ UAL 32 bits / nées RO =
d Rl =
R4 = 0x00000721 Ecom
= 0x55551000 Paris

.1 RS
D[31:0] * cs551010] = 0x00000834 EisH

fj*lp PARIS

Jean-Luc Danger ,Tarik Graba

Page 17 Télécom-ParisTech

Séquence d’Instructions : Cycle 5

______ [

) Incrémenteur
> d’Adresse LDR RO, [R8, 0x10]
r— [T ADD Rl1, RO, R4, LSL #2
[egistre d’Adresse Incrémenteur
: | STR R1, [RS8, 0x14]
I IPC Cycle 5
Banc de Registres <M: isep"‘éiour . 3éme cycle d’exécution de LDR
RO\ .
(’ A . Transfert de la donnée dans
le registre-destination
B
u
S
B . B
o 0 <,|:> Multlpllcateur<:> y
4| S s
L A B < :— Registre de
Barrel |[/1— _—
Shifter p—T |
v w Registre
- — d’Ecriture PC = 0x2222000C
\ UAL 32 bltsI / -—'\Snnées RO = 0x00000834
Vv @ Rl =
—, 8 < o
b 4 aris
D[31 0] [0x55551010] 0x00000834 §§ml

Télécom-ParisTech Jean-Luc Danger ,Tarik Graba KR * 1P PARIS

Séquence d’Instructions : Cycle 6

______ [

Incrémenteur
- > Cremente LDR RO, [R8, 0x10]
. Ep—— d‘ed L ADD Rl1, RO, R4, LSL #2
egistre resse Incrémenteur |
: STR R1, [R8, 0x14]
\TTPC Cycle 6
/! R1 Banc de Registres Mise a jour ® Exécution de ADD
| ’Q | R4 PC ® Décodage de l'instruction STR
A ® [ecture de l'instruction suivant
egistre STR
B tructions
u
> B » B
U u <::> Multiplicateur <:> u N\
A S S
L . y 3
A B < :— Registre de <:—
Barrel Lecture
St pomnées | isfuction str+1

\ — d’Ecriture PC

= 0x22220010
UAL 32 bits -—'\snnees N RO = 0x00000834
d Rl = 0x000024BS8
) R4 = 0x00000721
Paris
 — D[31 0] 0x55551000

[0x55551010] 0x00000834 ggml

Télécom-ParisTech Jean-Luc Danger ,Tarik Graba KR * 1P PARIS

Séquence d’Instructions : Cycle 7

A[,,1 o

D[31:0]

Incrémenteur
> MGadresse LDR RO, [R8, 0x10]
ey d‘Qd [1 ADD R1, RO, R4, LSL #2
egistre resse Incrémenteur |
/ STR R1l, [R8, 0x14]
PC
\TT = Cycle 7
Banc de Registres Mise a jour . 1ler cycle d’exécution de STR
| \R8 PC . Calcul de I'adresse en
A mémoire de donnees
gistre . Décodage de l'instruction
B ructions suivant STR
u o Lecture de l'instruction
£ B " d) STR+2
U " <::> Multiplicateur N A
A S S
L A B<— Registre de <—
Shifter Donnees
osggoioo | oblfieons
: — criture PC = 0x22220014
\ Sl 82 lelles / nnées RO = 0x00000834
v R1 = 0x000024B8
R4 = 0x00000721 N
= 0x55551000 ris

[0x55551010] 0x00000834 i

Télécom-ParisTech Jean-Luc Danger ,Tarik Graba * 1P PARIS

Séquence d’Instructions : Cycle 8

______ [

— > I”gf§$22;2“r LDR RO, [R8, 0x10]
- ete A | | ADD Rl1, RO, R4, LSL #2

egistre d’Adresse I A t

gistr ncrementeur | STR R1, [RS8, 0x14]

I lpc Cycle 8
Banc de Registres <M: ise a jour . 2éme cycle d’exécution de STR
R1 PC . Ecriture en mémoire de
T 7 données
gistre
q ructions

r>C W @
> wcocw
W W C W

<,|:> Multiplicateur <:>
I—— Registre de <—
E— \lk\ Lecture
Shifter Données

Registre N

i

— d’Ecriture PC = 0x22220014
\ UAL 32 bits / ' gnnées \ RO = 0x00000834
d [R1 = 0x000024B8

R4 = 0x00000721

R8 = 0x55551000

[0x55551014] = 0x000024B8 fi

Télécom-ParisTech Jean-Luc Danger ,Tarik Graba & e paris

Acces ala Mémoire et aux E/S

d 2 instructions d'acces
> LOAD (LDR) et STORE (STR)
 L’adressage mémoire se fait sur 32 bits
» =>4 Go.
O Type des donneées :
» octets
» demi-mots (16 bits)
» mots (32 bits)

 Les mots doivent étre alignés sur des adresses
multiples de 4 et les demi-mots, de 2.

 Les E/S sont dans la « mappe » mémoire

Paris
Télécom-ParisTech Jean-Luc Danger ,Tarik Graba W ie paRIS

Organisation de la mémoire

La mémoire peut étre vue comme une ligne d’octets repliée en mots.
2 facon d’organiser 4 octets en mot :

x1A Ox1A
octets Ox 19 octets 0x19
x18 x18
x17 x17
x16 x16
x15 x15
x14 x14
Ox1 Ox1
Ox12 Ox12
Ox11 Ox11
0x10 Oxloﬂ
0x10 0x10
mots 0x0C mots 0x0C
0x08 0x08
0x04 0x04

« Little Endian » « Big Endian »

Télécom-ParisTech Jean-Luc Danger ,Tarik Graba

mEET

fj*lp PARIS

Les Modes du Microprocesseur

 Un microprocesseur ARM a 7 modes opeératoires de base :
» User : mode sans privilége ou la plupart des taches s’exécutent
» FIQ : ony entre lors d’'une interruption de priorité haute (rapide)
» IRQ : ony entre lors d’'une interruption de priorité basse (normale)

» Supervisor : ony entre a la réinitialisation et lors d’'une interruption
logicielle SWI “SoftWare Interrupt”

» Abort : utilisé pour gérer les violations d’accés mémoire
» Undef : utilisé pour gérer les instructions non définies (“undefined”)

» System : mode avec privilége utilisant les mémes registres que le
mode User

Paris
Télécom-ParisTech Jean-Luc Danger ,Tarik Graba W ie paRIS

Les Registres

Registres actifs

Mode r0
Utilisateur rl Bancs de
£2 Registres
rz (Spécifiques a un mode)
r
r5 FIQ IRQ SVC Undef Abort
r6
r7 r8
r8 r9
r9 rl0
rl0 rll
rll rl2
rl2 rl3 (sp) ||rl3 (sp) ||rl3 (sp) |[|rl3 (sp) ||r1l3 (sp)
rl3 (sp) rld (lr) (|(rl4 (lr) ((rl4 (lr) ||(rl4 (lr)||xrl4d4 (1lr)
rld (1lr)
rl5 (pc)
cpsr spsr spsr spsr spsr spsr

Télécom-ParisTech Jean-Luc Danger ,Tarik Graba W ie paRIS

Les Registres d’Etat CPSR et SPSR

31 28 27 24 23 16 15 8 7 6 5 4 0
INZCV | N on Délfini IIFT mode |
1 1 1 1 1 1 1 1
| . | " | / . |

« Validation des interruptions

S

« |Indicateurs conditionnels — | =1 dévalide IRQ.
— N = Résultat Negatif
— Z = Résultat nul (Zéro) — F =1 devalide FIQ.
— C = Retenue (Carry) « Mode Thumb
— V = Débordement
(oVerflow) - T

 |ndicateurs de mode

— Indiguent le mode actif

Paris
Télécom-ParisTech Jean-Luc Danger ,Tarik Graba W ie paRIS

Jeu d’Instructions ARM(1)

O Les instructions sont sur 32 bits
O La plupart des instructions s’exécutent en un seul cycle

 Les instructions peuvent étre executees
conditionnellement

J Architecture Load/Store

» Instructions de traitement de données
— SUB 10,r1,#5;r0=rl1-5
— ADD r2,r3,r3,LSL#2 ;r2=R3+4*r3=5*r3
— ANDS) r4=r4 ET 0x20
 I15=r5+r6 si Z

Positionnement des indicateurs

Exécution si le résultat précedent est 0

Télécom-ParisTech Jean-Luc Danger ,Tarik Graba W ie paRIS

Jeu d’Instructions ARM(2)

» Instructions spécifiques d’accés a la mémoire

— LDR r0 ’ [rl] ’ #4 ; rO=mem(rl), ri= rl+4
r2, [r3,r4] ; mem(r3+rd)=r2
r5 ’ [r6 ’ # ; r5=mem(r6+8), ré6=ré6+8

En octet - TMFD Sp' ’ {rO ’ r2—r4} r_transferts multiples
— ,empilage : mem(sp+i)=liste de registres

En 16 bits r6=r6+8 en fin d’exécution
Avec extension

de signe sur les

16MSBs .
SP au début 10F0 Opération réciproque de depilage :
r4 10EC LDMFD sp!,{r0,r2-r4}
r3 10E8 ; liste de registres=mem (sp+1i
r2 10E4
SPalafin —» r0 10EQ
10DC e

mEET

Télécom-ParisTech Jean-Luc Danger ,Tarik Graba W ie paRIS

Jeu d’Instructions ARM(3)

 Branchement et sous programmes :
O B <étiquette>

» Calculé par rapport au PC. Etendue du branchement: +32 Mbyte.
 BL <subroutine>

» Stocke I'adresse de retour dans le registre LR

» Le retour se fait en rechargeant le registre LR dans le PC

» Pour les fonctions non terminales, LR devra étre sauvegardé
)

Sauvegarde
fl du contexte f2 / Comme f2 est \

et du LR car f1 une fonction terminale

(c’est-a-dire appelée

%is; pas terminale
STMFD sp!, {regs : par aucune autre),
. c LR n’a pas besoin d’étre
’ . sauvegardé
BL func2 ’ sur la pile.

BL funcl _

)

LDMFD sp!, {regs,pc} MOV pc, 1lr
931X23U0D Np
uoleane}say

—
Télécom-ParisTech Jean-Luc Danger ,Tarik Graba W ie paRIS

TELECOM

Paris

#ET

Exemple: Pipeline avec Saut

Cycle 1 2 3 4 5

Addresse Instruction LR:lPC LR:lLR-4

0x8000 BL Fetch | Decod | Executed Linkret | Adjust

0x8004 X Fetch Decdq_lx

0x8008 XX Fetch

Ox8FEC ADD “Fetch | Decod [Execut

Ox8FFO SUB L Fetch | Decod |Execut

Ox8FF4 MOV L Fetch | Decod
Fetch

O Linstruction BL effectue un appel de sous-programme
O Le pipeline est cassé (Stall) et 2 cycles sont perdus

Paris
Télécom-ParisTech Jean-Luc Danger ,Tarik Graba W) 1p paRIS

Exécutions conditionnelles

» La plupart des instructions peuvent étre exécutées

conditionnellement aux indicateurs Z,C,V,N
— CMP r0, #8 ; r0=8?

— BEQ fin ; si oui (2=1) PC=fin

— ADD rl,rl,#4 ;

» Equivalent a
— CMP r0,#8 ; r0=8?

— ADDNE rl,rl,#4 ; si non (2=0) + pet!t et
+ rapide

Conditions courantes : EQ, NE,PL,MI,CS,VS

L]\

=0, #0,>0,<0,carry set, debordement

Télécom-ParisTech Jean-Luc Danger ,Tarik Graba

2 IP PARIS

Exceptions

L'activation d'une exception donne lieu au passage dans une mode particulier et au
branchement dans un programme par le biais d’'une table de vecteurs.

[sortes :
VECTEUR Retour en USER
RESET | Supervisor | 0x00000000 rastaurée en méme tamps

Instruction indéfinie Undef 0x00000004 MO\@'ﬁC,rM

Interruption logicielle SWI | Supervisor | 0x00000008 MOVS PC,r14
Probléme Fetch instruction Abort 0x0000000C SUBS PC,r14,#4
Probléme Fetch donnée Abort 0x00000010 SUBS PC,r14,#8
Interruption matérielle IRQ IRQ 0x00000018 SUBS PC,r14,#4
Interruption matérielle FIRQ FIQ 0x0000001C SUBS PC,r14,#4

Paris
Télécom-ParisTech Jean-Luc Danger ,Tarik Graba W ie paRIS

Main

Processus de gestion des Exceptions

Application

Exceptiomn
handler

Save processor status

» Copies CPSR into SPSR_<mode>

» Stores the return address in LR_<mode>
» Adjusts LR based on exception type

Change processor status for exception
» Mode field bits

» ARM or Thumb state

» Interrupt disable bits (if appropriate)

» Sets PC to vector address

Execute exception handler
» <users code>

Return to main application
» Restore CPSR from SPSR_<mode>
» Restore PC from LR_<mode>

O 1 and 2 performed automatically by the core
O 3 and 4 responsibility of software

Télécom-ParisTech Jean-Luc Danger ,Tarik Graba

TELECOM

Paris

mEET

@} 1P PARIS

Exemple: Pipeline avec Interruption

IRQ
—

Cycle 1 2 3 4 5 6 7 8
Adresse Instruction
0x8000 ADD Fetch | Decod |Execut @eoteur
0x8004 SUB Fetch | Pseote | Peate inkret |Adjust
0x8008 MOV Fetch PC=adresse de branchement
0x800C X Fe /
to OxXAF00) ™ | Fetch | Dekod | Execute ~
0x001C ?(N Fetch [Decod|)
0x0020 XXX Vecteur interruption Fet(ﬁ'
OXAFOO STMFD ™ [Fetch | Decod |Execut
OxAF04 MOV Fetch | Decod
OxAF08 LDR Fetch

O Latence minimum pour le service de l'interruption IRQ = 7 cycles

TELECOM

Paris

mEET

Télécom-ParisTech Jean-Luc Danger ,Tarik Graba W ie paRIS

Coprocesseurs

Mécanisme de
poignée de main

cceur ARM Coprocesseur X Coprocesseur Y

Bus de
donnée

(d 16 coprocesseurs peuvent étre définis pour étendre le jeu
d’instruction ARM

(] Les coprocesseurs accedent a la memoire et aux registres
directement par le biais d’instructions spécifiques

 Le coprocesseur 15 est dedié au controleur cache et MMU

Télécom-ParisTech Jean-Luc Danger ,Tarik Graba W ie paRIS

_ Mode Thumb

d Jeu d’instructions codé sur 16 bits
» Optimisé pour la densité de code a partir de code C (gain 30%)
» Augmente les performances pour des espaces mémoires réduits
» Sous ensemble des fonctionnalités du jeu d’instructions ARM

O Passage du mode ARM a Thumb

> linstruction BX

-y

ADDS r2,r2,#1

ADD r2,#1

1
5

0

® Exécution

Limitations

conditionnelle pas utilisée

® Registres Source et Destination identiques
(accumulateur)

® Seul les premiers registres sont utilisés

® Les constantes sont de taille limitée

® Pas de Ba
instruction

rrel shifter dans une méme

Télécom-ParisTech Jean-Luc Danger ,Tarik Graba

Paris
i L |

@} 1P PARIS

_ Port JTAG

d Controleur interne ou "TAP controller” pour
» Testde la connectivité (par Boundary Scan testing)

» Acces aux ressources internes des processeurs pour le
débogage
» Fonctions personnalisées

Boundary Scan Test :

TDI=P- -}W W - TDO

chipl
Ligne ;éter

Paris
Télécom-ParisTech Jean-Luc Danger ,Tarik Graba W ie paRIS

[L[]
@)
=)
O
N

[LT]

_ JTAG architecture

in enable | Y
[D>——» - /0
v
s w . core y
logic
v
enable - - »D»D out
[_4 - l
> device ID reg L
TDI > |
»>| bypass reg ———}_ﬁ TDO
TMS
S —>linstruction reg >
TCK >_‘
—]
TAP
TRST N controller
v 4

Télécom-ParisTech Jean-Luc Danger ,Tarik Graba

Débogage Embarqué

Outil de Débogage
tournant sur

I’ordinateur héte ARM7TDMI

-
: > Contréles
coeur |
. . Adresses| Al31:0]
ARM I 1 %
7TDMI 1 8
\—————— Données | D[31:0]
Convertisseur Interface T\I:’ ¥ N7
de protocole JTAG BREAKPT L Lc;gique
~ Sfils EmbeddedICE
mutfOF TAP 5%
— e ' -

Télécom-ParisTech Jean-Luc Danger ,Tarik Graba W ie paRIS

Unité de Gestion des Points d’Arrét

Page 40 Télécom-ParisTech

Valeur ENABLE
Controle (= Masque f— |
Contrble Controle
o C
(0]
m
Valeur [Masque 1 P R
Adresses Adresses A[31:0] ? RANGEOUT'
a
t
e
u
r
Valeur] Masque
Données Données D[31:0]

Jean-Luc Danger ,Tarik Graba

':0,‘*19 PARIS

ARMIOTDMI

3 Implémentation a double bus (architecture Harvard)
» Augmente la bande passante entre le microprocesseur et la
memoire
— Interface mémoire Instructions
— Interface mémoire Données

> Permet I'accés simultané aux mémoires Instructions et

Données
» => Modifications pour améliorer le nombre de cycles par
instruction (CPI “Cycles Per Instruction”) jusqu’a ~1.5

L 5 niveaux de pipeline
» => Modifications pour améliorer la fréquence maximum de

I’horloge

Télécom-ParisTech Jean-Luc Danger ,Tarik Graba

TELECOM

Paris

mEET

@} 1P PARIS

Modifications du Pipeline pour le ARM9TDMI

Pipeline du ARM7TDMI

Instruction Tdheucrgrt:_)ésls\ﬂ ARM decode
FEieh P Reg Select

FETCH DECODE EXECUTE

Pipeline du ARM9TDMI

ARM or Thumb
Instruction Inst Decode Memory Reg
Fetch Reg | Reg Access Write
Decode | Read
FETCH DECODE EXECUTE MEMORY WRITE

mEET

Télécom-ParisTech Jean-Luc Danger ,Tarik Graba W ie paRIS

ARMO9TDMI architecture

|
—
next 2
o V4 .
I-cache : Jetch 1
pc+d T 3
L
=
| decode]
'J\} instruction 2
ecode
register read '
immediate
""" e fields
e e]
mufet (| | — - ineli
o | [5 etages de pipeline
index ﬁ reg
Shift_f | shi
- |
pre-index |
- execute
forwarding 3
paths
B BL e
movpe | Q|| T | T -
SUBS pe Hnentd ORISR PRTERLER
L buffer/ 4
load/store :]
address data
LDR pe
o R
e S 5

| register write | write-back

Télécom-ParisTech Jean-Luc Danger ,Tarik Graba

Plan

d ARM historique : FPARM7TDMI

1 Les Cortex
» Cortex M family
» Cortex A family

 System bus

Paris
Télécom-ParisTech Jean-Luc Danger ,Tarik Graba W ie paRIS

Armv5

Arm9e8E-S
Arm946E-S
Arm926EJ-S

Armv4

Arm7TDMI
Arm920T

© 2017 Arm Limited

Page 45 Télécom-ParisTech

La gamme des processeurs ARM

High
performance

Ultra high
efficiency

%,
= =

Real time

High

performance

Performance
efficiency

Armve Armv7-A ArmvE8-A
Cortex-A17 Cortex-A73 Cortex-A75
< Cortex-Al15 Cortex-A57 Cortex-A72
]
Arm11MPCore >
Arm1176JZ(F)-S g ED :ex-ﬁg Cortex-A53 Cortex-A55
Arm1136J(F)-S o st
&
Cortex-A7 Cortex-A35
Cortex-A5 Cortex-A32
o Armv7-R Armva-R
= Cortex-R8
Arm1156T2(F)-S g Cortex-R7 Cortex-R52
o Cortex-R5
(&) Cortex-R4
Armve-M Armv7-M Armva-M
[Cortex-M7
Cortex-M4 Cortex-M33
Cortex-M3
Cortex-MO+
Cortex-MO Cortex-M23

Lowest power
and area

Jean-Luc Danger ,Tarik Graba

arm

bt A |

N 1P PARIS

Development of the ARM Architecture

- I CORTEX
v4 v5 v6 v/ v8

Halfword and Improved interworking : SIMD SIMD-Neon AArch32 :

signed halfword / ; (3ich between ; : compatibilité

byte support thumb) : Thumb-2 : Virtualization : ARMV7 + nouvelles
! FP unit : i instructions

Thumb : : TrustZone : 3 Profiles: ;

instruction set : c.Z (counts #0f 0) L ! AArch64 - 64 bit-

(vAT) : : Multi-processing i 7-A Applications

: Saturated arithmetic
: DSP MAC

: Extensions:

* Jazelle (5TEJ)

Bytecode
Executed in HW

i v6 Memory architecture
: Unaligned data support :

Extensions:
: *Thumb-2 (6T2)
"*TrustZone® (6Z2)

*Multicore (6K)
*Thumb only (6M)

i 7-R Real-time

7-M Microcontroller:
: place de 16 de 32

! bits)

: data + 32 registres
: de 64 bits(a la

Crypto

* Implementations of the same architecture can be different:

= Cortex-A8 - architecture v7-A, with a 13-stage pipeline
= Cortex-A9 - architecture v7-A, with an 8-stage pipeline

TELECOM
Paris

mEET

Télécom-ParisTech Jean-Luc Danger ,Tarik Graba '2 |P PARIS

Page 47

Which architecture is my processor?

Classic Application Embedded
ARM Processors (GorteX Processors Cortex Processors

ARM11MP

ARM926 ARM176]Z

SC100 ARM968 ARM1136|

ARM7TDMI ARM946 ARM1156T2
ARMv4T ARMV5T] ARMvé
ARM 32-Bit ISA

Thumb 16-Bit ISA

Thumb-2 Mixed ISA

VFPy2

Jazelle

TrustZone

SIMD

Télécom-ParisTech

Gortex-A15
Cortex-A9
“Cortex-A8
Cortex-A7 SC000
Cortex-M1

Cortex-M0

ARMV/M/ME ARMv6M

Thumb

NVIC NVIC

WiC

GCortex-A5

Cortex-R4
ARMvV7A/R

VFEPy3

Jazelle

TrustZone

SIMD

NEON

Virtualization

Jean-Luc Danger ,Tarik Graba

TELECOM
Paris

mEET

@} 1P PARIS

Architecture ARMv7 profiles

 Application profile (ARMv7-A)

» Memory management support (MMU)

» Highest performance

— Influenced by multi-tasking OS system requirements

» TrustZone: Insulation zones for security

» Jazelle-RCT: supports for java JIT compilation
 Real-time profile (ARMv7-R)

» Protected memory (MPU)

» Low latency and predictability ‘real-time’ needs
 Microcontroller profile (ARMv7-M, ARMV7E-M, ARMv6-M)

» Lowest gate count

» Low energy

Paris
Télécom-ParisTech Jean-Luc Danger ,Tarik Graba W ie paRIS

Thumb vs Thumb?2

Figure 6. Relative Dhrystone performance and code size for ARM, Thumb and Thumb-2

100
80
60
40
20

0

Page 49 Télécom-ParisTech

Thumb-2 Performance

25% faster than Thumb

100
80
60
40
20

0

Thumb-2 code size

26% smaller than ARM

Jean-Luc Danger ,Tarik Graba

] ARM
|| Thumb-2
B Thumb

&: 1P PARIS

Perfomance/Code for instruction sets

&

31% smaller *

>

Up to 38%more
performance *

Performance

*RVDS 2.2

B
Code Density

Pari
Télécom-ParisTech Jean-Luc Danger ,Tarik Graba W ie paRIS

Plan

d ARM historique : FPARM7TDMI

1 Les Cortex
» Cortex M family
» Cortex A family

 System bus

Paris
Télécom-ParisTech Jean-Luc Danger ,Tarik Graba W ie paRIS

ARMv7-M Profile Overview

O v7-M Cores targeted to the microcontroller market
— Simpler to program — entire application can be programmed in C

— Fewer features needed than in application processors

O Register and ISA changes from other ARM cores
— Only one set of registers
— XPSR has different bits than CPSR

O Different modes and exception models
— Only two modes: Thread mode and Handler mode

— Vector table is a set of addresses, not instructions
— Exceptions automatically save state (r0-r3, r12, Ir, XPSR, pc) on the stack

 Different system control/memory layout
— Cores have a fixed memory map

— No coprocessor 15
— Memory mapped control registers

Télécom-ParisTech Jean-Luc Danger ,Tarik Graba

TELECOM

Paris

mEET

@} 1P PARIS

Cortex-MO

— y = ARMvV6-M Architecture

™
Cortex -M0 = 16-bit Thumb-2 with system control
instructions
Wake Up Interrupt Controller Interface " Fu”y programmable In C
» 3-stage pipeline
Nested Vectored Interrupt Controller = yvon Neuman architecture
= AHB-Lite bus interface
= Fixed memory map
= 1-32interrupts
-lite D
(i s i Configurable priority levels
» Non-Maskable Interrupt support

= Low power support

» Core configured with or without
debug

» Variable number of watchpoints and
breakpoints

Télécom-ParisTech Jean-Luc Danger ,Tarik Graba W 1e paRIS

Cortex-M3

/ Cortex "-M3 1 = ARMv7-M Architecture
= Thumb-2 only

= Fully programmablein C
S = 3-stage pipeline

Nested Vectored Wake Up Interrupt
Interrupt Controller Controller interface

o = von Neumann architecture
Code o .
Interface Watchpoln 2:;5 u Optlonal MPU
i : Port . .
Memory ous bl » AHB-Lite bus interface
Protection Matrix .
i T e Sl = Fixed memory map
Periher o T = 1-240 interrupts
nterface C, Port) ..
S = Configurable priority levels

= Non-Maskable Interrupt support
= Debug and Sleep control

= Serial wire or JTAG debug

= Optional ETM (traces for
debug)

Télécom-ParisTech Jean-Luc Danger ,Tarik Graba W 1e paRIS

Cortex M3 pipeline

LSU branch LD/ SAT dans
result la méme
Fe De Ex phase EXE
Data
Address phase
phase Load/
AGU » and —» Store [|—»
writeback and
Branch
> Multiply
Instruction De_"'!g —» WR >
Decode vide
Fetch > and
Register
Read ALU
» Shift | and |
Branch
Branch
Branchement . Branch forwarding
‘ . D and speculation
=>
SpGCUlatlf < ALU branch not forwarded/speculated
-1 cycle
< LSU branch result

TELECOM
Paris

mEET

Télécom-ParisTech Jean-Luc Danger ,Tarik Graba

. IP PARIS

Processor Register Set

RO

R1

R2

R3

R4

R5

R6

R7

R8

RO

R10

R11

R12

R13 (SP)

R14 (LR)

R15 (PC)

PSR

Paris
Télécom-ParisTech Jean-Luc Danger ,Tarik Graba W ie paRIS

1 Registers R0-R12
» General-purpose registers

O R13is the stack pointer (SP) - 2 banked
versions

O R14is the link register (LR)
O R15is the program counter (PC)
O PSR (Program Status Register)
» Not explicitly accessible
» Saved to the stack on an exception
» Subsets available as APSR, IPSR, and EPSR

Special Purpose Registers

 Special Purpose Interrupt Mask Registers: PRIMASK,
FAULTMASK, BASEPRI

— Used to modify exception priorities by special CPSx instructions

 Special Purpose CONTROL Register

— 2 bits:
¢ Bit 0 defines Thread mode privilege
® Bit 1 defines Thread mode stack

 The Special Purpose Registers are not memory-mapped
— Accessed via specific instructions
— MRS — Move special purpose register to general-purpose register
— MSR — Move general-purpose register to special purpose register

Paris
Télécom-ParisTech Jean-Luc Danger ,Tarik Graba W ie paRIS

System Timer — SysTick
BN B

 Flexible system timer

» 24-bit self-reloading down counter
— Reload on count ==
— Optionally cause SysTick interrupt on count ==

» Reload register
» Calibration value
 Clock source is CPU clock or optional external timing
reference
» Software selectable if provided

» Reference pulse widths High/Low must exceed processor clock
period
— Counted by sampling on processor clock
 Calibration Register provides value required for 10ms interval

» STCALIB inputs tied to appropriate value

P
Télécom-ParisTech Jean-Luc Danger ,Tarik Graba W ie paRIS

Modes Overview

ARM Processor

- e .
- -
- -

-~ “Application Code ~,

\

/
\
\ Thread - Reset
<. | Mode v
Exception < e - Exception
Entry N0 ool - Return
.~ Exception Code™~,
/ \
\
\ Handler k
. |Mode L

- -
- e e - -

Not shown: Handler mode can also be re-entered on exception return

TELECOM

Paris

mEET

Télécom-ParisTech Jean-Luc Danger ,Tarik Graba W ie paRIS

Instruction Set Examples:

O Data Processing:

> MOV r2, 15 12 =15

» ADD 15, #0x24 ;r5=1r5+ 36

» ADD 2,13, r4, LSL#2 ;12 =r3+ (r4 * 4)

» LSL r2, #3 r2=r2*8

» MOVT r9, #0x1234 ; upper halfword of r9 = #0x1234

» MLA ro, r1, r2, r3 ;r0=(r1*r2) +r3
d Memory Access:

» STRB r2, [r10, r1] : store lower byte in r2 at {r10 + r1}

> LDR ro, [r1, r2, LSL #2] ; load rO with data at address {rl + r2 * 4}
O Program Flow:

» BL <label> ; PC relative branch to <label> location, and

return address stored in LR (r14)

Télécom-ParisTech Jean-Luc Danger ,Tarik Graba W ie paRIS

Exception Handling

 Exception main types:
— Reset
— Non-maskable Interrupts (NMI)
— Faults
— SVCall
— External Interrupt
— SysTick Interrupt

 Exceptions processed in Handler mode (except Reset)
» Exceptions always run privileged
O Interrupt handling

» Interrupts are a sub-class of exception

» Automatic save and restore of processor registers (xPSR, PC,
LR, R12, R3-R0)
» Allows handler to be written entirely in ‘C’

P
Télécom-ParisTech Jean-Luc Danger ,Tarik Graba W ie paRIS

External Interrupts

 External Interrupts handled by Nested Vectored

Interrupt Controller (NVIC)
— Tightly coupled with processor core

J One Non-Maskable Interrupt (NMI) supported

INTNMI ——>
INTISR[0] ——
. | NvIC
: Cortex-Mx
INTISRIN] > Processor Core

Cortex-Mx Integration Layer

Paris
Télécom-ParisTech Jean-Luc Danger ,Tarik Graba W ie paRIS

Exception Handling Example

Higher Priority

IRQ1 ! I

IRQ2 ! I :
IRQ3 l I

» Time

Core Execution | Foreground ISR2 _ISRZ ISR3 Foreground

(ISR 2 resumes)

Télécom-ParisTech Jean-Luc Danger ,Tarik Graba

Vector Table for ARMv7-M

: L _ Address Vector #
O First entry contains initial Main SP 0x40 + 4+ [ETEEm— 64N
O All other entries are addresses for
exception handlers
O Table has up to 496 external 0x40 External O 16
interrupts 0x3C SysTick 15
O Table may be relocated | 0x38 PendSy 14
> Use Vector Table Offset Register 034 Eu— '3
» Still require minimal table entries at
0x0 for booting the core 0x30 Debug Monitor 12
 Each exception has a vector number 0x2C SvC 11
» Used in Interrupt Control and State 0x1C to 0x28 | Reserved (x4) 7-10
e o %" oxis[Usage Faun :
O Table can be generated using C code Ox14 Bus Fault 5
» The compiler knows the SP at boot 0x10 Mem Manage Fault 4
time | 0x0C Hard Fault 3
» Example provided later 0x08 NMI ,
0x04 Reset 1
0x00 Initial Main SP

Télécom-ParisTech Jean-Luc Danger ,Tarik Graba & e paris

Reset Behavior

Reset Handler Vector

@—> 0x04 | Initial value of MSP r13 (MSP)
0x00

A reset occurs (Reset input was asserted)

Load MSP (Main Stack Pointer) register initial value from address 0x00
Load reset handler vector address from address 0x04

Reset handler executes in Thread Mode

Optional: Reset handler branches to the main program

a bk owhPE

TELECOM

Paris

mEET

Télécom-ParisTech Jean-Luc Danger ,Tarik Graba W ie paRIS

Exception Behaviour

— | Exception Vector

1. Exception occurs
» Current instruction stream stops
» Processor accesses vector table
2. Vector address for the exception loaded from the vector table
3. Exception handler executes in Handler Mode
TELECOM

4. Exception handler returns to main P
e Fid |

Télécom-ParisTech Jean-Luc Danger ,Tarik Graba W ie paRIS

Interrupt Service Routine Entry

 When receiving an interrupt
— the processor will finish the current instruction for most instructions

— To minimize interrupt latency, the processor can take an interrupt during
the execution of a multi-cycle instruction - see next slide

 Processor state automatically saved to the current stack
— 8 registers are pushed: PC, RO-R3, R12, LR, xPSR
— Follows ARM Architecture Procedure Calling Standard (AAPCS)

O During (or after) state saving the address of the ISR is read
from the Vector Table

O Link Register is modified for interrupt return

O First instruction of ISR executed
— For Cortex-M3 or Cortex-M4 the total latency is normally 12 cycles,

J ISR executes from Handler mode with Main stack

Télécom-ParisTech Jean-Luc Danger ,Tarik Graba

TELECOM

Paris

mEET

@} 1P PARIS

Nested Vectored Interrupt Controller

Highest 5
IRQ1
IRQ2
ARM7TDMI
Interrupt Handling | Push ISR 1 Pop Push ISR 2 Pop
: < > < = —p
: 26 Cycles 16 Cycles 26 Cycles 16 Cycles
Cortex-M3 | | 65% Saving I
Interrupt Handling [-45" SR R 2 Mk Cycle Overhead
-— > —
i 12 Cycles 6 Cycles 12 Cycles
Tail-Chaining
ARM7TOMI | cortexMs
26 cycles from IRQ1 to ISR1 12 cycles from IRQ1 to ISR1
(up to 42 cycles if in LSM) (Interruptible/Continual LSM)
42 cycles from ISR1 exit to ISR2 entry 6 cycles from ISR1 exit to ISR2 entry
16 cycles to return from ISR2 12 cycles to return from ISR2

Télécom-ParisTech Jean-Luc Danger ,Tarik Graba

Returning From Interrupt

O Return from interrupt with the following instructions
» The PC is loaded with “magic” value of OXFFFF_FFFX (same format as

EXC_RETURN)
— LDR PC, OxXFF..FX or LDM/POP or BX LR (most common)

\.
) f‘ h" (&
vehov ¥ wdg
Lot ., 2=

0 hawdler a " :
o @ (Bu be (O
L\ tws\n ?o?l uaC *

'\“’&‘

TELECOM
Paris

mEET

Télécom-ParisTech Jean-Luc Danger ,Tarik Graba %) 1p paris

Returning From Interrupt

O Return from interrupt with the following instructions
» The PC is loaded with “magic” value of OXFFFF_FFFX (same format as

EXC_RETURN)
— LDR PC, OxFF..FX or LDM/POP or BX LR (most common)

O If no interrupts are pending, foreground state is restored
» Stack and state specified by EXC_RETURN is used
» Context restore on Cortex-M3 and Cortex-M4 requires 10 cycles

O If other interrupts are pending, the highest priority may be serviced
» Serviced if interrupt priority is higher than the foreground’s base priority
» Process is called Tail-Chaining as foreground state is not yet restored
» Latency for servicing new interrupt is only 6 cycles on M3/M4 (state already

saved)

O If state restore is interrupted, it is abandoned
» New ISR executed without state saving (original state still intact and valid)
» Must still fetch new vector and refill pipeline (6-cycle latency on M3/M4)

Télécom-ParisTech Jean-Luc Danger ,Tarik Graba

TELECOM

=pE

@} 1P PARIS

Vector Table in C

typedef void(* const ExecFuncPtr) (void) irqg;
#pragma arm section rodata="exceptions_area”

ExecFuncPtr exception tablel[]

}i

(ExecFuncPtr) &Image$SARM LI

ExecFuncPtr) main,
NMIException,
HardFaultException,
MemManageException,
BusFaultException,
UsageFaultException,
0o, 0, 0, O,
SVCHandler,

DebugMonitor,

= {

/* Reserved */

STACKSSZISSLimit,

/* Initial SP */
/* Initial PC */

The vector table at address
0x0 is minimally required to
have 4 values: stack top,
reset routine location,

NMI ISR location,

HardFault ISR location

~

0, /* Reserved */

PendSVC,
SysTickHandler

Once interrupts
are enabled, the
vector table

/* Configurable interrupte=Steart—tere...~*/

#pragma arm section

SRAM) must then

(whether at 0 or in

have pointers to all
enabled (by mask)

exceptions

/The SVCall ISR

location must be
populated if the SVC
instruction will be
used

)

TELECOM
Paris

mEET

Télécom-ParisTech Jean-Luc Danger ,Tarik Graba W ie paRIS

Processor Memory Map

External Private Peripheral Bus

EOOF_EFFF ROM Table
EOOF_F000
UNUSED FFFF_FFFF
E004_ 2000 A
£004 1000 UL E000_0000
TPIU
E004 0000
D e 5
E003 FFFF D d
RESERVED
EO00 F000
- NVIC A000_0000
E000 _E000
RESERVED
E000_3000
FPB crng
E000_2000 p——— SE— > A
DWT
E000_1000
L — dild 6000_0000
Internal Private Peripheral Bus Derinhera
4000_0000
D A
2000_0000
512MB Code
0000_0000

Télécom-ParisTech Jean-Luc Danger ,Tarik Graba

Cortex-M4

(Cortex™-M4) ARMV7E-M Architecture
Thumb-2 only
Uil iintindd DSP extensions
Optional FPU (Cortex-M4F)
Code Mm :
Interface Watchpoint Debug
iy Otherwise, same as Cortex-M3
?rot btection Matrix
Unlt erial
M| Impl full Thumb-2
SRAM & i mplements Tu um
il ET trace iy instruction set
L Saturated math (e.g. QADD)

Packing and unpacking (e.g. UXTB)
Signed multiply (e.g. SMULTB)
SIMD (e.g. ADDS)

1J
Télécom-ParisTech Jean-Luc Danger ,Tarik Graba &) e panis

Cortex-M4F Floating Point Registers

O FPU provides a further 32 S0 DO
single-precision registers 2;
 Can be viewed as either 33 D1
» 32 x 32-hit registers Sa -
» 16 x 64-bit doubleword S5
registers S6
o D3
» Any combination of the above S7
S28
559 D14
S30
531 D15

Paris
Télécom-ParisTech Jean-Luc Danger ,Tarik Graba W ie paRIS

Binary Upwards Compatibility

Cortex-M4 FPU

ARMV7-M
Architecture

ARMv6-M
Architecture

N

Cortex-M4

(=}
=
=y

Cortex-MO/

TELECOM
Paris

mEET

Télécom-ParisTech Jean-Luc Danger ,Tarik Graba W) 1p paRIS

Plan

d ARM historique : FPARM7TDMI

1 Les Cortex
» Cortex M family
» Cortex A family

 System bus

Paris
Télécom-ParisTech Jean-Luc Danger ,Tarik Graba W ie paRIS

Cortex-A8

Cortex"'-A8
© ARMCoreSght"MuficoreDebugandTrace

with opional Parity wehicusonl Proy

| Integrated L2 Cache |

64- or 128-bit AMBA3 Bus Interface
Up to 26 outstanding memory transactions

= Dual-issue, super-scalar 13-stage pipeline
= Branch Prediction & Return Stack
= NEON and VFP implemented at end of pipeline

Page 77 Télécom-ParisTech

ARMvV7-A Architecture
> Thumb-2

» Thumb-2EE (Jazelle-
RCT)

> TrustZone extensions
MMU

64-bit or 128-bit AXI
Interface

L1 caches

» 16 or 32KB each
Unified L2 cache

» 0-2MB in size

» 8-way set-associative

Optional features

» VFPv3 Vector Floating-Point
= NEON media processing engin

Jean-Luc Danger ,Tarik Graba

&: 1P PARIS

Cortex-A9

0 ARMv7-A Architecture Cortex™-A9 MPCore
» Thumb-2, Thumb-2EE | Generi nterrupt Controland Distrbuion I
» TrustZone support Dk tmoms ||| Du v ||| Gumungre ||| e ngnn

O Variable-length Multi-issue | I | S | S
pipeline | B | e

Snoop Control Unit (SCU)

» Register renaming

» Speculative data prefetching

» Branch Prediction & Return
Stack

J 64-bit AXl instruction and
data interfaces

e Snoop Private Accelerator Prqldgd
3 Filtering Peripherals | | Coherence gine

[Dual 64-bit AMBA3 AXI]

= Optional features:
= PTM instruction to Trace execution

O TrustZone extensions = |EM power saving support
O L1 Data and Instruction = Full Jazelle DBX support
caches = VFPv3-D16 Floating-Point Unit (FPU) or
» 16-64KB each NEON™ media processing engine -
TELECD[‘:

» 4-way set-associative

Télécom-ParisTech Jean-Luc Danger ,Tarik Graba & e paris

mEET

Cortex-Al1l5 MPCore

1-4 processors per cluster
Fixed size L1 caches (32KB)

Integrated L2 Cache
» 512KB - 4MB

L System-wide coherency
support with AMBA 4 ACE

O Backward-compatible with
AXI3 interconnect

O Integrated Interrupt Controller

» 0-224 external interrupts for
entire cluster

O CoreSight debug
O Advanced Power Management

U 0O

Page 79 Télécom-ParisTech

" Cortex™-A15 MPCore

~

1 Caches Caches
with ECC with ECC

Snoop Control Unit (SCU) and L2 Cache

Private Accelerator Error
Peripherals | | Coherence | | Corri

Jean-Luc Danger ,Tarik Graba

e

IP PARIS

Cortex A9 Microarchitecture Overview

 Variable length, out of order, superscalar pipeline
» Two instructions are fetched in one cycle
» Issue up to 4 instructions per cycle into:
— Primary data processing pipeline
— Secondary data processing pipeline
— Load-store pipeline
— Compute engine (FPU/NEON) pipeline

J Speculative execution

» Supporting virtual renaming of physical registers and removing
pipelines stalls due to data dependencies

Paris
Télécom-ParisTech Jean-Luc Danger ,Tarik Graba W ie paRIS

Cortex A9 Pipeline

1 1 1 2 1 1 1to3 1 Clocks in stage
» Ex = WB Main Pipeline (P0O)
Fe1||Fe2||Fe3| | .| De [.| Re [.| Iss |+ Ex (= WB | Duallssue Pipeline (P1)
v
Prefetch Unit B » Add —= WB Load/Store Pipeline (LS)
r
Y Y
LU

Slot0| [Slot1| |Slot2]| [Slot3

[0 ooop 0
[0000 [0
0 000

1l

1000
(0 000

Compute Engine Unit Load Store Unit

Télécom-ParisTech Jean-Luc Danger ,Tarik Graba W ie paRIS

CortexA9 Microarchitecture

Rename Issue Execute Writeback
‘ IRQ/FIQ
CoreSight <«— PL390
- Virtual and
Coresight/JTAG Debug Access Port Iph;sizal Interrupt
debug ¢— Profiing Monitor Block register pool Controller

i—, il
& 2 il
E— %

Decode 5| &
= (]

Instruction Prediction
queue queue
Auto-prefetcher
: Load-Store Unit uTLB
Instruction IFa:t-loglp Branch Prediction Stors Fhifer mmy ~ Program
00K-aside 5 .
Global History Buffe quad-slot with forwarding Trace
Fetch Instruction BR—Targa; MdrCad':e tt t 1t 1 Unit
cache Return Stack Data Cache |
—Ceresight—
L2 Cache Control
Memtty

Bus Interface Unit (BIU) ECC RAMs

! AMBA 3 AXI 64bit l

P A\ |

Télécom-ParisTech Jean-Luc Danger ,Tarik Graba W) 1p paRIS

Instruction Fetch

Fast-loop Branch Prediction

mode

| Global History Buffer
Instruction BR-Target Addr Cache
cache | Return Stack

J Instruction cache size:
> 16KB, 32KB, or 64KB

 Superscalar pipeline:
» fetching two instructions at once

J Dynamic Branch Prediction

Télécom-ParisTech Jean-Luc Danger ,Tarik Graba

Branch Prediction

- GHB
- BTAC
. furn
" | stack
PFO | ——m | PF1 | —— | PF2 L | PF3 | ——— —_—
% l Prediction queue
Slot0 Slot1 | Slot2 Slot3
— —_—

Instruction

Cache

Instruction queue

d Dynamic Branch
Prediction:

» Global History Buffer: 1K ~
16K entries

» Branch-Target Address
Cache: 512 ~ 4K entries

> Return stack of 4 x 32 bits

 Fast-loop mode:

» instruction loop that are
smaller than 64 bytes often
complete without additional
instruction cache accesses

TELECOM

Paris

mEET

Télécom-ParisTech Jean-Luc Danger ,Tarik Graba W ie paRIS

Branch Prediction : BTAC cache

current PC

Target & attributes

= Branch Target Address Cache (BTAC) associates PC with:

= predicate ‘is a branch’
= target address and state (ARM, THUMB)
= Other information (like ‘is a func call’, ‘is a func return’, etc)

Télécom-ParisTech Jean-Luc Danger ,Tarik Graba

Branch Prediction : History Buffer

. 4095i@ | = |mprove prediction further |
o | = Heuristic tradeoff
oo
—— 5 - | = |dea: the same branch gets
associated to different predictors
o according to history of control
10
o | = Catch regular patterns in branch
oL" history (e.g. embedded loops)
“\
111]1]1[1]0]1]0]0|1]1]0]|0]0[——7 2"
c C C C C E E = E E c C E E E
SEEsECEgREZEREE
F F F I s B = s B = = 5 B 5
= = = = = =2 =

Not Taken |o© \
e

Télécom-ParisTech Jean-Luc Danger ,Tarik Graba

TELECOM

Paris

mEET

@} 1P PARIS

Instruction Decode

.,: :
ey o =
S o 2 O
= ey o =)
= T
£ o

Page 87 Télécom-ParisTech

JSuper Scalar
Decoder

» Capable of
decoding two full
Instructions per
cycle

Jean-Luc Danger ,Tarik Graba

Renaming

Virtual to

physical
register pool ARM source: Renamed to:
" 5 LDR RO,[RZ] LDR V33, [V12]
3 MOVRL# | % | MOVV5 #5
o _ S BNE loop BNE loop
ssa ADD RO, RO, #1 ADD V10, V33, #

- Branches

d Removes hazard in pipeline by solving data dependencies
1 Use simplified stalling logic
 Can unroll simple code loops

Télécom-ParisTech Jean-Luc Danger ,Tarik Graba

Issue

Instruction queus

1 Issue can be fed maximum of 2 instructions per cycle
 Issue can dispatch up to 4 instructions per cycle
J Out of order selection of instructions from queue

Télécom-ParisTech Jean-Luc Danger ,Tarik Graba

S IP PARIS

Execute

 Variable length Executing Stage (1 ~ 3 cycles)

» Most Instructions finish within 1 cycle
» Instruction which folds shifts and rotates can take 3 cycles

— ADD YO0, r1, r2 (1 cycle)
— ADDTO0, r1, r2 LSL #2 (2 cycle)

®* Correspondstoa=Db+ (c << 2);

— ADD YO0, rl1, r2 LSL r3 (3 cycle)

° Correspondsto a=b + (c << d);

Télécom-ParisTech Jean-Luc Danger ,Tarik Graba

&: 1P PARIS

NEON

J Wide SIMD data processing architecture
» 32 registers x 64 bit wide or 16 registers x 128 bit wide
 NEON instructions perform “Packed SIMD” processing

— Registers can be considered as “vector” of same data type
— Instructions perform the same operation in all lanes

Source
Registers

Elements : -
kf LT‘ LT‘ lr 1] o= Operation]
: : % Destination
e ! Register

v v

Lane

http://www.arm.com/files/pdf/AT_-_NEON_for_Multimedia_Applications.pdf

Télécom-ParisTech Jean-Luc Danger ,Tarik Graba W ie paRIS

NEON Execute

d NEON Media Processing Engine supports vector
computations on:

» half-precision (16bit), single-precision (32bit), double-precision
(64Dbit) floating-point numbers

» 8, 16, 32 and 64 bit signed and unsigned integers

] Supported Operations Include:
» addition, subtraction, multiplication
» maximum or minimum of a vector of operands
» Inverse square-root approximation (y = x*-(1/2))
» many more

Paris
Télécom-ParisTech Jean-Luc Danger ,Tarik Graba W ie paRIS

Memory

Auto-prefetcher

Load-Store Unit
Store Buffer

quad-slot with forwarding

Data Cache

O Data prefetcher

» monitor cache line requests by processor and cache misses to
determine how much data to prefetch

» can prefetch up to 8 independent data streams

] load-store instructions forwarded for resolution within
memory system

O 2-level TLB structure (Translation Lookaside Buffer)

» micro TLB to reduce power consumed in translation and protection
look-ups

> main TLB

Télécom-ParisTech Jean-Luc Danger ,Tarik Graba

'S

IP PARIS

Cortex MPCore Processors

HERERENENENENENEN .

 Standard Cortex
cores, with
additional logic to
support MPCore

> Available as 1-4
CPU variants

O Include integrated
» Interrupt controller

» Snoop Control Unit
(SCU)

» Timers and
Watchdogs

NERERENENEREREREREnE NN

ARM CoreSight™ Multicore Debug and Trace Architecture

PTM
FPU/NEON || *) ¢

PTM PTM
FPU/NEON I/ FPU/NEDON I/E

PTM
FPU/NEON ||)

Cortex-A9 CPU

Cortex-A9 CPU Cortex-A3 CPU

Cortex-A9 CPU

|-Cache| |D-Cache

I-Cache| |D-Cache| |I-Cache||D-Cache

|-Cache| |D-Cache

Generic
Interrupt Contral

and Distribution

Snoop Control Unit {SCU)

Accelerator

Cache-2-Cache || Snoop
Transfers Filtering

Coherence
Paort

Advanced Bus Interface Unit

Page 94 Télécom-ParisTech

S S S [y i

Jean-Luc Danger ,Tarik Graba

TELECOM

=pE

",b\ﬂp PARIS

.I_II_II_II_II_II_II_II_II_II_II_II_I

Memory Hierarchy

Cortex A9 MPcore

CPU

CPU

CPU

CPU

Instructi
on
Cache

Data
Cache

Instructi |
on
Cache

Data
Cache

Instructi
on
Cache

Data
Cache

Instructi
on Data
Cache Cache

Accelerator
Coherence Port

.2 Cache

Main Memory

Page 95 Télécom-ParisTech

Jean-Luc Danger ,Tarik Graba

L1 and L2 Caches

__

E] I-Cache RAM E ! 12 Cachel : | E

|z ! i : : : o

. = . 1 ! : : > Off'Chlp !

| E 3 S ; ' | SRAM : : 5

E . D-Cache RAM | | : : :

] N | Lo e
L1 L2 L3

O Typical memory system can have multiple levels of cache

» Level 1 memory system typically consists of L1-caches, MMU/MPU and
TCMs

» Level 2 memory system depends on the system design

O Memory attributes determine cache behavior at different levels
» Controlled by the MMU/MPU

» Inner Cacheable attributes define memory access behavior in the L1 memory
system

» Outer Cacheable attributes define memory access behavior in the L2
memory system (if external) and beyond (as signals on the bus)

TELECOM

Paris

mEET

Télécom-ParisTech Jean-Luc Danger ,Tarik Graba W ie paRIS

L1 caches

Cortex A9 MPcore

CPU

CPU || CPU

CPU

D$ 1$

AXIRW

64-bit bus

D$ 1$ D$ 1$

AXIRW
64-bit bu

|

D$ 1$

ACP

L2 Cache

A 4

Main Memory

Paris
Télécom-ParisTech Jean-Luc Danger ,Tarik Graba W ie paRIS

Non-unified
- 32 bytes line length
- can be disabled independently

16, 32 or 64KB

4 - way associative

support for Security Extensions
| cache: VIP(virtual address)

D cache: PIPT (physical address)
- reduce number of caches flushes and
refills and save energy

Example 32KB ARM cache

___| v

Tag Set (= Index) Word | Byte
31 1312 5 4 210

19 | 8 3

Cache line v
Lo 7 6 5 4 3 2 1 0 d

Tag v Data d ;_ Cache has 8 words of data in each
Line 0 1 H line
— Line 1 . ; . .
e Each cache line contains Dirty bit(s)
B % i Indicates whether a particular cache
< 8 Line 254 line was modified by the ARM core
Line 255 _ .
Each cache line can be Valid or
L o invalid
| An invalid line is not considered
v-valid bit d - dirty bit(s) when performing a Cache l'rELE(FZ)gﬂ[I‘:

Télécom-ParisTech Jean-Luc Danger ,Tarik Graba W) 1p paRIS

L2 cache

Cortex A9 MPcore

CPU || cpPU || cPU || cPU .
e shared, unified

oo | o || os | o || o | o || 08| Off-chip
128KB to 8MB
« 4 to 16-way associative

AXI RW AXI RW
64-bit bus 64-bit bu
L2 Cache

Main Memory

o fi
Télécom-ParisTech Jean-Luc Danger ,Tarik Graba & 1e paris

Snoop Control Unit

_ Cortex-A9 MPCore (1-4 CPUs)

CcPU CPU CPU

DE | 15 || DS [15 || DS | 1S

MPCore Technology / SCU
| |

L 2

d Integral part of cache memory systems

J Connects processors to memory system through AXI
Interfaces
J SCU functions :
» maintain data cache coherency
» initiate L2 memory accesses

» arbitrate between processors’ simultaneous request for L2
accesses

» manages accesses from ACP
 Does not support instruction cache coherency

Paris
Télécom-ParisTech Jean-Luc Danger ,Tarik Graba W ie paRIS

Accelerator Coherence Port

Cortex-A9 MPCore (1-4 CPUs)

‘Event pulse” notifications
CPU CPU CPU

DS | 15 || D$ [15 |[DS | 1s

MPCore Technology / SCU Local Coherence Bus (no snooping on bus)
AMEA 3 AX
k4 k4
DMA Crypto
L2 Cache
shared, with per-master lockdown to . Wri .
limit high-thraughput master flooding _ .E:-:ample, Write Exs.umpﬁe. Read
Vrites clean and May hit and reschve
nvalidates L1 lines in CPU's L1 cache
l 1 f necessary N
glse may hit in
optionally allocating shared L2 cache
Main Memﬂry / SoC D“;E,.T;E shared L2 else read from main
MEmary

 optional AXI 64-bit slave port
« allows to connect to non-cached system mastering
peripherals and accelerators
—DMA engine or cryptographic accelerator
« SCU enforces memory coherency

Paris
Télécom-ParisTech Jean-Luc Danger ,Tarik Graba W ie paRIS

Plan

d ARM historique : FPARM7TDMI

 Les Cortex
» Cortex M family
» Cortex A family

d System bus

Paris
Télécom-ParisTech Jean-Luc Danger ,Tarik Graba W ie paRIS

ARM-based system

0 ARM core deeply embedded within an |]
Clocks and “ DMA
SoC Reset Port
> External debug and trace via JTAG or Controller
CoreSight interface
. ARM - External
O Design can have both external and Processor ﬁﬁ P ory
internal memories core < :“te"fac
: . : o
» Varying width, speed and size — DEBUG =
depending on system requirements TT nIRQ < on chip
O Caninclude ARM licensed CoreLink =" o mory
peripherals Interrupt |4
: Controll
> Interrupt controller, since core only il o | 4| grdge
has two interrupt sources ggt:sank - <
» Other peripherals and interfaces Peripherals E 1
d Can mclgde on-ch_lp memory fr_om - < ARM based
ARM Artisan Physical IP Libraries Peripheral g SoC
S _—

U Elements connected using AMBA
(Advanced Microcontroller Bus
Architecture)

Télécom-ParisTech Jean-Luc Danger ,Tarik Graba

An Example of AMBA System

High Performance APB
ARM processor UART
High -
Bandwidth AHB Timer
External APB
Mxe;rory Bridge
Keypad
Interface YP
High-bandwidth DMA PIO
on-chip RAM Bus Master

Low Power
Non-pipelined
High Performance Simple Interface
Pipelined

Burst Support

Multiple Bus Masters

TELECOM

Paris

Télécom-ParisTech Jean-Luc Danger ,Tarik Graba W) 1p paRIS

AHB Structure

Arbiter
ADDR
ADDR HWDAT4! Slave
Master #1
#1 > HRDATA
<HRDATA >
;/ —®
Address/Control » >
e—»| Slave
#2
Master S
#2 L >
—9 >
////
Write Data ® >
¢o—»| Slave
Read Data #3
Master /f
#3 M <
\T\ » Slave
#4

Decoder

TELECOM
Paris

mEET

Télécom-ParisTech Jean-Luc Danger ,Tarik Graba & e paris

AXI Multi-Master System Design

Slave
#1

ARM

Master 2

——

Inter-connection architecture

Slave
#2

Compared to AHB,
AXI allows multi-
channel
communication

mmmm Master interface

— Slave interface

Page 106 Télécom-ParisTech

Slave
#3

Slave
#4

Jean-Luc Danger ,Tarik Graba W8 1P paRIS

