
SE303 : Conception des
systèmes sur puces
HLS : High Level Synthesis

Abdelmalek SI MERABET / Yves MATHIEU
abelmalek.si-merabet@telecom-paristech.fr
yves.mathieu@telecom-paristech.fr



Outline

Introduction

Principes et vocabulaire

Langage source et communications

L’outil CtoS de Cadence

2/45 SE303-Lhls Abdelmalek SI MERABET / Yves MATHIEU



Outline

Introduction

Principes et vocabulaire

Langage source et communications

L’outil CtoS de Cadence

3/45 SE303-Lhls Abdelmalek SI MERABET / Yves MATHIEU



Le rêve du concepteur
De la synthèse RTL à la synthèse HLS

Eviter la description "au cycle près", "au registre près", "au
bit près"
On aimerait décrire :

• Un algorithme de traitement
• Des contraintes de vitesse (fréquence d’horloge)
• Des contraintes de débit (nombre de traitements par

seconde)
• Des contraintes de latence (délai maximum, en nombre de

cycles entre la demande d’un traitement et le résultat

High Level Synthesis

4/45 SE303-Lhls Abdelmalek SI MERABET / Yves MATHIEU



Méthodologies HLS pour les SoC
Une foison de situations

Choix du langage d’entrée (C, C++, SystemC, VHDL,
Verilog)
Choix du public de destination :

• Informaticiens : faible culture des architectures matérielles
ad-hoc.

• Electroniciens : faible culture des langages de haut niveau.
Choix de l’architecture cible :

• Style CPU (basée sur un graphe de contrôle) associée à
des opérateurs de base (multiplieurs, alus,...)

• Style DATA-FLOW (basée sur un graphe de données)
associée à des machines à états de contrôle...

5/45 SE303-Lhls Abdelmalek SI MERABET / Yves MATHIEU



Méthodologies HLS pour les SoC
Langages

Pas de définition précise de la notion de représentation de
haut niveau d’un système matériel
Quel sous-ensemble du langage?
Comment spécifier des entrées/sorties
Usage systématique de pragmas de synthèse pour
exprimer l’intention du concepteur

• Pour guider l’outil vers une solution raisonnable
(parallélisme / pipeline)

• Pour choisir des options techniques dans une technologie
donnée (exemple RAM/flip-flops)

• Pragmas différents d’un outil à l’autre.

6/45 SE303-Lhls Abdelmalek SI MERABET / Yves MATHIEU



Méthodologies HLS pour les SoC
Un temps d’apprentissage "long"

Un abord difficile à cause du changement de paradigme.
Une difficulté à basculer d’un outil à l’autre à cause de la
différence d’approche.
Mais un gain en temps de développement pour qui
maîtrise la méthodologie
Des exemples ridiculement simples dans les tutoriels des
outils :

• Exemple : Un débutant en HLS doit coder un filtre à
réponse impulsionnelle finie...

• RTL : Facile à coder, si on sait à l’avance le niveau de
parallélisme ou pipeline voulu

• HLS : Se prendre la tête avec les pragmas de synthèse
pour obtenir le parallélisme ou pipeline voulu

• HLS : Un schéma d’E/S figé qui ne correspond pas
forcément au contexte d’utilisation voulu

7/45 SE303-Lhls Abdelmalek SI MERABET / Yves MATHIEU



Méthodologies HLS pour les SoC
Quelle question veut on résoudre?

Exemple : La DCT (Discrete Cosine Transform)
Il existe des IP matérielles optimisées
En HLS, pour tenter d’approcher leurs performances :

• Réécrire le code C original
• Trouver la bonne combinaison de pragmas :

– Déroulement de boucles
– Pipeline
– Mémoires simple port
– Mémoires double port
– Registres...

• Mettre en oeuvre l’exploration d’architectures
– Prévu dans la plupart des outils
– Mais insupportablement long, car fait appel à de multiples

synthèses RTL

8/45 SE303-Lhls Abdelmalek SI MERABET / Yves MATHIEU



Méthodologies HLS pour les SoC
Quel problème veut-on résoudre?

Diminuer les temps de codage longs et fastidieux :
• Ecriture des machines à état de contrôle.
• Ecriture des codes de communication vers le monde

extérieur (communications ad-hoc, bus normalisés)

Le véritable problème n’est pas "Je veux coder une DCT"
Le véritable problème est "Je veux coder une DCT..."

• Qui communique avec un bus esclave de la norme XXX
• Avec un bus de données de largeur YYY
• Avec des données traitées de largeur ZZZ
• Avec des transferts de données par paquets de TTT

données

9/45 SE303-Lhls Abdelmalek SI MERABET / Yves MATHIEU



Outline

Introduction

Principes et vocabulaire

Langage source et communications

L’outil CtoS de Cadence

10/45 SE303-Lhls Abdelmalek SI MERABET / Yves MATHIEU



"Data Flow Graph"
Graphe des flux de données...

#include "accum.h"
void accumulate(int a,

int b,
int c,
int d,
int &dout)

{
int t1,t2;
t1 = a + b;
t2 = t1 + c;
dout = t2 + d;

}

0. Source : High Level Synthesis Blue Book (Michael Fingerhoff/Mentor
Graphics)

11/45 SE303-Lhls Abdelmalek SI MERABET / Yves MATHIEU



"Resource Allocation"
Allocation des ressources...

Choix des opérateurs, dimensionnement des chemins de
données
Estimateurs de surface, estimateurs de délai
Nécessite la connaissance des données technologiques

0. Source : High Level Synthesis Blue Book (Michael Fingerhoff/Mentor
Graphics)

12/45 SE303-Lhls Abdelmalek SI MERABET / Yves MATHIEU



"Scheduling"
Ordonnancement...

Supposition : Taddition < Tclk

Allocation de chaque opération à un cycle donné.
Stockage des résultats intermédiaires (registre)

0. Source : High Level Synthesis Blue Book (Michael Fingerhoff/Mentor
Graphics)

13/45 SE303-Lhls Abdelmalek SI MERABET / Yves MATHIEU



"Control steps"
Etapes de contrôle

Automate associé au chemin de données.
Impose l’ordonnancement choisi.

0. Source : High Level Synthesis Blue Book (Michael Fingerhoff/Mentor
Graphics)

14/45 SE303-Lhls Abdelmalek SI MERABET / Yves MATHIEU



"Implémentation matérielle"
Un design sans contraintes

Minimisation des ressources
Un seul additionneur, associé à automate.

0. Source : High Level Synthesis Blue Book (Michael Fingerhoff/Mentor
Graphics)

15/45 SE303-Lhls Abdelmalek SI MERABET / Yves MATHIEU



"Loop Pipelining"
Pipeline de boucle

"Initiation Interval" : combien de cycles d’horloge entre
deux utilisations de la boucle.
II=1 : Un nouveau calcul à chaque cycle.
"Latency" : Combien de cycles d’horloge entre la première
donnée entrante et la première donnée sortante.

Pas de contrainte L=3, II=4
0. Source : High Level Synthesis Blue Book (Michael Fingerhoff/Mentor

Graphics)

16/45 SE303-Lhls Abdelmalek SI MERABET / Yves MATHIEU



"Loop Pipelining"
Pipeline II=3, L=3

On contraint la synthèse (pragma, script...)
Remarque : En C4 une sortie en même temps qu’une
entrée.
On suppose ne pas être containt pas les E/S

Pipeline L=3, II=3
0. Source : High Level Synthesis Blue Book (Michael Fingerhoff/Mentor

Graphics)

17/45 SE303-Lhls Abdelmalek SI MERABET / Yves MATHIEU



"Loop Pipelining"
Pipeline II=2, L=3

On contraint la synthèse (pragma, script...)
Il faut 2 additionneurs en parallèle.
On suppose toujours ne pas être containt pas les E/S

Pipeline L=3, II=2
0. Source : High Level Synthesis Blue Book (Michael Fingerhoff/Mentor

Graphics)

18/45 SE303-Lhls Abdelmalek SI MERABET / Yves MATHIEU



"Loop Pipelining"
Pipeline II=1, L=3

Il faut 3 additionneurs en parallèle.
Performance maximale.

Pipeline L=3, II=1
0. Source : High Level Synthesis Blue Book (Michael Fingerhoff/Mentor

Graphics)

19/45 SE303-Lhls Abdelmalek SI MERABET / Yves MATHIEU



"Loop Unrolling"
Déroulage de boucles

On ne joue pas sur les itérations de la boucle
On joue sur le parallélisme dans la boucle

Ordonnancement initial de 2 appels successifs de la boucle.

0. Source : High Level Synthesis Blue Book (Michael Fingerhoff/Mentor
Graphics)

20/45 SE303-Lhls Abdelmalek SI MERABET / Yves MATHIEU



"Loop Unrolling"
Implémentation initiale

Au premier cycle on charge din[31 :0]+0
Aux 3 autres cycles on accumule

Implémentation matérielle

0. Source : High Level Synthesis Blue Book (Michael Fingerhoff/Mentor
Graphics)

21/45 SE303-Lhls Abdelmalek SI MERABET / Yves MATHIEU



"Loop Unrolling"
Déroulement partiel

Déroulement d’un facteur 2
Deux données traitées en parallèle dans la boucle.

Ordonnancement pour un déroulement d’un facteur 2

0. Source : High Level Synthesis Blue Book (Michael Fingerhoff/Mentor
Graphics)

22/45 SE303-Lhls Abdelmalek SI MERABET / Yves MATHIEU



"Loop Unrolling"
Déroulement partiel

Toujours un seul additionneur.
Compteur plus petit.

Implémentation matérielle

0. Source : High Level Synthesis Blue Book (Michael Fingerhoff/Mentor
Graphics)

23/45 SE303-Lhls Abdelmalek SI MERABET / Yves MATHIEU



"Loop Unrolling"
Déroulement total

Déroulement d’un facteur 4
Quatre données traitées en parallèle dans la boucle.

Ordonnancement pour un déroulement d’un facteur 4
0. Source : High Level Synthesis Blue Book (Michael Fingerhoff/Mentor

Graphics)

24/45 SE303-Lhls Abdelmalek SI MERABET / Yves MATHIEU



"Loop Unrolling"
Déroulement total

Trois additionneurs.
Plus de compteur.

Implémentation matérielle

0. Source : High Level Synthesis Blue Book (Michael Fingerhoff/Mentor
Graphics)

25/45 SE303-Lhls Abdelmalek SI MERABET / Yves MATHIEU



"Les boucles"
Le coeur des outils HLS

Boucles simples à bornes statiques.
Pipeline et Déroulement de boucle combinables.
Création automatique des automates de gestion.

• En RTL : codage long et fastidieux des amorçages et fin de
pipeline

• En RTL : debogage long et fastidieux
• En RTL : On ne tente souvent qu’une seule alternative

Bonus : Exploration automatique de différentes
alternatives.
Le résultat final optimal peut être contre-intuitif.
STANDARD DANS TOUS LES OUTILS HLS

26/45 SE303-Lhls Abdelmalek SI MERABET / Yves MATHIEU



Outline

Introduction

Principes et vocabulaire

Langage source et communications

L’outil CtoS de Cadence

27/45 SE303-Lhls Abdelmalek SI MERABET / Yves MATHIEU



Langage source
Impact sur la méthodologie

Langage C/C++ : on compile une fonction de traitement.
Les entrées/sortie de la fonction correspondent à des ports
de communication
Il faut pouvoir préciser les protocoles utilisés
Solution : les pragmas de synthèse.

void example(int A[50], int B[50]) {
//Set the HLS native interface types
#pragma HLS INTERFACE axis port=A
#pragma HLS INTERFACE axis port=B

int i;
for(i = 0; i < 50; i++){

B[i] = A[i] + 5;
}

}

Xilinx Vivado-HLS : Deux ports AXI4-stream séparés
28/45 SE303-Lhls Abdelmalek SI MERABET / Yves MATHIEU



Langage source
Codage en C/C++

Regrouper les ports, préciser les adresses,...
Tout est dans le pragma...
Limitation aux pragmas prévus par l’outil.

void example(char *a, char *b, char *c) {
#pragma HLS INTERFACE s_axilite port=return bundle=BUS_A
#pragma HLS INTERFACE s_axilite port=a bundle=BUS_A
#pragma HLS INTERFACE s_axilite port=b bundle=BUS_A
#pragma HLS INTERFACE s_axilite port=c bundle=BUS_A offset=0x0400
#pragma HLS INTERFACE ap_vld port=b

*c += *a + *b;
}

Xilinx Vivado-HLS : Un seul port AXI4-lite pour tout le monde...

29/45 SE303-Lhls Abdelmalek SI MERABET / Yves MATHIEU



Langage source
Xilinx Vivado HLS : SystemC

Même principe que pour C (appliqué à "sc_in" et "sc_out"
En plus, interprétation directe de "sc_fifo"

SC_MODULE(sc_sequ_cthread){
sc_fifo_out<int> dout;
sc_fifo_in<int> din;
...

}

void sc_FIFO_port::Prc2() {
#pragma HLS resource core=AXI4Stream variable=din
#pragma HLS resource core=AXI4Stream variable=dout

...
}

30/45 SE303-Lhls Abdelmalek SI MERABET / Yves MATHIEU



Outline

Introduction

Principes et vocabulaire

Langage source et communications

L’outil CtoS de Cadence

31/45 SE303-Lhls Abdelmalek SI MERABET / Yves MATHIEU



C to Silicon
Principes

Langage d’entrée SystemC
On mélange niveau RTL et HLS
Les ports d’entrée/sortie peuvent être de vrais signaux ou
non...
On peut coder au cycle près (ordonnancement manuel)
mais...
On peut monter en abstraction et laisser l’outil faire le
travail...
On peut cibler une technologie ASIC ou une technologie
FPGA
Obsolète : Stratus HLS nouvel outil, mêmes principes.

32/45 SE303-Lhls Abdelmalek SI MERABET / Yves MATHIEU



Ctos
Un SC_MODULE au niveau le plus haut

::::::::::::
my_top_module.h
::::::::::::
#include "systemc.h"
SC_MODULE(my_top_module) {

sc_in<bool> clk;
sc_out<bool> rst;
..
SC_CTOR(my_top_module)
clk("clk"),
rst("rst")
{

..
}
..
private:

void main();
};
::::::::::::

::::::::::::
my_top_module.cpp
::::::::::::
#include "my_module.h"
..
void my_top_module::main() {

..
}
..
#ifdef __CTOS__
SC_MODULE_EXPORT(my_top_module);
#endif ::::::::::::

La macro
SC_MODULE_EXPORT
permet à CtoS de connaitre le
top module du design.

33/45 SE303-Lhls Abdelmalek SI MERABET / Yves MATHIEU



Ctos : règles de codage
Des processus, des communications entre processus

Des SC_METHOD pour les processus purement
combinatoires.
Des SC_CTHREAD pour les processus séquentiels
synchrones (recommandé).
Si une variable est partagée par 2 processus : utiliser un
sc_signal
Si une variable n’est utilisée que par 1 processus : ne pas
utiliser un sc_signal
Les variables globales ne sont pas supportées.

34/45 SE303-Lhls Abdelmalek SI MERABET / Yves MATHIEU



Ctos : Un SC_CTHREAD
Style de code synthétisable

SC_MODULE(pulser) {
public:
sc_in<bool> clk, rst, set_rate;
sc_in< sc_int<16> > rate;
sc_out< sc_int<16> > out;

SC_CTOR(pulser) :
clk("clk"), rst("rst"),
set_rate("set_rate"), rate("rate"),
out("out")
{

SC_CTHREAD(main, clk.pos());
reset_signal_is(rst, true);
}

void main();
int cur_rate;

};

void pulser::main()
{

out.write(0);
wait();
while (!set_rate.read()) { wait(); }
cur_rate = rate.read();
while (1) {

for (int i=0; i<cur_rate-1; i++) {
wait();

}
out.write(1); wait(); out.write(0);

}
}

Code du reset : avant le
premier wait().

Reset Synchrone, Précis au niveau cycle.

35/45 SE303-Lhls Abdelmalek SI MERABET / Yves MATHIEU



Ctos : diriger le synthétiseur
Pragmas ou scripts tcl

Les directives de synthèse peuvent être fournies :
Dans le script de synthèse TCL :

• Fournir des configuration générales
• Calculer des paramètres dynamiques de configuration
• Il faut identifier les objets sur lesquels appliquer les

directives
Par des pragmas insérés directement dans le source.

• S’applique au code qui suit immédiatement
• Statique

TCL :
constrain_latency -max 32 -name body_latency start_node_id end_node_id

Pragmas :
#pragma ctos constrain_latency -max 32 -name body_latency
{
...
}

36/45 SE303-Lhls Abdelmalek SI MERABET / Yves MATHIEU



Ctos : Directives de synthèse
L’exemple des RAM

Les tableaux peuvent être transformés en mémoires (ASIC
ou FPGA)
Applicable aux variables, pas aux signaux.
Des options d’implémentation :

• Des tableaux de registres. (ASIC et FPGA) : Flatten array
• L’inférence d’une RAM (FPGA) : Allocate built-in-RAM
• L’instance d’une "blackBox" (ASIC) : allocate vendor RAM

Attention aux options contradictoires avec le code.

#pragma allocate_builtin_ram -sync_read
char mem[1024] ;
...
data_out.write(mem[add]);
wait() ;

On ne peut pas ecrire et lire dans le même cycle...

37/45 SE303-Lhls Abdelmalek SI MERABET / Yves MATHIEU



Ctos : Bibliothèques
Communications point à point : Les "Flex Channels"

Modèle au niveau TLM

Structure synthétisée au niveau signal

38/45 SE303-Lhls Abdelmalek SI MERABET / Yves MATHIEU



Ctos : Flex Channels
Le protocole Ready/Valid

Débit maximum garanti (1 transfert par cycle)
Latence exacte de 1 cycle

39/45 SE303-Lhls Abdelmalek SI MERABET / Yves MATHIEU



Ctos : Flex Channels
Terminologie des initiateurs

Blocking initiator : Les fonctions contiennent des wait() : on
attend un résultat
Non-blocking : Les fonctions ne contiennent pas de wait() :
réponse combinatoire
May-block : Les fonctions peuvent générer une attente ou
non : réponse combinatoire ou séquentielle
Peek : On peut récupérer une donnée valide, sans la
consommer.

40/45 SE303-Lhls Abdelmalek SI MERABET / Yves MATHIEU



Ctos : Blocking initiators
Un exemple de déclaration

SC_MODULE(DUT) {
sc_in<bool> clk;
sc_in<bool> nrst;
b_get_initiator<char> din;
b_put_initiator<char> dout;

SC_CTOR(DUT)
: clk("clk")
, nrst("nrst")
, din("din")
, dout("dout")

{
SC_THREAD(process);
sensitive << clk.pos();
reset_signal_is(nrst,false);
// Bind clock and reset signal to put/get channel internal logic
din.clk_rst(clk,nrst) ;
dout.clk_rst(clk,nrst) ;
...

41/45 SE303-Lhls Abdelmalek SI MERABET / Yves MATHIEU



Ctos : Blocking initiators
Un exemple d’utilisation

void process() {
din.reset_get(); // Put/get initiators need to be reset.
dout.reset_put();
wait();
while (1) {

// Get a character (data element) ; this call will block if
// the input channel is empty.
char c = din.get();
c = c - (’a’ - ’A’); // Convert from lower to uppercase.;
// We need a wait in case we did both get() and put()
// in the current cycle (to avoid combinational loop)
wait();
// This call will block only if the output channel is full.;
dout.put(c);
//
}

}

42/45 SE303-Lhls Abdelmalek SI MERABET / Yves MATHIEU



Ctos : Blocking initiators
Les déclarations et méthodes

//// PUT initiator ////
// Déclaration
b_put_initiator<type> name;
// Méthodes
virtual void reset_put(); // Reset the put side of the channel
virtual void put(const T &v); // Put item, waits until successfull

//// GET initiator ////
//Déclaration
b_get_initiator<type> name;
//Méthodes
virtual void reset_get(); // Reset the get side of the channel
virtual void get(T &t); // Get item, waits until successfull
virtual T get(); // Get item, waits until successfull

Rappel : au moins un cycle d’attente.

43/45 SE303-Lhls Abdelmalek SI MERABET / Yves MATHIEU



Ctos : May Block initiators
Les déclarations et méthodes

//// PUT initiator ////
// Déclaration
put_initiator<type> name;
// Méthodes
virtual void reset_put(); // Reset the put side of the channel
virtual void put(const T &v); // Put item, waits until successfull

//// GET initiator ////
//Déclaration
get_initiator<type> name;
//Méthodes
virtual void reset_get(); // Reset the get side of the channel
virtual void get(T &t); // Get item, waits until successfull
virtual T get(); // Get item, waits until successfull

Rappel : de 0 a plusieurs cycles d’attente

44/45 SE303-Lhls Abdelmalek SI MERABET / Yves MATHIEU



Ctos : Non Blocking initiators
Les déclarations et méthodes

//// PUT initiator ////
// Déclaration
nb_put_initiator<type> name;
// Méthodes
virtual void reset_put(); // Reset the put side of the channel
virtual bool nb_can_put() const; // Returns true id the channel is not full
virtual bool nb_put(const T &v); // Put item, return true if successfull

//// GET initiator ////
//Déclaration
nb_get_initiator<type> name;
//Méthodes
virtual void reset_get(); // Reset the get side of the channel
virtual bool nb_can_get() const; // Returns true id the channel is not empty
virtual bool nb_get(const T &v); // Get item, return true if successfull.

Rappel : réponse combinatoire (dans le cycle)

45/45 SE303-Lhls Abdelmalek SI MERABET / Yves MATHIEU


	Digital Integrated Electronics
	Introduction
	Principes et vocabulaire
	Langage source et communications
	L'outil CtoS de Cadence


