
How to C (as of 2016)

How to C in 2016

This is a draft I wrote in early 2015 and never got around to publishing. Here's the mostly unpolished version because it wasn't doing
anybody any good sitting in my drafts folder. The simplest change was updating year 2015 to 2016 at publication time.

Feel free to submit fixes/improvements/complaints as necessary. -Matt

The first rule of C is don't write C if you can avoid it.

If you must write in C, you should follow modern rules.

C has been around since the early 1970s. People have "learned C" at various points during its evolution, but knowledge usually get
stuck after learning, so everybody has a different set of things they believe about C based on the year(s) they first started learning.

It's important to not remain stuck in your "things I learned in the 80s/90s" mindset of C development.

This page assumes you are on a modern platform conforming to modern standards and you have no excessive legacy compatability
requirements. We shouldn't be globally tied to ancient standards just because some companies refuse to upgrade 20 year old
systems.

Preflight

Standard c99.

clang, default
C99 is the default C implementation for clang, no extra options needed.
If you want C11, you need to specify -std=c11
clang compiles your source files faster than gcc

gcc requires you sepecify -std=c99 or -std=c11
gcc builds source files slower than clang, but sometimes generates faster code. Performance comparisons and regression
testings are important.
gcc-5 defaults to -std=gnu11, but you should still specify a non-GNU c99 or c11 for practical usage.

Optimizations

-O2, -O3
generally you want -O2, but sometimes you want -O3. Test under both levels (and across compilers) then keep the best
performing binaries.

-Os
-Os helps if your concern is cache efficiency (which it should be)

Warnings

-Wall -Wextra -pedantic

newer compiler versions have -Wpedantic, but they still accept the ancient -pedantic as well for wider backwards compatability.
during testing you should add -Werror and -Wshadow on all your platforms

it can be tricky deploying production source using -Werror because different platforms and compilers and libraries can emit
different warnings. You probably don't want to kill a user's entire build just because their version of GCC on a platform
you've never seen complains in new and wonderous ways.

you can be extra fancy and add -Wstrict-aliasing -Wstrict-overflow too.
as of now, Clang reports some valid syntax as a warning, so you should add -Wno-missing-field-initializers

GCC fixed this unnecessary warning after GCC 4.7.0

Building

Compilation units
The most common way of building C projects is to decompose every source file into an object file then link all the objects
together at the end. This procedure works great for incremental development, but it is suboptimal for performance and
optimization. Your compiler can't detect potential optimization across file boundaries this way.

LTO — Link Time Optimization
LTO fixes the "source analysis and optimization across compilation units problem" by annotating object files with
intermediate representation so source-aware optimizations can be carried out across compilation units at link time (this
slows down the linking process noticeably, but make -j helps).
clang LTO (guide)
gcc LTO
As of 2016, clang and gcc releases support LTO by just adding -flto to your command line options during object compilation
and final library/program linking.
LTO stil needs some babysitting though. Sometimes, if your program has code not used directly but used by additional
libraries, LTO can evict functions or code because it detects, globally when linking, some code is unused/unreachable and
doesn't need to be included in the final linked result.

Arch

-march=native

give the compiler permission to use your CPU's full feature set
again, performance testing and regression testing is important (then comparing the results across multiple compilers
and/or compiler versions) is important to make sure any enabled optimizations don't have adverse side effects.

-msse2 and -msse4.2 may be useful if you need to target not-your-build-machine features.

Writing code

Types

If you find yourself typing char or int or short or long or unsigned into new code, you're doing it wrong.

For modern programs, you should #include <stdint.h> then use standard types.

How to C (as of 2016) https://matt.sh/howto-c

1 of 7 08/01/2016 17:05

The common standard types are:

int8_t, int16_t, int32_t, int64_t — signed integers
uint8_t, uint16_t, uint32_t, uint64_t — unsigned integers
float — standard 32-bit floating point
double - standard 64-bit floating point

Notice we don't have char anymore. char is actually misnamed and misused in C.

Developers routinely abuse char to mean "byte" even when they are doing unsigned byte manipulations. It's much cleaner to use
uint8_t to mean single a unsigned-byte/octet-value and uint8_t * to mean sequence-of-unsigned-byte/octet-values.

One Exception to never-char

The only acceptable use of char in 2016 is if a pre-existing API requires char (e.g. strncat, printf'ing "%s", ...) or if you're initializing a
read-only string (e.g. const char *hello = "hello";) because the C type of string literals ("hello") is char *.

ALSO: In C11 we have native unicode support, and the type of UTF-8 string literals is still char * even for multibyte sequences like
const char *abcgrr = u8"abc ";.

Signedness

At no point should you be typing the word unsigned into your code. We can now write code without the ugly C convention of multi-word
types that impair readability as well as usage. Who wants to type unsigned long long int when you can type uint64_t? The <stdint.h> types
are more explicit, more exact in meaning, convey intentions better, and are more compact for typographic usage and readability.

But, you may say, "I need to cast pointers to long for dirty pointer math!"

You may say that. But you are wrong.

The correct type for pointer math is uintptr_t defined in <stddef.h>.

Instead of:

long diff = (long)ptrOld - (long)ptrNew;

Use:

ptrdiff_t diff = (uintptr_t)ptrOld - (uintptr_t)ptrNew;

System-Dependent Types

You continue arguing, "on a 32 bit patform I want 32 bit longs and on a 64 bit platform I want 64 bit longs!"

If we skip over the line of thinking where you are deliberatly introducing difficult to reason about code by using two different sizes
depending on platform, you still don't want to use long for system-dependent types.

In these situations, you should use intptr_t — the integer type defined to be the word size of your current platform.

On 32-bit platforms, intptr_t is int32_t.

On 64-bit platforms, intptr_t is int64_t.

intptr_t also comes in a uintptr_t flavor.

For holding pointer offsets, we have the aptly named ptrdiff_t which is the proper type for storing values of subtracted pointers.

Maximum Value Holders

Do you need an integer type capable of holding any integer usable on your system?

People tend to use the largest known type in this case, such as casting smaller unsigned types to uint64_t, but there's a more
technically correct way to guarantee any value can hold any other value.

The safest container for any integer is intmax_t (also uintmax_t). You can assign or cast any signed integer to intmax_t with no loss of
precision, and you can assign or cast any unsigned integer to uintmax_t with no loss of precision.

That Other Type

The most widely used system-dependent type is size_t.

size_t is defined as "an integer capable of holding the largest array index" which also means it's capable of holding the largest
memory offset in your program.

In practical use, size_t is the return type of sizeof operator.

In either case: size_t is practically defined to be the same as uintptr_t on all modern platforms, so on a 32-bit platform size_t is uint32_t
and on a 64-bit platform size_t is uint64_t.

There is also ssize_t which is a signed size_t used as the return value from library functions that return -1 on error.

So, should you use size_t for arbitrary system-dependent sizes in your own function parameters? Technically, size_t is the return type
of sizeof, so any functions accepting a size value representing a number of bytes is allowed to be a size_t.

Other uses include: size_t is the type of the argument to malloc, and ssize_t is the return type of read() and write().

Printing Types

You should never cast types during printing. You should use proper type specifiers.

These include, but are not limited to:

How to C (as of 2016) https://matt.sh/howto-c

2 of 7 08/01/2016 17:05

size_t - %zu
ssize_t - %zd
ptrdiff_t - %td
raw pointer value - %p (prints hex value; cast your pointer to (void *) first)
64-bit types should be printed using PRIu64 (unsigned) and PRId64 (signed)

on some platforms a 64-bit value is a long and on others it's a long long
it is actualy impossible to specify a correct cross-platform format string without these format macros because the types
change out from under you (and remember, casting values before printing is not safe or logical).

intptr_t — "%" PRIdPTR
uintptr_t — "%" PRIuPTR
intmax_t — "%" PRIdMAX
uintmax_t — "%" PRIuMAX

One note about the PRI* formatting specifiers: they are macros and the macros expand to proper printf type specifiers on a platform-
specific basis. This means you can't do:

printf("Local number: %PRIdPTR\n\n", someIntPtr);

but instead, because they are macros, you do:

printf("Local number: %" PRIdPTR "\n\n", someIntPtr);

Notice you put the '%' inside your format string, but the type specifier is outside your format string.

C99 allows variable declarations anywhere

So, do NOT do this:

void test(uint8_t input) {
uint32_t b;

if (input > 3) {
return;

 }

 b = input;
}

do THIS instead:

void test(uint8_t input) {
if (input > 3) {

return;
 }

uint32_t b = input;
}

Caveat: if you have tight loops, test the placement of your initializers. Sometimes scattered declarations can cause unexpected
slowdowns. For regular non-fast-path code (which is most of everything in the world), it's best to be as clear as possible, and
defininig types next to your initializations is a big readability improvement.

C99 allows for loops to declare counters inline

So, do NOT do this:

uint32_t i;

for (i = 0; i < 10; i++)

Do THIS instead:

for (uint32_t i = 0; i < 10; i++)

One exception: if you need to retain your counter value after the loop exists, obviously don't declare your counter scoped to the loop
itself.

C allows static initialization of stack-allocated arrays

So, do NOT do this:

uint32_t numbers[64];
 memset(numbers, 0, sizeof(numbers));

Do THIS instead:

uint32_t numbers[64] = {0};

C allows static initialization of stack-allocated structs

So, do NOT do this:

struct thing {
uint64_t index;
uint32_t counter;

 };

struct thing localThing;

void initThing(void) {
 memset(&localThing, 0, sizeof(localThing));
 }

Do THIS instead:

struct thing {
uint64_t index;
uint32_t counter;

How to C (as of 2016) https://matt.sh/howto-c

3 of 7 08/01/2016 17:05

 };

struct thing localThing = {0};

If you need to re-initialize already allocated structs, delcare a global zero-struct for later assignment:

struct thing {
uint64_t index;
uint32_t counter;

 };

static const struct thing localThingNull = {0};
 .
 .
 .

struct thing localThing = {.counter = 3};
 .
 .
 .
 localThing = localThingNull;

C99 allows variable length array initializers

So, do NOT do this:

 uintmax_t arrayLength = strtoumax(argv[1], NULL, 10);
void *array[];

 array = malloc(sizeof(*array) * arrayLength);

/* remember to free(array) when you're done using it */

Do THIS instead:

 uintmax_t arrayLength = strtoumax(argv[1], NULL, 10);
void *array[arrayLength];

/* no need to free array */

NOTE: You must be certain arrayLength is a reasonable size in this situation. (i.e. less than a few KB, sometime your stack will max out
at 4 KB on weird platforms). You can't stack allocate huge arrays (millions of entries), but if you know you have a limited count, it's
much easier to use C99 VLA capabilities rather than manually requesting heap memory from malloc.

DOUBLE NOTE: there is no user input checking above, so the user can easily kill your program by allocating a giant VLA. Some
people go as far to call VLAs an anti-pattern, but if you keep your bounds tight, it can be a tiny win in certain situations.

C99 allows annotating non-overlapping pointer parameters

See the restrict keyword (often __restrict)

Parameter Types

If a function accepts arbitrary input data and a length to process, don't restrict the type of the parameter.

So, do NOT do this:

void processAddBytesOverflow(uint8_t *bytes, uint32_t len) {
for (uint32_t i = 0; i < len; i++) {

 bytes[0] += bytes[i];
 }
}

Do THIS instead:

void processAddBytesOverflow(void *input, uint32_t len) {
uint8_t *bytes = input;

for (uint32_t i = 0; i < len; i++) {
 bytes[0] += bytes[i];
 }
}

The input types to your functions describe the interface to your code, not what your code is doing with the parameters. The interface
to the code above means "accept a byte array and a length", so you don't want to restrict your callers to only uint8_t byte streams.
Maybe your users even want to pass in old-style char * values or something else unexpected.

By declaring your input type as void * and re-casting inside your function, you save the users of your function from having to think
about abstractions inside your own library.

Return Parameter Types

C99 gives us the power of <stdbool.h> which defines true to 1 and false to 0.

For success/failure return values, functions should return true or false, not an int32_t return type with manually specifying 1 and 0 (or
worse, 1 and -1 (or is it 0 success and 1 failure? or is it 0 success and -1 failure?)).

If a function mutates an input parameter to the extent the parameter is invalidated, instead of returning the altered pointer, your
entire API should force double pointers as parameters anywhere an input can be invalidated. Coding with "for some calls, the return
value invalidates the input" is too error prone for mass usage.

So, do NOT do this:

void *growthOptional(void *grow, size_t currentLen, size_t newLen) {
if (newLen > currentLen) {

void *newGrow = realloc(grow, newLen);
if (newGrow) {

/* resize success */
 grow = newGrow;
 } else {

/* resize failed, free existing and signal failure through NULL */

How to C (as of 2016) https://matt.sh/howto-c

4 of 7 08/01/2016 17:05

 free(grow);
 grow = NULL;
 }
 }

return grow;
}

Do THIS instead:

/* Return value:
 * - 'true' if newLen < currentLen and attempted to grow
 * - 'true' does not signify success here, the success is still in '*_grow'
 * - 'false' if newLen >= currentLen */
bool growthOptional(void **_grow, size_t currentLen, size_t newLen) {

void *grow = *_grow;
if (newLen > currentLen) {

void *newGrow = realloc(grow, newLen);
if (newGrow) {

/* resize success */
 *_grow = newGrow;

return true;
 }

/* resize failure */
 free(grow);
 *_grow = NULL;

/* for this function,
 * 'true' doesn't mean success, it means 'attempted grow' */

return true;
 }

return false;
}

Or, even better, Do THIS instead:

typedef enum growthResult {
 GROWTH_RESULT_SUCCESS = 1,
 GROWTH_RESULT_FAILURE_GROW_NOT_NECESSARY,
 GROWTH_RESULT_FAILURE_ALLOCATION_FAILED
} growthResult;

growthResult growthOptional(void **_grow, size_t currentLen, size_t newLen) {
void *grow = *_grow;
if (newLen > currentLen) {

void *newGrow = realloc(grow, newLen);
if (newGrow) {

/* resize success */
 *_grow = newGrow;

return GROWTH_RESULT_SUCCESS;
 }

/* resize failure, don't remove data because we can signal error */
return GROWTH_RESULT_FAILURE_ALLOCATION_FAILED;

 }

return GROWTH_RESULT_FAILURE_GROW_NOT_NECESSARY;
}

Formatting

Coding style is simultaenously very important and utterly worthless.

If your project has a 50 page coding style guideline, nobody will help you. But, if your code isn't readable, nobody will want to help
you.

The solution here is to always use an automated code formatter.

The only usable C formatter as of 2016 is clang-format. clang-format has the best defaults of any automatic C formatter and is still
actively developed.

Here's my preferred clang-format script:

#!/usr/bin/env bash

clang-format -style="{BasedOnStyle: llvm, IndentWidth: 4, AllowShortFunctionsOnASingleLine: None, KeepEmptyLinesAtTheStartOfBlocks: false}" "$@"

Then call it as:

matt@foo:~/repos/badcode% cleanup-format -i *.{c,h,cc,cpp,hpp,cxx}

The -i option to clang-format means overwrite existing files with formatting changes instead of writing to new files or creating backup
files.

If you have many files, you can recursively process an entire source tree in parallel:

#!/usr/bin/env bash

note: clang-tidy only accepts one file at a time, but we can run it
parallel against disjoint collections at once.
find . \(-name *.c -or -name *.cpp -or -name *.cc \) |xargs -n1 -P4 cleanup-tidy

clang-format accepts multiple files during one run, but let's limit it to 12
here so we (hopefully) avoid excessive memory usage.
find . \(-name *.c -or -name *.cpp -or -name *.cc -or -name *.h \) |xargs -n12 -P4 cleanup-format -i

Now, there's a new cleanup-tidy script there. The contents of cleanup-tidy is:

#!/usr/bin/env bash

clang-tidy \
-fix \
-fix-errors \
-header-filter=.* \

How to C (as of 2016) https://matt.sh/howto-c

5 of 7 08/01/2016 17:05

--checks=readability-braces-around-statements,misc-macro-parentheses \
$1 \
-- -I.

clang-tidy is policy driven code refactoring tool. The options above enable two fixups:

readability-braces-around-statements — force all if/while/for statement bodies to be enclosed in braces
It's an accident of history for C to have "brace optional" single statements after loop constructs and conditionals. It is
inexcusable to write modern code without braces enforced on every loop and every conditional. Trying to argue "but, the
compiler accepts it!" has nothing to do with the readabiltiy, maintainability, understandability, or skimability of code. You
aren't programming to please your compiler, you are programming to please future people who have to maintain your
current brain state years after everybody has forgotten why anything exists in the first place.

misc-macro-parentheses — automatically add parens around all parameters used in macro bodies

clang-tidy is great when it works, but for some complex code bases it can get stuck. Also, clang-tidy doesn't format, so you need to run
clang-format after you tidy to align new braces and reflow macros.

Readability

the writing seems to start slowing down here...

Comments

logical self-contained portions of code file

File Structure

Try to limit files to a max of 1,000 lines (1,500 lines in really bad cases). If your tests are in-line with your source file (for testing
static functions, etc), adjust as necessary.

misc thoughts

Never use malloc

You should always use calloc. There is no performance penalty for getting zero'd memory. If you don't like the function protype of
calloc(object count, size per object) you can wrap it with #define mycalloc(N) calloc(1, N).

Readers have commented on two things here:

calloc does have a performance impact for huge allocations
calloc does have a performance impact on weird platforms (minimal embedded systems, game consoles, 30 year old hardware,
...)

Those are good points, and that's why we always must do performance testing and regression testing for speed across compilers,
platforms, operating systems, and hardware devices.

No advice can be universal, but trying to give exactly perfect generic recommendations would end up reading like a book of language
specifications.

For references on how calloc() gives you clean memory for free, see these nice writeups:

Benchmarking fun with calloc() and zero pages (2007)
Copy-on-write in virtual memory management

I still stand by my recommendation of always using calloc() for most common scenarios of 2016 (assumption: x64 target platformas,
human-sized data, not including human genome-sized data). Any deviations from "expected" drag us into the pit of despair of "domain
knowledge," which are words we shan't speak this day.

Never memset (if you can avoid it)

Never memset(ptr, 0, len) when you can statically initialize a structure (or array) to zero (or reset it back to zero by assigning from a
global zero'd out structure).

Learn More

Also see Fixed width integer types (since C99)

Also see Apple's Making Code 64-Bit Clean

Also see the sizes of C types across architectures — unless you keep that entire table in your head for every line of code you write,
you should use explicitly defined integer widths and never use char/short/int/long built-in storage types.

Also see size_t and ptrdiff_t

If you really want to write everything perfectly, memorize the thousand individual pages at Secure Coding.

Closing

Writing correct code at scale is essentially impossible. We have multiple operating systems, runtimes, libraries, and hardware
platforms to worry about without even considering things like random bit flips in RAM or our block devices lying to us with unknown
probability.

The best we can do is write simple, understandable code with as few indirections and as little undocumented magic as possible.

-Matt — @mattsta — ☁mattsta

Attributions

How to C (as of 2016) https://matt.sh/howto-c

6 of 7 08/01/2016 17:05

This made the twitter and HN rounds, so many people helpfully pointed out flaws or biased thoughts I'm promulgating here.

First up, Jeremy Faller and Sos Sosowski and Martin Heistermann and a few other people were kind enough to point out my memset()
example was broken and provided the proper fix.

Martin Heistermann also pointed out the localThing = localThingNull example was broken.

The opening quote about not writing C if you can avoid it is from the wise internet sage @badboy_.

Remi Gacogne pointed out I forgot -Wextra.

Levi Pearson pointed out gcc-5 defaults to gnu11 instead of c89.

Christopher pointed out the -O2 vs -O3 section could use a little more clarification.

Chad Miller pointed out I was being lazy in the clang-format script params.

Many people also pointed out the calloc() advice isn't always a good idea if you have extreme circumstances or non-standard
hardware (examples of bad ideas: huge allocations, allocations on embedded jiggers, allocations on 30 year old hardware, etc).

Charles Randolph pointed out I misspelled the world "Building."

Sven Neuhaus pointed out kindly I also do not posess the ability to spell "initilization" or "initializers."

A few people seem to have read this as an "I hate C" page, but it isn't. C is dangerous in the wrong hands (not enough testing, not
enough experience when widely deployed), so paradoxically the two kinds of C developers should only be novice hobbyists (code
failure causes no problems, it's just a toy) or people who are willing to test their asses off (code failure causes life or financial loss,
it's not just a toy) should be writting C code for production usage. There's not much room for "casual observer C development." For
the rest of the world, that's why we have Erlang.

Many people have also mentioned their own pet issues as well or issues beyond the scope of this article (including new C11 only
features like George Makrydakis reminding us about C11 generic abilities).

Perhaps another article about "Practical C" will show up to cover testing, profiling, performance tracing, optional-but-useful warning
levels, etc.

redis
what is redis?intro to data typesthinking in redisredis architecture
redis ready-to-use
short cluster intro
dynamic redis
geo commands
quicklist
crcspeed
redis experiments
pub/sub scripts
command loading
json storage
compare compilers
redis presentations
Intro to Redis (2013)
books
swift: power of types
personal
my codehowto c (2016)koshaboutiOS apps
future
searching (past)errors at scaleemployees
audio
(may 30, 2014)

How to C (as of 2016) https://matt.sh/howto-c

7 of 7 08/01/2016 17:05

