
Introduction to Verification
and Test of Embedded
Systems
SE767: Vérification & Test

Ulrich Kühne
ulrich.kuhne@telecom-paristech.fr
26/11/2018

Objectives of this Course

Understanding the role of test & verification in the
development process
Applying Test-Driven Design to embedded software
Getting in touch with formal methods
Understanding and writing a formal specification for a
hardware module

2/53 Ulrich Kühne 26/11/2018

Course Structure

1. Introduction
(this lecture)

2. Test-Driven Design of embedded software
(lecture + exercise)

3. Embedded systems modeling
(video lecture + exercise)

4. Introduction to formal methods
(lecture + exercise)

5. Formal specification and verification of embedded
hardware
(lecture + exercise)

3/53 Ulrich Kühne 26/11/2018

Plan

Motivation

Basic Validation Methodology
Objectives
Development Cycle

Test Coverage
Software Coverage Metrics
Testing Requirements in the Railway Domain
Coverage with gcc and lcov

Testing Embedded Systems

Hardware Verification & Test

4/53 Ulrich Kühne 26/11/2018

Why do we need to test and verify?

5/53 Ulrich Kühne 26/11/2018

Ariane 5

Ariane 5 rocket explodes
shortly after liftoff (1996)
Integer overflow causing
exception
Legacy code (Ariane 4)
used in flight control

6/53 Ulrich Kühne 26/11/2018

Mars Pathfinder

Rover gets stuck on Mars
(1997)
Scheduling problem leads
to permanent restarts
Bug fixed on identical copy
on earth, live update over
the air

7/53 Ulrich Kühne 26/11/2018

Therac-25

Therac-25 radiation
therapy machine (1982)
Software bug leads to race
condition
Patients exposed to lethal
radiation dose

8/53 Ulrich Kühne 26/11/2018

Zune 30

Zune-30 music players
bricked during December
31, 2008
Infinite loop in time service
in loop (!) years
Several New Year’s Eve
parties without music. . .

9/53 Ulrich Kühne 26/11/2018

Plan

Motivation

Basic Validation Methodology
Objectives
Development Cycle

Test Coverage
Software Coverage Metrics
Testing Requirements in the Railway Domain
Coverage with gcc and lcov

Testing Embedded Systems

Hardware Verification & Test

10/53 Ulrich Kühne 26/11/2018

Goals of Testing & Verification

1. Find and eliminate bugs
2. Improve design quality
3. Reduce risk of user
4. Reduce risk of enterprise
5. Fulfill certification requirements
6. Improve performance
7. . . . ?

11/53 Ulrich Kühne 26/11/2018

Test & Verification Techniques

Plug & pray
Non-regression tests
Unit testing
Test-driven design
Model-based design
Formal methods
Mathematical proofs

12/53 Ulrich Kühne 26/11/2018

Test & Verification Techniques

Plug & pray
Non-regression tests
Unit testing
Test-driven design
Model-based design
Formal methods
Mathematical proofs

Easy

Hard

12/53 Ulrich Kühne 26/11/2018

Test & Verification Techniques

Plug & pray
Non-regression tests
Unit testing
Test-driven design
Model-based design
Formal methods
Mathematical proofs

Easy

Hard

Sloppy

Complete

12/53 Ulrich Kühne 26/11/2018

Validation in the Development Cycle

When should validation take place?
?

As early as possible
As often as necessary

13/53 Ulrich Kühne 26/11/2018

Validation in the Development Cycle

When should validation take place?
?

As early as possible
As often as necessary

13/53 Ulrich Kühne 26/11/2018

The V-Model

Requirements
analysis

Software
specification

Software
architecture

Module
design

Implemen-
tation

Unit
tests

Module
integration

System
integration

Acceptance
tests

Deployment and
maintenance

14/53 Ulrich Kühne 26/11/2018

The V-Model

Requirements
analysis

Software
specification

Software
architecture

Module
design

Implemen-
tation

Unit
tests

Module
integration

System
integration

Acceptance
tests

Deployment and
maintenance

14/53 Ulrich Kühne 26/11/2018

Agile Design

Continuous integration
Break long validation cycles
One feature (functionality) at a time

Feature
definition

Implemen-
tation

Vali-
dation

Feature
definition

Implemen-
tation

Vali-
dation

. . .

15/53 Ulrich Kühne 26/11/2018

Agile Design

Continuous integration
Break long validation cycles
One feature (functionality) at a time

Feature
definition

Implemen-
tation

Vali-
dation

Feature
definition

Implemen-
tation

Vali-
dation

. . .

15/53 Ulrich Kühne 26/11/2018

Agile Design

Continuous integration
Break long validation cycles
One feature (functionality) at a time

Feature
definition

Implemen-
tation

Vali-
dation

Feature
definition

Implemen-
tation

Vali-
dation

. . .

15/53 Ulrich Kühne 26/11/2018

What to Test?

How to define our test cases?
?

Depends on abstraction level:
Module tests, integration tests, acceptance tests, . . .
Depends on test strategy:
Functional vs. structural testing
Depends on test objectives:
Bug hunting, coverage, performance, stress testing, . . .
Depends on context:
Certification and safety norms (e.g. EN 50128)

16/53 Ulrich Kühne 26/11/2018

What to Test?

How to define our test cases?
?

Depends on abstraction level:
Module tests, integration tests, acceptance tests, . . .
Depends on test strategy:
Functional vs. structural testing
Depends on test objectives:
Bug hunting, coverage, performance, stress testing, . . .
Depends on context:
Certification and safety norms (e.g. EN 50128)

16/53 Ulrich Kühne 26/11/2018

Functional vs. Structural Testing

Functional Testing

Black box testing
Driven by specification
Goal: Cover all specified
functionality

Structural Testing

White box testing
Driven by code structure
Goal: Achieve structural
coverage metrics

17/53 Ulrich Kühne 26/11/2018

Success Criteria

When do we stop testing?
?

Boss says to stop
(time budget)
Bug rate below
threshold
Coverage above
threshold

bu
g

ra
te

time

co
ve

ra
ge

time

18/53 Ulrich Kühne 26/11/2018

Success Criteria

When do we stop testing?
?

Boss says to stop
(time budget)
Bug rate below
threshold
Coverage above
threshold

bu
g

ra
te

time

co
ve

ra
ge

time

18/53 Ulrich Kühne 26/11/2018

Plan

Motivation

Basic Validation Methodology
Objectives
Development Cycle

Test Coverage
Software Coverage Metrics
Testing Requirements in the Railway Domain
Coverage with gcc and lcov

Testing Embedded Systems

Hardware Verification & Test

19/53 Ulrich Kühne 26/11/2018

Test Coverage

DUT

Input Coverage

Full coverage
Boundary values
Equivalence classes

Code Coverage

Statement coverage
Branch coverage
Path coverage

20/53 Ulrich Kühne 26/11/2018

Test Coverage

DUT

Testbench

in
pu

ts
tim

ul
i

outputchecks

Input Coverage

Full coverage
Boundary values
Equivalence classes

Code Coverage

Statement coverage
Branch coverage
Path coverage

20/53 Ulrich Kühne 26/11/2018

Test Coverage

DUT

Testbench

in
pu

ts
tim

ul
i

outputchecks

Input Coverage

Full coverage
Boundary values
Equivalence classes

Code Coverage

Statement coverage
Branch coverage
Path coverage

20/53 Ulrich Kühne 26/11/2018

Test Coverage

DUT

Testbench

in
pu

ts
tim

ul
i

outputchecks

Input Coverage

Full coverage
Boundary values
Equivalence classes

Code Coverage

Statement coverage
Branch coverage
Path coverage

20/53 Ulrich Kühne 26/11/2018

Input Coverage: Equivalence Partitioning

Black box approach
Cover all interesting cases of
input stimuli
Determine equivalence classes
that should entail the same
behavior
Select one test case for each
class

Are the equivalence classes consistent with the code?
?

21/53 Ulrich Kühne 26/11/2018

Input Coverage: Equivalence Partitioning

Black box approach
Cover all interesting cases of
input stimuli
Determine equivalence classes
that should entail the same
behavior
Select one test case for each
class

Are the equivalence classes consistent with the code?
?

21/53 Ulrich Kühne 26/11/2018

Input Coverage: Equivalence Partitioning

Black box approach
Cover all interesting cases of
input stimuli
Determine equivalence classes
that should entail the same
behavior
Select one test case for each
class

Are the equivalence classes consistent with the code?
?

21/53 Ulrich Kühne 26/11/2018

Input Coverage: Equivalence Partitioning

Black box approach
Cover all interesting cases of
input stimuli
Determine equivalence classes
that should entail the same
behavior
Select one test case for each
class

Are the equivalence classes consistent with the code?
?

21/53 Ulrich Kühne 26/11/2018

Boundary Conditions

Test values close to and on
boundaries
Reveals bugs due to off-by-one
mistakes
Test negative (i.e. failing) results

22/53 Ulrich Kühne 26/11/2018

Boundary Conditions

Test values close to and on
boundaries
Reveals bugs due to off-by-one
mistakes
Test negative (i.e. failing) results

22/53 Ulrich Kühne 26/11/2018

Boundary Conditions

Test values close to and on
boundaries
Reveals bugs due to off-by-one
mistakes
Test negative (i.e. failing) results

22/53 Ulrich Kühne 26/11/2018

Code Coverage

Statement coverage
Branch coverage

• Decision coverage
• Condition coverage
• Condition/decision coverage
• Modified condition/decision coverage (MC/DC)
• Compound condition coverage

Path coverage

100% path cov. ⇒ 100% decision cov. ⇒ 100% statement cov.

23/53 Ulrich Kühne 26/11/2018

Control Flow Graph

01: int square(int x){

02: if (x <= 0)

03: x = -x;

04: int s = 0, a = 1;

05: for (int i=0; i<x; ++i){

06: s += a;

07: a += 2;

08: }

09: return s;

10: }

2

3

4

5

6
7

9

24/53 Ulrich Kühne 26/11/2018

Control Flow Graph

01: int square(int x){

02: if (x <= 0)

03: x = -x;

04: int s = 0, a = 1;

05: for (int i=0; i<x; ++i){

06: s += a;

07: a += 2;

08: }

09: return s;

10: }

2

3

4

5

6
7

9

24/53 Ulrich Kühne 26/11/2018

Control Flow Graph

01: int square(int x){

02: if (x <= 0)

03: x = -x;

04: int s = 0, a = 1;

05: for (int i=0; i<x; ++i){

06: s += a;

07: a += 2;

08: }

09: return s;

10: }

2

3

4

5

6
7

9

24/53 Ulrich Kühne 26/11/2018

Branch Coverage

1: x = 0;

2: if (a && (b || c))

3: x = 1;

Decision coverage Every decision has taken all possible values at
least once.

Condition coverage Every condition has taken all possible values at
least once.

Condition/decision coverage Combination of decision and condition
coverage.

Modified condition/decision coverage Condition/decision coverage
plus every condition has been shown to independently
affect the decision’s outcome.

25/53 Ulrich Kühne 26/11/2018

Branch Coverage

1: x = 0;

2: if (a && (b || c))

3: x = 1;

Decision

Decision coverage Every decision has taken all possible values at
least once.

Condition coverage Every condition has taken all possible values at
least once.

Condition/decision coverage Combination of decision and condition
coverage.

Modified condition/decision coverage Condition/decision coverage
plus every condition has been shown to independently
affect the decision’s outcome.

25/53 Ulrich Kühne 26/11/2018

Branch Coverage

1: x = 0;

2: if (a && (b || c))

3: x = 1;

Decision
Conditions

Decision coverage Every decision has taken all possible values at
least once.

Condition coverage Every condition has taken all possible values at
least once.

Condition/decision coverage Combination of decision and condition
coverage.

Modified condition/decision coverage Condition/decision coverage
plus every condition has been shown to independently
affect the decision’s outcome.

25/53 Ulrich Kühne 26/11/2018

Branch Coverage

1: x = 0;

2: if (a && (b || c))

3: x = 1;

Decision
Conditions

Decision coverage Every decision has taken all possible values at
least once.

Condition coverage Every condition has taken all possible values at
least once.

Condition/decision coverage Combination of decision and condition
coverage.

Modified condition/decision coverage Condition/decision coverage
plus every condition has been shown to independently
affect the decision’s outcome.

25/53 Ulrich Kühne 26/11/2018

Let’s Cover. . .

1: x = 0;

2: if (a && (b || c))

3: x = 1;

Tests Statement Decision Condition C/D MC/DC
{abc}
{abc, abc}
{abc, abc}
{abc, abc}
{abc, abc, abc, abc}

26/53 Ulrich Kühne 26/11/2018

Let’s Cover. . .

1: x = 0;

2: if (a && (b || c))

3: x = 1;

Tests Statement Decision Condition C/D MC/DC
{abc} yes no no no no
{abc, abc}
{abc, abc}
{abc, abc}
{abc, abc, abc, abc}

26/53 Ulrich Kühne 26/11/2018

Let’s Cover. . .

1: x = 0;

2: if (a && (b || c))

3: x = 1;

Tests Statement Decision Condition C/D MC/DC
{abc} yes no no no no
{abc, abc} yes yes no no no
{abc, abc}
{abc, abc}
{abc, abc, abc, abc}

26/53 Ulrich Kühne 26/11/2018

Let’s Cover. . .

1: x = 0;

2: if (a && (b || c))

3: x = 1;

Tests Statement Decision Condition C/D MC/DC
{abc} yes no no no no
{abc, abc} yes yes no no no
{abc, abc} no no yes no no
{abc, abc}
{abc, abc, abc, abc}

26/53 Ulrich Kühne 26/11/2018

Let’s Cover. . .

1: x = 0;

2: if (a && (b || c))

3: x = 1;

Tests Statement Decision Condition C/D MC/DC
{abc} yes no no no no
{abc, abc} yes yes no no no
{abc, abc} no no yes no no
{abc, abc} yes yes yes yes no
{abc, abc, abc, abc}

26/53 Ulrich Kühne 26/11/2018

Let’s Cover. . .

1: x = 0;

2: if (a && (b || c))

3: x = 1;

Tests Statement Decision Condition C/D MC/DC
{abc} yes no no no no
{abc, abc} yes yes no no no
{abc, abc} no no yes no no
{abc, abc} yes yes yes yes no
{abc, abc, abc, abc} yes yes yes yes yes

26/53 Ulrich Kühne 26/11/2018

Let’s Cover. . .

1: x = 0;

2: if (a && (b || c))

3: x = 1;

Tests Statement Decision Condition C/D MC/DC
{abc} yes no no no no
{abc, abc} yes yes no no no
{abc, abc} no no yes no no
{abc, abc} yes yes yes yes no
{abc, abc, abc, abc} yes yes yes yes yes

26/53 Ulrich Kühne 26/11/2018

Path Coverage

Every execution path of the
program has been
explored

Execute loops 0,1, more
than 1 time (loop coverage)
Exponential number of
paths in general
Infeasible paths

2

3

4

5

6
7

9

27/53 Ulrich Kühne 26/11/2018

Path Coverage

Every execution path of the
program has been
explored

Execute loops 0,1, more
than 1 time (loop coverage)
Exponential number of
paths in general
Infeasible paths

2

3

4

5

6
7

9

27/53 Ulrich Kühne 26/11/2018

Path Coverage

Every execution path of the
program has been
explored

Execute loops 0,1, more
than 1 time (loop coverage)
Exponential number of
paths in general
Infeasible paths

2

3

4

5

6
7

9

27/53 Ulrich Kühne 26/11/2018

Path Coverage

Every execution path of the
program has been
explored

Execute loops 0,1, more
than 1 time (loop coverage)
Exponential number of
paths in general
Infeasible paths

2

3

4

5

6
7

9

27/53 Ulrich Kühne 26/11/2018

Path Coverage

Every execution path of the
program has been
explored

Execute loops 0,1, more
than 1 time (loop coverage)
Exponential number of
paths in general
Infeasible paths

2

3

4

5

6
7

9

27/53 Ulrich Kühne 26/11/2018

Path Coverage

Every execution path of the
program has been
explored

Execute loops 0,1, more
than 1 time (loop coverage)
Exponential number of
paths in general
Infeasible paths

2

3

4

5

6
7

9

×1

27/53 Ulrich Kühne 26/11/2018

Path Coverage

Every execution path of the
program has been
explored

Execute loops 0,1, more
than 1 time (loop coverage)
Exponential number of
paths in general
Infeasible paths

2

3

4

5

6
7

9

×2

27/53 Ulrich Kühne 26/11/2018

Path Coverage

Every execution path of the
program has been
explored
Execute loops 0,1, more
than 1 time (loop coverage)

Exponential number of
paths in general
Infeasible paths

2

3

4

5

6
7

9

×n

27/53 Ulrich Kühne 26/11/2018

Path Coverage

Every execution path of the
program has been
explored
Execute loops 0,1, more
than 1 time (loop coverage)
Exponential number of
paths in general
Infeasible paths

2

3

4

5

6
7

9

×n

27/53 Ulrich Kühne 26/11/2018

Example: Railway Systems

Safety-critical embedded systems
Strict regulation by European and national agencies
European Train Control System (ETCS)

28/53 Ulrich Kühne 26/11/2018

European Norm CENELEC EN 50128

Development & validation
process for railway
systems
Safety integrity levels SIL0
up to SIL4
Organizational structure
Development cycle (V
model)
Validation activities and
reports for each project
phase

29/53 Ulrich Kühne 26/11/2018

Extracts from EN 50128

Table A.18 – Performance Testing

TECHNIQUE/MEASURE Ref SIL 0 SIL 1 SIL 2 SIL 3 SIL 4

1. Avalanche/Stress Testing D.3 - R R HR HR

2. Response Timing and Memory Constraints D.45 - HR HR HR HR

3. Performance Requirements D.40 - HR HR HR HR

Table A.19 – Static Analysis

TECHNIQUE/MEASURE Ref SIL 0 SIL 1 SIL 2 SIL 3 SIL 4

1. Boundary Value Analysis D.4 - R R HR HR

2. Checklists D.7 - R R R R

3. Control Flow Analysis D.8 - HR HR HR HR

4. Data Flow Analysis D.10 - HR HR HR HR

5. Error Guessing D.20 - R R R R

6. Walkthroughs/Design Reviews D.56 HR HR HR HR HR

30/53 Ulrich Kühne 26/11/2018

Extracts from EN 50128
Table A.21 – Test Coverage for Code

Test coverage criterion Ref SIL 0 SIL 1 SIL 2 SIL 3 SIL 4

1. Statement D.50 R HR HR HR HR

2. Branch D.50 - R R HR HR

3. Compound Condition D.50 - R R HR HR

4. Data flow D.50 - R R HR HR

5. Path D.50 - R R HR HR

Requirements:

1) For every SIL, a quantified measure of coverage shall be developed for the test undertaken. This can
support the judgment on the confidence gained in testing and the necessity for additional techniques.

2) For SIL 3 or 4 test coverage at component level should be measured according to the following:

- 2 and 3; or

- 2 and 4; or

- 5

or test coverage at integration level should be measured according to one or more of 2, 3, 4 or 5.

3) Other test coverage criteria can be used, given that this can be justified. These criteria depend on the
software architecture (see Table A.3) and the programming language (see Table A.15 and Table A.16).

4) Any code which it is not practicable to test shall be demonstrated to be correct using a suitable technique,
e.g. static analysis from Table A.19.

31/53 Ulrich Kühne 26/11/2018

Practical Code Coverage with gcc and gcov

gcc has a magic option --coverage

Instrumentation of binary code
Count execution of each basic block
Count branches taken/untaken
Generate coverage report using gcov (or lcov)
Integration into build system

32/53 Ulrich Kühne 26/11/2018

Coverage Tool Flow with gcov

main.c gcc

a.out

main.gcno

main.gcda

gcov main.c.gcov

Let’s do it. . .

33/53 Ulrich Kühne 26/11/2018

Coverage Tool Flow with gcov

main.c gcc

a.out

main.gcno

main.gcda

gcov main.c.gcov

Let’s do it. . .

33/53 Ulrich Kühne 26/11/2018

Test Coverage (Again)

DUT

Testbench

in
pu

ts
tim

ul
i

outputchecks

Input coverage Code coverage

34/53 Ulrich Kühne 26/11/2018

Test Coverage (Again)

DUT

Testbench

in
pu

ts
tim

ul
i

outputchecks

Input coverage Code coverage

What am I missing here. . . ?
?

34/53 Ulrich Kühne 26/11/2018

Test Coverage (Again)

DUT

Testbench

in
pu

ts
tim

ul
i

outputchecks

Input coverage Code coverage Output coverage?

What am I missing here. . . ?
?

34/53 Ulrich Kühne 26/11/2018

Mutation Coverage

Did we check the right things at the output?
?

How to assess test bench quality?
?

Mutation coverage
(aka error seeding)
Randomly insert errors into the
code (mutants)
Check if the test bench captures
(kills) them
Compute ratio of killed mutants

35/53 Ulrich Kühne 26/11/2018

Mutation Coverage

Did we check the right things at the output?
?

How to assess test bench quality?
?

Mutation coverage
(aka error seeding)
Randomly insert errors into the
code (mutants)
Check if the test bench captures
(kills) them
Compute ratio of killed mutants

35/53 Ulrich Kühne 26/11/2018

Mutation Coverage

Did we check the right things at the output?
?

How to assess test bench quality?
?

Mutation coverage
(aka error seeding)
Randomly insert errors into the
code (mutants)
Check if the test bench captures
(kills) them
Compute ratio of killed mutants

35/53 Ulrich Kühne 26/11/2018

Mutation Coverage: Rationale

Mutations should mimic typical mistakes
• Loop condition off by one
• Replace operators such as < vs ≤
• Modify constants
• . . .

A test bench not detecting these mistakes should be
improved
Mutation coverage approximates ratio of real bugs found

Number of mutants killed
Total number of mutants

≈ Number of real bugs found
Total number of real bugs

36/53 Ulrich Kühne 26/11/2018

Mutation Coverage: Rationale

Mutations should mimic typical mistakes
• Loop condition off by one
• Replace operators such as < vs ≤
• Modify constants
• . . .

A test bench not detecting these mistakes should be
improved
Mutation coverage approximates ratio of real bugs found

Number of mutants killed
Total number of mutants

≈ Number of real bugs found
Total number of real bugs

36/53 Ulrich Kühne 26/11/2018

Summary Coverage

Coverage metrics measure test quality
Widely used in embedded industry
Strong requirements for railway, aerospace, and
automobile domains
Simple coverage with gcc and gcov

Comes at virtually no cost ⇒ Use it!

37/53 Ulrich Kühne 26/11/2018

Plan

Motivation

Basic Validation Methodology
Objectives
Development Cycle

Test Coverage
Software Coverage Metrics
Testing Requirements in the Railway Domain
Coverage with gcc and lcov

Testing Embedded Systems

Hardware Verification & Test

38/53 Ulrich Kühne 26/11/2018

Testing Embedded Software

What’s so special about embedded software testing?
?

Runs on dedicated (expensive,
scarce, buggy, . . .) hardware
Hardware not available (yet)
Limited memory
Limited debug capabilities
Real-time
Complex interactions with
physical world
Long build and upload times

39/53 Ulrich Kühne 26/11/2018

Testing Embedded Software

What’s so special about embedded software testing?
?

Runs on dedicated (expensive,
scarce, buggy, . . .) hardware
Hardware not available (yet)
Limited memory
Limited debug capabilities
Real-time
Complex interactions with
physical world
Long build and upload times

39/53 Ulrich Kühne 26/11/2018

Embedded Testing Techniques

Testing on target hardware
High confidence in test results
Long test cycles, hardware might not be available (yet)

Emulating the target hardware (FPGA)
Test results close to the real target
Difficult to set up, HDL sources needed

Testing on a virtual platform (SystemC, qemu, . . .)
High performance, no dedicated hardware
High development effort

Purely C-based shallow test harness
Short test cycles, easy to set up
Difficult for real-time systems

SE743

SE744

SE747

Here!

40/53 Ulrich Kühne 26/11/2018

Embedded Testing Techniques

Testing on target hardware
High confidence in test results
Long test cycles, hardware might not be available (yet)

Emulating the target hardware (FPGA)
Test results close to the real target
Difficult to set up, HDL sources needed

Testing on a virtual platform (SystemC, qemu, . . .)
High performance, no dedicated hardware
High development effort

Purely C-based shallow test harness
Short test cycles, easy to set up
Difficult for real-time systems

SE743

SE744

SE747

Here!

40/53 Ulrich Kühne 26/11/2018

Embedded Testing Techniques

Testing on target hardware
High confidence in test results
Long test cycles, hardware might not be available (yet)

Emulating the target hardware (FPGA)
Test results close to the real target
Difficult to set up, HDL sources needed

Testing on a virtual platform (SystemC, qemu, . . .)
High performance, no dedicated hardware
High development effort

Purely C-based shallow test harness
Short test cycles, easy to set up
Difficult for real-time systems

SE743

SE744

SE747

Here!

40/53 Ulrich Kühne 26/11/2018

Embedded Testing Techniques

Testing on target hardware
High confidence in test results
Long test cycles, hardware might not be available (yet)

Emulating the target hardware (FPGA)
Test results close to the real target
Difficult to set up, HDL sources needed

Testing on a virtual platform (SystemC, qemu, . . .)
High performance, no dedicated hardware
High development effort

Purely C-based shallow test harness
Short test cycles, easy to set up
Difficult for real-time systems

SE743

SE744

SE747

Here!

40/53 Ulrich Kühne 26/11/2018

Embedded Testing Techniques

Testing on target hardware
High confidence in test results
Long test cycles, hardware might not be available (yet)

Emulating the target hardware (FPGA)
Test results close to the real target
Difficult to set up, HDL sources needed

Testing on a virtual platform (SystemC, qemu, . . .)
High performance, no dedicated hardware
High development effort

Purely C-based shallow test harness
Short test cycles, easy to set up
Difficult for real-time systems

SE743

SE744

SE747

Here!

40/53 Ulrich Kühne 26/11/2018

Alternative: Model-based Testing

Development
and Test Model

Test EngineIntegrated HW/
SW System

Test
Procedures

System
Code

Generated
from model

Generated or
manually

developed

HW/SW Integration
Tests

41/53 Ulrich Kühne 26/11/2018

Alternative: Model-based Testing

Development
Model

Test
Model

Test EngineIntegrated HW/
SW System

Test
Procedures

System
Code

Generated
from model

Generated or
manually

developed

HW/SW Integration
Tests

41/53 Ulrich Kühne 26/11/2018

Principles of Model-Based Testing

Use of well-founded models
(e.g. SysML state charts)
Models serve for documentation
and review
Enables testing during
development
Automated generation of test
cases
Automated requirements
traceability

Requirements

Test Model

Test
Procedures

Test Engine

Test
Plan

42/53 Ulrich Kühne 26/11/2018

Example from Railway Domain
CSM_ON

CSM_ON

OVERSPEED

/entry OpaqueBehavior

SpeedSupervisionStatus = OverspeedStatus;

currentSpeed = SimulatedTrainSpeed;

/do OpaqueBehavior

permittedSpeed= V_mrsp;

displayPermittedSpeed=true;

WARNING

/entry OpaqueBehavior

SpeedSupervisionStatus =

WarningStatus;

currentSpeed = SimulatedTrainSpeed;

/do OpaqueBehavior permittedSpeed

SERVICE_BRAKE

/entry OpaqueBehavior

SpeedSupervisionStatus =

InterventionStatus;EmergencyBrakeC

ommand= !

sbCmd;ServiceBrakeCommand=

sbCmd;

EMER_BRAKE

/entry OpaqueBehavior

SpeedSupervisionStatus =

InterventionStatus;EmergencyBrakeCo
mmand= 1;ServiceBrakeCommand= 0;

currentSpeed = SimulatedTrainSpeed;

CSM_INIT

NORMAL
/entry OpaqueBehavior

SpeedSupervisionStatus = NormalStatus;
EmergencyBrakeCommand=0;

ServiceBrakeCommand=0;
currentSpeed = SimulatedTrainSpeed;

(SimulatedTrainSpeed == 0)]

[SimulatedTrainSpeed > V_mrsp+dV_warning]

[SimulatedTrainSpeed <= V_mrsp]

[SimulatedTrainSpeed > V_mrsp]

[SimulatedTrainSpeed > V_mrsp+dV_sbi]

[SimulatedTrainSpeed <= V_mrsp]

[SimulatedTrainSpeed <= V_mrsp]

[EmergencyBrakeCommand != 1 &&
ServiceBrakeCommand == 1]

ServiceBrakeCommand != 1]

[EmergencyBrakeCommand != 1 &&

[SimulatedTrainSpeed > V_mrsp+dV_ebi]

[EmergencyBrakeCommand == 1]

[(SimulatedTrainSpeed <=V_mrsp &&
RevocationEmergencyBrake) ||

[Source: OpenETCS project, Cécile Braunstein]

43/53 Ulrich Kühne 26/11/2018

Other Testing Aspects

Mechanical testing
• Vibrations
• Shock
• Standardized stress

Environmental conditions
• Temperature
• Pressure
• Humidity
• Radiation

Ageing

[Source: Institute of Space Systems, DLR]

44/53 Ulrich Kühne 26/11/2018

https://www.dlr.de/irs/en/desktopdefault.aspx/tabid-11374/

Plan

Motivation

Basic Validation Methodology
Objectives
Development Cycle

Test Coverage
Software Coverage Metrics
Testing Requirements in the Railway Domain
Coverage with gcc and lcov

Testing Embedded Systems

Hardware Verification & Test

45/53 Ulrich Kühne 26/11/2018

Hardware Design Flow

Specification

Electr. System Lvl.

Transaction Lvl.

Register Transfer Lvl.

Netlist

Layout

Chip

Natural language

UML, SysML, Matlab, . . .

C, C++, SystemC, . . .

VHDL, Verilog, . . .

Gate models

Geometric, electr. models

Silicon

Req. eng.,
modeling

Design Space
expl., partitioning

Implementation,
refinement

Synthesis

Place & route

Manufacturing

46/53 Ulrich Kühne 26/11/2018

Hardware Design Flow

Specification

Electr. System Lvl.

Transaction Lvl.

Register Transfer Lvl.

Netlist

Layout

Chip

Verification

Equiv. Checking

Test

Req. eng.,
modeling

Design Space
expl., partitioning

Implementation,
refinement

Synthesis

Place & route

Manufacturing

46/53 Ulrich Kühne 26/11/2018

Hardware Verification vs Test

Verification

Detect design bugs
Extract properties from
requirements
Applied on RTL code
High manual effort

Test

Detect physical defects
Test generation from netlist
according to fault model
Applied on fabricated chips
High automation

47/53 Ulrich Kühne 26/11/2018

Physical Defects

[Source: IEEE Spectrum “The Art of Failure”]

48/53 Ulrich Kühne 26/11/2018

Stuck-at Fault Model

a
b

c

d

a b c d
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 0

〈000〉 is a test vector for the shown stuck-at-1 fault
{〈010〉, 〈100〉, 〈110〉} are test vectors for the stuck-at-0 fault

49/53 Ulrich Kühne 26/11/2018

Stuck-at Fault Model

a
b

c

d

sa-1

a b c d
0 0 0 0/1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 0

〈000〉 is a test vector for the shown stuck-at-1 fault

{〈010〉, 〈100〉, 〈110〉} are test vectors for the stuck-at-0 fault

49/53 Ulrich Kühne 26/11/2018

Stuck-at Fault Model

a
b

c

d

sa-1

sa-0

a b c d
0 0 0 0/1
0 0 1 0
0 1 0 1/0
0 1 1 0
1 0 0 1/0
1 0 1 0
1 1 0 1/0
1 1 1 0

〈000〉 is a test vector for the shown stuck-at-1 fault
{〈010〉, 〈100〉, 〈110〉} are test vectors for the stuck-at-0 fault

49/53 Ulrich Kühne 26/11/2018

Automatic Test Pattern Generation

ATPG

Create a list of all possible
(stuck-at) faults
For each fault:

• Find a test pattern
• Drop all other faults

detected by this pattern

Untestable faults?
Hard to test faults?
Sequential tests?
Test compression?

50/53 Ulrich Kühne 26/11/2018

Summary

Validation on all levels of abstraction
> 50% of overall costs
Crucial for project success and product quality
Various techniques

• Dynamic testing
• Static verification
• Model-based design

Integration into development cycle

51/53 Ulrich Kühne 26/11/2018

Outlook

Test-Driven Design of embedded software
Introduction to formal methods
Formal specification and verification of embedded
hardware

52/53 Ulrich Kühne 26/11/2018

Preparation for Exercises

Log in to GitLab:
https://gitlab.telecom-paristech.fr

Go to the GitLab group:
https://gitlab.telecom-paristech.fr/MSSE/TestVerif/2018

Request access to the group

53/53 Ulrich Kühne 26/11/2018

https://gitlab.telecom-paristech.fr
https://gitlab.telecom-paristech.fr/MSSE/TestVerif/2018

References I

DO-178B: Software Considerations in Airborne Systems and Equipment
Certification, 1982.

EN 50128 - Railway applications - Communication, signalling and processing
systems - Software for railway control and protection systems.
Technical report, European Commitee for Electrotechnical Standardization, 2001.

James W. Grenning.
Test Driven Development for Embedded C.
Pragmatic Bookshelf, Raleigh, N.C, 1st edition, May 2011.

Kelly Hayhurst, Dan S. Veerhusen, John J. Chilenski, and Leanna K. Rierson.
A practical tutorial on modified condition/decision coverage, 2001.

54/53 Ulrich Kühne 26/11/2018

	Goals of this Course
	Motivation
	Basic Validation Methodology
	Objectives
	Development Cycle

	Test Coverage
	Software Coverage Metrics
	Testing Requirements in the Railway Domain
	Coverage with gcc and lcov

	Testing Embedded Systems
	Hardware Verification & Test
	Appendix

