VY

Institut Mines-Télécom

SE303 : Conception des
systémes sur puces

HLS : High Level Synthesis

Abdelmalek S| MERABET / Yves MATHIEU
abelmalek.si-merabet@telecom-paristech.fr
yves.mathieu@telecom-paristech.fr

B outline

Introduction
Principes et vocabulaire
Langage source et communications

Loutil CtoS de Cadence

2/45 SE303-Lhls Abdelmalek SI MERABET / Yves MATHIEU -

B outline

Introduction

FEIG R

3/45 SE303-Lhls Abdelmalek SI MERABET / Yves MATHIEU

I Le réve du concepteur

De la synthése RTL a la synthése HLS

® Eviter la description "au cycle pres", "au registre pres", "au
bit pres”
B On aimerait décrire :

* Un algorithme de traitement

» Des contraintes de vitesse (fréquence d’horloge)

 Des contraintes de débit (nombre de traitements par
seconde)

» Des contraintes de latence (délai maximum, en nombre de
cycles entre la demande d’un traitement et le résultat

® High Level Synthesis

WAL

4/45 SE303-Lhls Abdelmalek SI MERABET / Yves MATHIEU

I Méthodologies HLS pour les SoC

Une foison de situations

B Choix du langage d’entrée (C, C++, SystemC, VHDL,
Verilog)
B Choix du public de destination :
* Informaticiens : faible culture des architectures matérielles
ad-hoc.
« Electroniciens : faible culture des langages de haut niveau.
® Choix de 'architecture cible :
+ Style CPU (basée sur un graphe de contrble) associée a
des opérateurs de base (multiplieurs, alus,...)
» Style DATA-FLOW (basée sur un graphe de données)
associée a des machines a états de contrdle...

5/45 SE303-Lhls Abdelmalek S| MERABET / Yves MATHIEU

TELECOM ;'

EHH

I Méthodologies HLS pour les SoC

Langages

B Pas de définition précise de la notion de représentation de
haut niveau d’'un systéme matériel
B Quel sous-ensemble du langage ?
® Comment spécifier des entrées/sorties
B Usage systématique de pragmas de synthése pour
exprimer l'intention du concepteur
» Pour guider 'outil vers une solution raisonnable
(parallélisme / pipeline)
 Pour choisir des options techniques dans une technologie

donnée (exemple RAM/flip-flops)
» Pragmas différents d’un outil a I'autre.

6/45 SE303-Lhls Abdelmalek SI MERABET / Yves MATHIEU

TELECOM ;'

-mml3

I Méthodologies HLS pour les SoC

Un temps d’apprentissage "long"

® Un abord difficile @ cause du changement de paradigme.

® Une difficulté a basculer d’'un outil a l'autre a cause de la
différence d’approche.

® Mais un gain en temps de développement pour qui
maitrise la méthodologie

B Des exemples ridiculement simples dans les tutoriels des
outils :

« Exemple : Un débutant en HLS doit coder un filtre a
réponse impulsionnelle finie...

» RTL : Facile a coder, si on sait a I'avance le niveau de
parallélisme ou pipeline voulu

* HLS : Se prendre la téte avec les pragmas de synthése
pour obtenir le parallélisme ou pipeline voulu

* HLS : Un schéma d’E/S figé qui ne correspond pas
forcément au contexte d’utilisation voulu

7/45 SE303-Lhls Abdelmalek S| MERABET / Yves MATHIEU

WAL

Méthodologies HLS pour les SoC

Quelle question veut on résoudre ?

® Exemple : La DCT (Discrete Cosine Transform)

B || existe des IP matérielles optimisées
® En HLS, pour tenter d’approcher leurs performances :

» Réécrire le code C original

» Trouver la bonne combinaison de pragmas :
— Déroulement de boucles

Pipeline

Mémoires simple port

Mémoires double port

Registres...

» Mettre en oeuvre I'exploration d’architectures
— Prévu dans la plupart des outils
— Mais insupportablement long, car fait appel a de multiples

synthéses RTL

FTTR

8/45 SE303-Lhls Abdelmalek SI MERABET / Yves MATHIEU

I Méthodologies HLS pour les SoC

Quel probléme veut-on résoudre ?

B Diminuer les temps de codage longs et fastidieux :

 Ecriture des machines a état de contréle.
 Ecriture des codes de communication vers le monde
extérieur (communications ad-hoc, bus normalisés)

B |e véritable probléme n’est pas "Je veux coder une DCT"
B | e véritable probleme est "Je veux coder une DCT..."

* Qui communique avec un bus esclave de la norme XXX

» Avec un bus de données de largeur YYY

* Avec des données traitées de largeur ZZZ

» Avec des transferts de données par paquets de TTT
données

EET R

9/45 SE303-Lhls Abdelmalek SI MERABET / Yves MATHIEU

B outline

Principes et vocabulaire

CEETR

10/45 SE303-Lhls Abdelmalek SI MERABET / Yves MATHIEU

I 'Data Flow Graph”

Graphe des flux de données...

#include "accum.h”
void accumulate(int
int
int
int
int &dout)
{ @ L] dout
int t1,t2;
tl = a + b;
t2 = t1 + c;
dout = t2 + d;

0. Source : High Level Synthesis Blue Book (Michael Fingerhoff/Mentor
Graphics)

11/45 SE303-Lhls Abdelmalek S| MERABET / Yves MATHIEU

TELECOM

EHIOH

"Resource Allocation

Allocation des ressources...

Operations

Characterized
Library of
Components

» Resource
Allocation

FN+8 +

Hardware Resource
+ Ind Delay =3 ns
Area = 320 um2

® Choix des opérateurs, dimensionnement des chemins de
données

m Estimateurs de surface, estimateurs de délai
B Nécessite la connaissance des données technologiques

0. Source : High Level Synthesis Blue Book (Michael Fingerhoff/Mentor
Graphics)

12/45 SE303-Lhls Abdelmalek SI MERABET / Yves MATHIEU -

I 'Scheduling”

Ordonnancement...

Register/clock
boundary

Control step Cc1 c2 c3 Cc4

Data written on

+ —“ clock edge
c Ige
e %

d
—

Clock cycle 1 2 3 4

B Supposition : Tagaition < Teik
B Allocation de chaque opération a un cycle donné.
B Stockage des résultats intermédiaires (registre)

0. Source : High Level Synthesis Blue Book (Michael Fingerhoff/Mentor
Graphics)

13/45 SE303-Lhls Abdelmalek SI MERABET / Yves MATHIEU -

I Control steps”

Etapes de controle

tl = a + b;

‘ t2_t]+c;

B Automate associé au chemin de données.

B Impose I'ordonnancement choisi.

0. Source : High Level Synthesis Blue Book (Michael Fingerhoff/Mentor
Graphics)

14/45 SE303-Lhls

Abdelmalek SI MERABET / Yves MATHIEU

I '™mplémentation matérielle”

Un design sans contraintes

a[31:0] '*F
b[31:0] *\—LF *3/2 dout[31:0]

c[31:0] |

d3t:0) | 4xt }7 ‘{ Reg

FSM

~

B Minimisation des ressources
® Un seul additionneur, associé a automate.

0. Source : High Level Synthesis Blue Book (Michael Fingerhoff/Mentor
Graphics)

15/45 SE303-Lhls Abdelmalek SI MERABET / Yves MATHIEU

I 'Loop Pipelining”

Pipeline de boucle
m "[nitiation Interval" : combien de cycles d’horloge entre
deux utilisations de la boucle.
B [|=1 : Un nouveau calcul a chaque cycle.
m "Latency" : Combien de cycles d’horloge entre la premiére
donnée entrante et la premiere donnée sortante.

uuuuuuuuuu

Pas de contrainte L=3, lI=4

0. Source : High Level Synthesis Blue Book (Michael Fingerhoff/Mentor
Graphics)

16/45 SE303-Lhls Abdelmalek SI MERABET / Yves MATHIEU

FTTR

I 'Loop Pipelining”

Pipeline 1I=3, L=3
® On contraint la synthése (pragma, script...)
B Remarque : En C4 une sortie en méme temps qu’une
entrée.
B On suppose ne pas étre containt pas les E/S

¥ Data written every
three clock cycles

eration 1

Pipeline L=3, 11=3

0. Source : High Level Synthesis Blue Book (Michael Fingerhoff/Mentor
Graphics)

17/45 SE303-Lhls Abdelmalek SI MERABET / Yves MATHIEU

FTTR

I 'Loop Pipelining”
Pipeline 1l=2, L=3
® On contraint la synthese (pragma, script...)
® || faut 2 additionneurs en paralléle.

® On suppose toujours ne pas étre containt pas les E/S

Iteration O

P Data written every

15‘ o wo clock cycles
| stage
I
-
TF B /\
|
i I :
|
| e c2

+
-
Two adders

o
needed for ll=2 a + -

Clock cycle B

Pipeline L=3, lI=2

0. Source : High Level Synthesis Blue Book (Michael Fingerhoff/Mentor
Graphics)

18/45 SE303-Lhls Abdelmalek SI MERABET / Yves MATHIEU -

I 'Loop Pipelining”

Pipeline ll=1, L=3
m || faut 3 additionneurs en paralléle.
B Performance maximale.

teration 0

I+ *‘L
L+ [{.3;3:
B
I
H Heration 1
[. -
. ol | 1 \
I+ —T[LS.W .
¢ .
TR IR
I e i
[. [
et 7 ‘/
g /
T i L /
%4 g |
o L '
Womipierid G 2y g

Pipeline L=3, II=1

0. Source : High Level Synthesis Blue Book (Michael Fingerhoff/Mentor
Graphics)

19/45 SE303-Lhls Abdelmalek SI MERABET / Yves MATHIEU -

I 'Loop Unrolling”

Déroulage de boucles

B On ne joue pas sur les itérations de la boucle
® On joue sur le parallélisme dans la boucle

o Clock Cycles >
One iteration per ——» | ()
clock |
1 l | ACCUM loop in first
2 call of the main loop

g _
2 0
o
@ 1
« ACCUM loop in second

call of the main loop

A\l

Ordonnancement initial de 2 appels successifs de la boucle.

0. Source : High Level Synthesis Blue Book (Michael Fingerhoff/Mentor
Graphics)

20/45 SE303-Lhls Abdelmalek SI MERABET / Yves MATHIEU -

I 'Loop Unrolling”
Implémentation initiale

® Au premier cycle on charge din[31 :0]+0
B Aux 3 autres cycles on accumule

din[31:0]
din[63:31) o 3/2 ’
din[95:64] dout[31:0]
din[127:96] 0P ’ + | Reg
Coauk:\Itter I
~

) 3-bit control logic

Implémentation matérielle

0. Source : High Level Synthesis Blue Book (Michael Fingerhoff/Mentor
Graphics)

21/45 SE303-Lhls Abdelmalek SI MERABET / Yves MATHIEU -

I 'Loop Unrolling”

Déroulement partiel
® Déroulement d’un facteur 2
® Deux données traitées en parallele dans la boucle.

Two iterations > n

lock
per cloc ACCUM loop in first
call of the main loop

Clock Cycles >

2
T |3
=
2 0
o —
3> | 1
d e - ACCUM loop in second
2 } call of the main loop
B

Ordonnancement pour un déroulement d’un facteur 2

0. Source : High Level Synthesis Blue Book (Michael Fingerhoff/Mentor
Graphics)

22/45 SE303-Lhls Abdelmalek SI MERABET / Yves MATHIEU -

I 'Loop Unrolling”

Déroulement partiel

B Toujours un seul additionneur.
® Compteur plus petit.

din[31:0]

din[95:64] - g
in[!]] . dout[31:0]

din[63:31] j)—,—\4) S+ j\ .
.
dinf127:96] | . L 9

1-bit
Counter

Implémentation matérielle

0. Source : High Level Synthesis Blue Book (Michael Fingerhoff/Mentor
Graphics)

23/45 SE303-Lhls Abdelmalek SI MERABET / Yves MATHIEU -

I 'Loop Unrolling”

Déroulement total
B Déroulement d’un facteur 4
B Quatre données traitées en parallele dans la boucle.

Clock Cycles -

Four iterations
per clock

v

ACCUM loop in first
call of the main loop

suone.a)|

ACCUM loop in second
call of the main loop

W N = O

A\
Ordonnancement pour un déroulement d’un facteur 4

0. Source : High Level Synthesis Blue Book (Michael Fingerhoff/Mentor
Graphics)

24/45 SE303-Lhls Abdelmalek SI MERABET / Yves MATHIEU

FTTR

I 'Loop Unrolling”

Déroulement total

B Trois additionneurs.
B Plus de compteur.

din[31:0]

din[63:31] @ dout[31:0]
din[95:64] —— e

din[127:96]

Implémentation matérielle

0. Source : High Level Synthesis Blue Book (Michael Fingerhoff/Mentor
Graphics)

N B "Les boucles"

Le coeur des outils HLS

Boucles simples a bornes statiques.
Pipeline et Déroulement de boucle combinables.

Création automatique des automates de gestion.

* En RTL : codage long et fastidieux des amorgages et fin de
pipeline

* En RTL : debogage long et fastidieux

« En RTL : On ne tente souvent gu’une seule alternative

Bonus : Exploration automatique de différentes
alternatives.

Le résultat final optimal peut étre contre-intuitif.
® STANDARD DANS TOUS LES OUTILS HLS

26/45 SE303-Lhls Abdelmalek SI MERABET / Yves MATHIEU

TELECOM ;'

EHH

B outline

Langage source et communications

CEETR

27/45 SE303-Lhls Abdelmalek SI MERABET / Yves MATHIEU

I Langage source

Impact sur la méthodologie
®m | angage C/C++ : on compile une fonction de traitement.

B | es entrées/sortie de la fonction correspondent a des ports
de communication

m || faut pouvoir préciser les protocoles utilisés
B Solution : les pragmas de synthése.

void example(int A[50], int B[50]) {
//Set the HLS native interface types
#pragma HLS INTERFACE axis port=A
#pragma HLS INTERFACE axis port=B

int i;

for(i = 0; i < 50; i++){

B[i] = A[i] + 5;

3

}

Xilinx Vivado-HLS : Deux ports AXI4-stream séparés

28/45 SE303-Lhls Abdelmalek S| MERABET / Yves MATHIEU

FTTR

I Langage source

Codage en C/C++

B Regrouper les ports, préciser les adresses,...
B Tout est dans le pragma...
B |imitation aux pragmas prévus par I'outil.

void example(char xa, char b, char *c) {
#pragma HLS INTERFACE s_axilite port=return bundle=BUS_A
#pragma HLS INTERFACE s_axilite port=a bundle=BUS_A
#pragma HLS INTERFACE s_axilite port=b bundle=BUS_A
#pragma HLS INTERFACE s_axilite port=c bundle=BUS_A offset=0x0400
#pragma HLS INTERFACE ap_vld port=b
*C += *a + *b;

}

Xilinx Vivado-HLS : Un seul port AXI4-lite pour tout le monde...

FEETI

29/45 SE303-Lhls Abdelmalek SI MERABET / Yves MATHIEU

I Langage source

Xilinx Vivado HLS : SystemC

® Méme principe que pour C (appliqué a "sc_in" et "sc_out"
B En plus, interprétation directe de "sc_fifo"

SC_MODULE (sc_sequ_cthread){
sc_fifo_out<int> dout;
sc_fifo_in<int> din;

}
void sc_FIFO_port::Prc2() {

#pragma HLS resource core=AXI4Stream variable=din
#pragma HLS resource core=AXI4Stream variable=dout

}

FTTR

30/45 SE303-Lhls Abdelmalek SI MERABET / Yves MATHIEU

B outline

Loutil CtoS de Cadence

FEIG R

31/45 SE303-Lhls Abdelmalek SI MERABET / Yves MATHIEU

N B C to Silicon

Principes

B |angage d’entrée SystemC
® On mélange niveau RTL et HLS

B | es ports d’entrée/sortie peuvent étre de vrais signaux ou
non...

B On peut coder au cycle prés (ordonnancement manuel)
mais...

B On peut monter en abstraction et laisser 'outil faire le
travail...

® On peut cibler une technologie ASIC ou une technologie
FPGA

®m Obsoléte : Stratus HLS nouvel outil, mémes principes.

32/45 SE303-Lhls Abdelmalek S| MERABET / Yves MATHIEU

TELECOM ;'

EHH

Ctos

Un SC_MODULE au niveau le plus haut

#include "systemc.h”

SC_MODULE (my_top_module) {
sc_in<bool> clk;
sc_out<bool> rst;

SC_CTOR(my_top_module)
clk("clk"),

rst("rst”)

{

}

private:
void main();

#include "my_module.h”

Qéid my_top_module: :main() {
3

#ifdef __CTOS__

SC_MODULE_EXPORT (my_top_module);
#endif ::::::::0:

La macro
SC_MODULE_EXPORT
permet & CtoS de connaitre le
top module du design.

33/45 SE303-Lhls Abdelmalek S| MERABET / Yves MATHIEU -

I Ctos : regles de codage

Des processus, des communications entre processus

B Des SC_METHOD pour les processus purement
combinatoires.

® Des SC_CTHREAD pour les processus séquentiels
synchrones (recommandé).

B Si une variable est partagée par 2 processus : utiliser un
sc_signal

B Si une variable n’est utilisée que par 1 processus : ne pas
utiliser un sc_signal

B | es variables globales ne sont pas supportées.

34/45 SE303-Lhls Abdelmalek SI MERABET / Yves MATHIEU -

Ctos : Un SC_CTHREAD

Style de code synthétisable

SC_MODULE (pulser) {
public: void pulser::main()
sc_in<bhool> clk, rst, set_rate; { i
sc_in< sc_int<16> > rate; ouF.wr1te(®);
sc_out< sc_int<16> > out; wait();
while (!set_rate.read()) { wait(); }
SC_CTOR(pulser) : cur_rate = rate.read();
clk("clk"), rst("rst"), while (1) { .
set_rate("set_rate"), rate("rate”), for (1?t 1=0; i<cur_rate-1; i++) {
out("out") wait();
{ 3
SC_CTHREAD(main, clk.pos()); out.write(1); wait(); out.write(0);
reset_signal_is(rst, true); 3
} }
void main(); Code du reset : avant le
int cur_rate; . .
3 premier wait().

Reset Synchrone, Précis au niveau cycle.

35/45 SE303-Lhls Abdelmalek SI MERABET / Yves MATHIEU

FEIG R

I Ctos : diriger le synthétiseur

Pragmas ou scripts tcl

B | es directives de synthése peuvent étre fournies :

B Dans le script de synthése TCL :
 Fournir des configuration générales
+ Calculer des paramétres dynamiques de configuration
+ |l faut identifier les objets sur lesquels appliquer les

directives

B Par des pragmas insérés directement dans le source.
» S’applique au code qui suit immédiatement
+ Statique

TCL :

constrain_latency -max 32 -name body_latency start_node_id end_node_id

Pragmas :
#pragma ctos constrain_latency -max 32 -name body_latency

36/45 SE303-Lhls Abdelmalek SI MERABET / Yves MATHIEU -

I Ctos : Directives de synthese

Lexemple des RAM

B |es tableaux peuvent étre transformés en mémoires (ASIC
ou FPGA)

®m Applicable aux variables, pas aux signaux.

B Des options d’implémentation :

+ Des tableaux de registres. (ASIC et FPGA) : Flatten array
* Linférence d’'une RAM (FPGA) : Allocate built-in-RAM
 Linstance d’'une "blackBox" (ASIC) : allocate vendor RAM

B Attention aux options contradictoires avec le code.

#pragma allocate_builtin_ram -sync_read
char mem[1024] ;

data_out.write(mem[add]);
wait() ;

® On ne peut pas ecrire et lire dans le méme cycle...

37/45 SE303-Lhls Abdelmalek SI MERABET / Yves MATHIEU

CEETR

I Ctos : Bibliotheques

Communications point a point : Les "Flex Channels"

® Modele au niveau TLM

[N pu).
data
producer

put

— get
L initiator

_get(v) f\v
data
consumer

put/get channel
(TLM fifo)

B Structure synthétisée au niveau signal

(N puy)
data
producer

put
initiator

put/get channel
(signals)

get

data
consumer

38/45 SE303-Lhls Abdelmalek S| MERABET / Yves MATHIEU -

N B Ctos : Flex Channels

Le protocole Ready/Valid

S ainininininin
ready J——-—\L_I_/—_
i .

valid . —

data —_—

L S N
[a+]

[¥3]

Y

® Débit maximum garanti (1 transfert par cycle)
B | atence exacte de 1 cycle

©
] L

39/45 SE303-Lhls Abdelmalek SI MERABET / Yves MATHIEU

N B Ctos : Flex Channels

Terminologie des initiateurs

B Blocking initiator : Les fonctions contiennent des wait() : on
attend un résultat

® Non-blocking : Les fonctions ne contiennent pas de wait() :
réponse combinatoire

B May-block : Les fonctions peuvent générer une attente ou
non : réponse combinatoire ou séquentielle

B Peek : On peut récupérer une donnée valide, sans la
consommer.

40/45 SE303-Lhls Abdelmalek SI MERABET / Yves MATHIEU -

I Ctos : Blocking initiators

Un exemple de déclaration

SC_MODULE (DUT) {
sc_in<bool> clk;
sc_in<bool> nrst;
b_get_initiator<char> din;
b_put_initiator<char> dout;

SC_CTOR(DUT)
. clk("clk™)
, nrst("nrst”)
, din("din")
, dout("dout")

{
SC_THREAD (process);
sensitive << clk.pos();
reset_signal_is(nrst,false);
// Bind clock and reset signal to put/get channel internal logic
din.clk_rst(clk,nrst) ;
dout.clk_rst(clk,nrst) ;

TELECOM

41/45 SE303-Lhls Abdelmalek SI MERABET / Yves MATHIEU =

I Ctos : Blocking initiators

Un exemple d’utilisation

void process() {

din.reset_get(); // Put/get initiators need to be reset.

dout.reset_put();

wait();

while (1) {
// Get a character (data element) ; this call will block if
// the input channel is empty.
char ¢ = din.get();
c=c- (’a’ - ’A’); // Convert from lower to uppercase.;
// We need a wait in case we did both get() and put()
// in the current cycle (to avoid combinational loop)
wait();
// This call will block only if the output channel is full.;
dout.put(c);
//
}

TELECOM

EHIOH

42/45 SE303-Lhls Abdelmalek SI MERABET / Yves MATHIEU

I Ctos : Blocking initiators

Les déclarations et méthodes

//// PUT initiator ////

// Déclaration

b_put_initiator<type> name;

// Méthodes

virtual void reset_put(); // Reset the put side of the channel
virtual void put(const T &v); // Put item, waits until successfull

//// GET initiator ////

//Déclaration

b_get_initiator<type> name;

//Méthodes

virtual void reset_get(); // Reset the get side of the channel
virtual void get(T &t); // Get item, waits until successfull
virtual T get(); // Get item, waits until successfull

Rappel : au moins un cycle d’attente.

43/45 SE303-Lhls Abdelmalek SI MERABET / Yves MATHIEU

TELECOM

EHIOH

I Ctos : May Block initiators

Les déclarations et méthodes

//// PUT initiator ////

// Déclaration

put_initiator<type> name;

// Méthodes

virtual void reset_put(); // Reset the put side of the channel
virtual void put(const T &v); // Put item, waits until successfull

//// GET initiator ////

//Déclaration

get_initiator<type> name;

//Méthodes

virtual void reset_get(); // Reset the get side of the channel
virtual void get(T &t); // Get item, waits until successfull
virtual T get(); // Get item, waits until successfull

Rappel : de 0 a plusieurs cycles d’attente

44/45 SE303-Lhls Abdelmalek SI MERABET / Yves MATHIEU

TELECOM

EHIOH

I Ctos : Non Blocking initiators

Les déclarations et méthodes

//// PUT initiator ////

// Déclaration

nb_put_initiator<type> name;

// Méthodes

virtual void reset_put(); // Reset the put side of the channel

virtual bool nb_can_put() const; // Returns true id the channel is not full
virtual bool nb_put(const T &v); // Put item, return true if successfull

//// GET initiator ////

//Déclaration

nb_get_initiator<type> name;

//Méthodes

virtual void reset_get(); // Reset the get side of the channel
virtual bool nb_can_get() const; // Returns true id the channel is not empty
virtual bool nb_get(const T &v); // Get item, return true if successfull.

Rappel : réponse combinatoire (dans le cycle)

45/45 SE303-Lhls Abdelmalek SI MERABET / Yves MATHIEU

TELECOM

EHIOH

	Digital Integrated Electronics
	Introduction
	Principes et vocabulaire
	Langage source et communications
	L'outil CtoS de Cadence

