TELECOM
ParisTech

5ot |

Mines-Telecom Introduction to Verification
and Test of Embedded
Systems

I Objectives of this Course

® Understanding the role of test & verification in the
development process

B Applying Test-Driven Design to embedded software
B Getting in touch with formal methods

B Understanding and writing a formal specification for a
hardware module

TELECOM

ParisTech

I Course Structure

1. Introduction
(this lecture)

2. Test-Driven Design of embedded software
(lecture + exercise)

3. Embedded systems modeling
(video lecture + exercise)

4. Introduction to formal methods
(lecture + exercise)

5. Formal specification and verification of embedded
hardware
(lecture + exercise)

TELECOM

B rian

Motivation

TELECOM

ParisTech

S ename e Jegrer

I \Why do we need to test and verify?

TELECOM

ParisTech

I Ariane 5

B Ariane 5 rocket explodes
shortly after liftoff (1996)

B nteger overflow causing
exception

B Legacy code (Ariane 4)
used in flight control

TELECOM

RTINS T i i

I \iars Pathfinder

B Rover gets stuck on Mars
(1997)

B Scheduling problem leads
to permanent restarts

®m Bug fixed on identical copy

on earth, live update over
the air

TELECOM
ParisTech

ECI S N i i

B Therac-25

B Therac-25 radiation
therapy machine (1982)

m Software bug leads to race
condition

B Patients exposed to lethal
radiation dose

TELECOM
ParisTech

ETI E TT i i

I Zune 30

B Zune-30 music players

bricked during December musi
VIdeos music
31 ’ 2008 pict_u«l'es videgs
.. N . | socia
B |nfinite loop in time service \r’ad{Lo :
| noAdcacted

in loop (!) years

®m Several New Year’s Eve
parties without music. . .

TELECOM

ParisTech

B rian

Basic Validation Methodology
Objectives
Development Cycle

TELECOM

ParisTech

I Goals of Testing & Verification

Find and eliminate bugs
Improve design quality

Reduce risk of user

Reduce risk of enterprise

Fulfill certification requirements

Improve performance
?

N o ok~ owDn -

TELECOM

I Test & Verification Techniques

Plug & pray
Non-regression tests
Unit testing
Test-driven design
Model-based design
Formal methods
Mathematical proofs

TELECOM

ParisTech

I Test & Verification Techniques

Plug & pray
Non-regression tests
Unit testing
Test-driven design
Model-based design
Formal methods
Mathematical proofs Hard

Easy

TELECOM

ParisTech

I Test & Verification Techniques

Plug & pray
Non-regression tests
Unit testing
Test-driven design
Model-based design
Formal methods
Mathematical proofs Hard Complete

Easy Sloppy

TELECOM
ParisTech

I Validation in the Development Cycle

?
(When should validation take place? Q

TELECOM

ParisTech

I Validation in the Development Cycle

?
(When should validation take place? Q

B As early as possible

B As often as necessary

TELECOM

ParisTech

The V-Model

Ulrich Kiihne

TELECOM

Toch
26/11/2018 =ETTTT!

The V-Model

Ulrich Kahne

TELECOM

Toch
26/11/2018 =ETTTT!

N Agile Design

® Continuous integration
B Break long validation cycles
® One feature (functionality) at a time

Y —
Feature Implemen- Vali-
definition tation dation

K~

TELECOM

’arisTech

N Agile Design

® Continuous integration
B Break long validation cycles
® One feature (functionality) at a time

Y — /N P
Feature Implemen- Vali- Feature Implemen- Vali-
definition tation dation definition tation dation

K~ K—~

TELECOM

’arisTech

N Agile Design

® Continuous integration
B Break long validation cycles
® One feature (functionality) at a time

Y — /N P
Feature Implemen- Vali- Feature Implemen- Vali-
definition tation dation definition tation dation

K~ K—~

TELECOM

’arisTech

I \What to Test?

?
(How to define our test cases? [‘:’)

TELECOM

ParisTech

I \What to Test?

?
(How to define our test cases? Q

® Depends on abstraction level:
Module tests, integration tests, acceptance tests, ...

B Depends on test strategy:
Functional vs. structural testing

B Depends on test objectives:
Bug hunting, coverage, performance, stress testing, ...

B Depends on context:
Certification and safety norms (e.g. EN 50128)

TELECOM

’arisTech

I runctional vs. Structural Testing

Functional Testing Structural Testing
B Black box testing ® White box testing
B Driven by specification B Driven by code structure
® Goal: Cover all specified B Goal: Achieve structural
functionality coverage metrics

TELECOM

ParisTech

I Success Criteria

?
(When do we stop testing? <;/>

TELECOM

ParisTech

I Success Criteria

?
(When do we stop testing? @

B Boss says to stop
(time budget)

B Bug rate below
threshold

® Coverage above ¢ _________
threshold

bug rate

coverage

time

TELECOM

ParisTech

B rian

Test Coverage
Software Coverage Metrics
Testing Requirements in the Railway Domain
Coverage with gcc and 1cov

TELECOM

ParisTech

I Test Coverage

DUT

TELECOM

ParisTech

I Test Coverage

Testbench

DUT

input stimuli

S)08yo indino

TELECOM

ParisTech
I on K A

I Test Coverage

Testbench

DUT

S)08yo indino

\)input stimuli

Input Coverage

®m Full coverage
B Boundary values
B Equivalence classes

TELECOM

ParisTech
i U 26/11/201 =
oso L e T

I Test Coverage

Testbench

— o

=] S

E 2

2 DUT o

3 D

g i =

/ w

Input Coverage Code Coverage

® Full coverage ®m Statement coverage
® Boundary values ® Branch coverage
B Equivalence classes ® Path coverage

TELECOM

ParisTech
Irich Kih 26/11/2018 =¥
oso L e e

N Input Coverage: Equivalence Partitioning

B Black box approach
®m Cover all interesting cases of
input stimuli

B Determine equivalence classes
that should entail the same
behavior

B Select one test case for each
class

TELECOM

ParisTech

N Input Coverage: Equivalence Partitioning

B Black box approach
®m Cover all interesting cases of
input stimuli

B Determine equivalence classes
that should entail the same
behavior

B Select one test case for each
class

?
(Are the equivalence classes consistent with the code?@

TELECOM

ParisTech

Ulrich Kiihne 26/11/2018 ﬁﬁﬂfﬁl

N Input Coverage: Equivalence Partitioning

B Black box approach
®m Cover all interesting cases of
input stimuli

B Determine equivalence classes
that should entail the same
behavior

B Select one test case for each
class

?
(Are the equivalence classes consistent with the code?@

TELECOM

ParisTech

Ulrich Kiihne 26/11/2018 ﬁﬁﬂfﬁl

N Input Coverage: Equivalence Partitioning

B Black box approach

®m Cover all interesting cases of

input stimuli °
B Determine equivalence classes

that should entail the same

behavior
B Select one test case for each

class

?
(Are the equivalence classes consistent with the code?@

TELECOM

ParisTech

Ulrich Kiihne 26/11/2018 ﬁﬁﬂfﬁl

I Boundary Conditions

m Test values close to and on
boundaries L

B Reveals bugs due to off-by-one
mistakes

® Test negative (i.e. failing) results

TELECOM

ParisTech

I Boundary Conditions

m Test values close to and on
boundaries L

B Reveals bugs due to off-by-one
mistakes

® Test negative (i.e. failing) results

TELECOM

ParisTech

I Boundary Conditions

m Test values close to and on
boundaries ®

B Reveals bugs due to off-by-one
mistakes

® Test negative (i.e. failing) results

TELECOM

ParisTech

I Code Coverage

B Statement coverage
B Branch coverage

 Decision coverage

» Condition coverage

 Condition/decision coverage

» Modified condition/decision coverage (MC/DC)
» Compound condition coverage

®m Path coverage

100% path cov. = 100% decision cov. = 100% statement cov.

TELECOM

ParisTech

I Control Flow Graph

01: int square(int x){

02: if (x <= 0)

03: X = -X;

04: int s =0, a=1;

05: for (int i=0; i<x; ++i){
06: s += a;

07: a += 2;

08: 3

09: return s;

10: }

TELECOM
ParisTech

b i |

I Control Flow Graph

02:
03:
04:
05:
06:
07:
08:
09:
10:

int square(int x){ ___ﬂ»__
if (x<=0)-------""""""""
X = Xjm-----------°-°-°---°-°"°"°7°7°77°7°7° }
ints=0,a=1--------——__________
for (int i=0; i<x; ++i){--___ _
s H=aj--___ \—““
a+= 25— - _ __:‘__‘—““~——_‘»__9
3 ‘_‘—ﬂ—_‘;‘““-->
return s;- - - — _ _

TELECOM
ParisTech

b i |

I Control Flow Graph

01: int square(int x){

02: if (x <=0)------"""77

03: X = Xj--——-—-—-—-—---------°-°"°"°-°7°°7°7°7°7
04: int s=0, a=1;--———-—-c - ___________
05: for (int i=0; i<x; ++i){--___ _

06: St=a---___

07: a+= 2;--___ _‘:‘—_‘—“

08: } T

09: return s;---—_____

10: 3 .

TELECOM
ParisTech

b i |

I Branch Coverage

1: x =0;
2: if (a & (b || ¢))
3: X =1;

TELECOM

ParisTech

I Branch Coverage

1: x =0;
2: if |(a & (b || ¢)) Decision
3: X =1;

TELECOM

ParisTech

I Branch Coverage

1: x = 0;

2: if (3 8& (B ||) Decision
3: X Conditions

TELECOM

ParisTech

I Branch Coverage

1: x =0;

2: if (g & (B || @) Decision
3: X Conditions

Decision coverage Every decision has taken all possible values at
least once.

Condition coverage Every condition has taken all possible values at
least once.

Condition/decision coverage Combination of decision and condition
coverage.

Modified condition/decision coverage Condition/decision coverage
plus every condition has been shown to independently
affect the decision’s outcome.

TELECOM
ParisTech

B Lcts Cover...

1: x = 0;

2: if (a && (b H c))

3 x =1;

Tests Statement Decision Condition C/D MC/DC
{abc}

{abc, abc}

{abc, abc}

{abc, abc}

{abc, abc, abc, abc}

TELECOM

ParisTech
ws || unenkome zsiz0is fon
I on K = A

B Lcts Cover...

1: x = 0;

2: if (a && (b || ¢))

3 x =1;

Tests Statement Decision Condition C/D MC/DC
{abe) e om0 om0
{abc, abc}

{abc, abc}

{abc, abc}

{abc, abc, abc, abc}

TELECOM

ParisTech
w0 | unenkome za2010 [

B Lcts Cover...

1: x = 0;

2: if (a && (b || ¢))

3 x =1;

Tests Statement Decision Condition C/D MC/DC
{abc}

{abc, abc}

{abc, abc}

{abc, abc}

{abc, abc, abc, abc}

TELECOM

ParisTech
I 2512010 [l
I cn ks EAE

B Lcts Cover...

Tests Statement Decision Condition C/D MC/DC
{abc}

{abc, abc}

{abc, abc}

{abc, abc}

{abc, abc, abc, abc}

TELECOM

ParisTech
I 2512010 [l
I cn ks EAE

B Lcts Cover...

Tests Statement Decision Condition C/D MC/DC
{abc}

{abc, abc}

{abc, abc}

{abc, abc}

{abc, abc, abc, abc}

TELECOM

ParisTech
ETI N N I i

B Lcts Cover...

Tests Statement Decision Condition C/D MC/DC
{abc}

{abc, abc}

{abc, abc}

{abc, abc}

{abc, abc, abc, abc}

TELECOM

ParisTech
ETI N N I i

B Lcts Cover...

Tests Statement Decision Condition C/D MC/DC
{abc}

{abc, abc}

{abc, abc}

{abc, abc}

{abc, abc, abc, abc}
T

TELECOM

ParisTech
ETI N N I i

I Path Coverage

B Every execution path of the
program has been
explored

TELECOM

ParisTech

I Path Coverage

B Every execution path of the
program has been
explored

TELECOM

ParisTech

I Path Coverage

B Every execution path of the
program has been
explored

TELECOM

ParisTech

I Path Coverage

B Every execution path of the
program has been
explored

TELECOM

ParisTech

I Path Coverage

B Every execution path of the
program has been
explored

TELECOM

ParisTech

I Path Coverage

B Every execution path of the
program has been
explored

TELECOM

ParisTech

I Path Coverage

B Every execution path of the
program has been
explored

TELECOM

ParisTech

I Path Coverage

B Every execution path of the
program has been
explored

B Execute loops 0,1, more
than 1 time (loop coverage)

TELECOM

ParisTech

I Path Coverage

B Every execution path of the
program has been
explored

B Execute loops 0,1, more
than 1 time (loop coverage)

B Exponential number of
paths in general

B |nfeasible paths

TELECOM

ParisTech

I Example: Railway Systems

® Safety-critical embedded systems
® Strict regulation by European and national agencies
B European Train Control System (ETCS)

GSM-R

Track data H‘ —@u

Position reports

Teack release
reporting

Eurobalise
A/repons position

TELECOM

ParisTech

I curopean Norm CENELEC EN 50128

[DKE 3513 20110207

. Development & Validation EUROPEAN STANDARD EN 50128
process for railway e
System s e .

B Safety integrity levels SILO
up to SIL4

®m Organizational structure

®m Development cycle (V
model)

B Validation activities and CENELEC
reports for each project
phase

TELECOM

ParisTech

I Extracts from EN 50128

Table A.18 — Performance Testing

TECHNIQUE/MEASURE Ref SILO | SIL1 | SIL2 | SIL3 | SIL4
1. Avalanche/Stress Testing D.3 - R R HR HR
2. Response Timing and Memory Constraints D.45 - HR HR HR HR
3. Performance Requirements D.40 - HR HR HR HR

Table A.19 - Static Analysis

TECHNIQUE/MEASURE Ref SILO | SIL1 | SIL2 | SIL3 | SIL4

1. Boundary Value Analysis D.4 - R R HR HR

2. Checklists D.7 - R R R R

3. Control Flow Analysis D.8 - HR HR HR HR

4. Data Flow Analysis D.10 - HR HR HR HR

5. Error Guessing D.20 - R R R R

6. Walkthroughs/Design Reviews D.56 HR HR HR HR HR

TELE

’arisTech

[
I S T ST Al

I Extracts from EN 50128

Table A.21 - Test Coverage for Code

Test coverage criterion Ref SILO | SIL1 | SIL2 | SIL3 | SIL4
1. Statement D.50 R HR HR HR HR
2. Branch D.50 - R R HR HR
3. Compound Condition D.50 - R R HR HR
4. Data flow D.50 - R R HR HR
5. Path D.50 - R R HR HR

Requirements:

1) For every SIL, a quantified measure of coverage shall be developed for the test undertaken. This can
support the judgment on the confidence gained in testing and the necessity for additional techniques.

2) For SIL 3 or 4 test coverage at component level should be measured according to the following:
- 2and3;or
- 2and4;or
- 5
or test coverage at integration level should be measured according to one or more of 2, 3, 4 or 5.

3) Other test coverage criteria can be used, given that this can be justified. These criteria depend on the
software architecture (see Table A.3) and the programming language (see Table A.15 and Table A.16).

4) Any code which it is not practicable to test shall be demonstrated to be correct using a suitable technique,
e.g. static analysis from Table A.19.

TELE

’arisTech

F
S]] onename s Jgrer

I Practical Code Coverage with gcc and gcov

B gcc has a magic option --coverage

B |nstrumentation of binary code

® Count execution of each basic block

B Count branches taken/untaken

B Generate coverage report using gcov (or 1cov)
B |ntegration into build system

TELECOM

ParisTech

N Coverage Tool Flow with gcov

main.c.gcov

main.gcno

TELECOM

ParisTech

N Coverage Tool Flow with gcov

main.c.gcov

main.gcno

Let's doit...

TELECOM

ParisTech

I Test Coverage (Again)

Testbench

— (@]
5 =
£ 2
Iz DUT o
3 3
15 4 Q

wn

) |

Input coverage Code coverage

TELECOM

ParisTech
I on K = HA

I Test Coverage (Again)

Testbench

— (@]
5 =
£ 2
Iz DUT o
3 3
15 4 Q

wn

) |

Input coverage Code coverage

?
(What am | missing here. .. ? Q

TELECOM
ParisTech

Ulrich Kahne 26/11/2018 =T
=5 Fi |

I Test Coverage (Again)

Testbench

— (@]
5 =
£ 2
Iz DUT o
3 3
15 4 Q

wn

) L

Input coverage Code coverage Output coverage?

?
(What am | missing here. .. ? Q

TELECOM
ParisTech

Ulrich Kahne 26/11/2018 =T
=5 Fi |

I \utation Coverage

?
(Did we check the right things at the output? @

?
(How to assess test bench quality? Q

TELECOM

ParisTech

I \utation Coverage

?
(Did we check the right things at the output? @

?
(How to assess test bench quality? Q

B Mutation coverage
(aka error seeding)

® Randomly insert errors into the
code (mutants)

B Check if the test bench captures
(kills) them

B Compute ratio of killed mutants

TELECOM

ParisTech
Irich Kih 26/11/2018 =¥
oL e T

I \utation Coverage

?
(Did we check the right things at the output? @

?
(How to assess test bench quality? Q

B Mutation coverage
(aka error seeding)

® Randomly insert errors into the
code (mutants)

B Check if the test bench captures
(kills) them

B Compute ratio of killed mutants

TELECOM

ParisTech
Ulrich Kiihne 26/11/2018 =¥
o L] e e

I \utation Coverage: Rationale

® Mutations should mimic typical mistakes

+ Loop condition off by one
» Replace operators such as < vs <
* Modify constants

B A test bench not detecting these mistakes should be
improved

® Mutation coverage approximates ratio of real bugs found

TELECOM

ParisTech

I \utation Coverage: Rationale

® Mutations should mimic typical mistakes

+ Loop condition off by one
» Replace operators such as < vs <
* Modify constants

B A test bench not detecting these mistakes should be
improved

® Mutation coverage approximates ratio of real bugs found

Number of mutants killed _ Number of real bugs found
Total number of mutants ~ Total number of real bugs

TELECOM

ParisTech

I Summary Coverage

® Coverage metrics measure test quality
B Widely used in embedded industry

B Strong requirements for railway, aerospace, and
automobile domains

® Simple coverage with gcc and gcov
B Comes at virtually no cost = Use it!

TELECOM

’arisTech

B rian

Testing Embedded Systems

TELECOM

ParisTech

I Testing Embedded Software

?
(What'’s so special about embedded software '[esting?<;>

TELECOM

ParisTech

I Testing Embedded Software

?
(What'’s so special about embedded software '[esting?<;>

scarce, buggy, ...) hardware

Hardware not available (yet) —_w,
Limited memory

Limited debug capabilities
Real-time

Complex interactions with

physical world g@
® Long build and upload times <

B Runs on dedicated (expensive, .,i I

6/11/2018 ﬁﬁgml

I Embedded Testing Techniques

® Testing on target hardware

® High confidence in test results
() Long test cycles, hardware might not be available (yet)

TELECOM

ParisTech

I Embedded Testing Techniques

® Testing on target hardware

® High confidence in test results

() Long test cycles, hardware might not be available (yet)
B Emulating the target hardware (FPGA)

@ Test results close to the real target
@ Difficult to set up, HDL sources needed

TELECOM

ParisTech

I Embedded Testing Techniques

® Testing on target hardware

® High confidence in test results

() Long test cycles, hardware might not be available (yet)
B Emulating the target hardware (FPGA)

@ Test results close to the real target

@ Difficult to set up, HDL sources needed
B Testing on a virtual platform (SystemC, gemu, ...)

®© High performance, no dedicated hardware

@ High development effort

TELECOM

’arisTech

I Embedded Testing Techniques

® Testing on target hardware
® High confidence in test results
() Long test cycles, hardware might not be available (yet)
B Emulating the target hardware (FPGA)
@ Test results close to the real target
@ Difficult to set up, HDL sources needed
esting on a virtual platform (SystemC, gemu, ...)
®© High performance, no dedicated hardware
@ High development effort
urely C-based shallow test harness

(© Short test cycles, easy to set up
@ Difficult for real-time systems

—

o

TELECOM

’arisTech

I Embedded Testing Techniques

® Testing on target hardware SE743
® High confidence in test results
() Long test cycles, hardware might not be available (yet)

B Emulating the target hardware (FPGA) ——— SE744
@ Test results close to the real target
@ Difficult to set up, HDL sources needed

esting on a virtual platform (SystemC, gemu, ...) — SE747

®© High performance, no dedicated hardware

@ High development effort

urely C-based shallow test harness Here!

(© Short test cycles, easy to set up
@ Difficult for real-time systems

—

o

TELECOM

’arisTech

I Alternative: Model-based Testing

Generated or
manually Test Generated
developed Procedures from model
Integrated HW/ | Test Engine
SW System HW/SW Integration

Tests

TELECOM

ParisTech

I Alternative: Model-based Testing

Generated or

developed Code

Test
Procedures

Generated

manually
from model

Integrated HW/
SW System HW/SW Integration
Tests

Test Engine

TELECOM

ParisTech

I Principles of Model-Based Testing

Requirements

B Use of well-founded models
(e.g. SysML state charts)

® Models serve for documentation
and review

B Enables testing during
development

® Automated generation of test
cases

Test
Procedures
B Automated requirements

traceability Test Engine

TELECOM

ParisTech

N Example from Railway Domain

CSM_ON

O ARNING [SimulatedTrainSpeed > V_mrsp+dV_sbi]

SERVICE_BRAKE

R
Spenssupedsinn = " ’ - 8
ey [SimulatedTrainspeed <= v_mrdp] <= VSP] fnunerorstnegmoac
e
cretspaea - Smutacransoses; socmasenicomiacanmand=

N [EmergencyBrakeCommand|!= 1 &&
[SimulatedTrainSpepd > V_mrsp+dV_warning] e e

[SimulatedTrainSpe¢d > V_mrsp+dV_ebi]

NORMAL
[SimulatedTrainSpeed > V_mrsp] [— comon
Normaistatus; F@(_.
Service man=0;
Suens: mulaedTansoced [EmergencyBrakeCommand != 1 &&

ServiceBrakeCommand !=

]

[EmergencyBrakeCommand == 1]

OVERSPEED

Jentry OpaqueBehavor [(SimulatedTrainSpeed <=V_mrsp &
SpeedsupervisionStatus = OverspeedStatus; Revoc Brake) ||

currentSpeed [Si (SimulatedTrainSpeed == 0)]

EMER_BRAKE

Speedsupenvisionstatus =
Interventionstatus; EmergencyBrakeco
mmand=

peed <= V_mrsg]

permitedspeed=V mrsp;

displayPemnittedSpeed=true; currentSpeed = SimulatedTrainspeed;

[Source: OpenETCS project, Cécile Braunstein]

TELECOM
ParisTech

=5 Fig |

I Other Testing Aspects

B Mechanical testing
* Vibrations
» Shock
» Standardized stress
B Environmental conditions
* Temperature
e Pressure
* Humidity
» Radiation

B Ageing

[Source: Institute of Space Systems, DLR]

TELECOM

ParisTech

https://www.dlr.de/irs/en/desktopdefault.aspx/tabid-11374/

B rian

Hardware Verification & Test

TELECOM

ParisTech

B Hardware Design Flow

Specification Natural language
Reg. eng.,

modeling

) Electr. System Lvl. UML, SysML, Matlab, ...
Design Space

expl., partitioning

Transaction Lvl. C, C++, SystemC, ...

Implementation,

refinement .
VHDL, Verilog, ...

Synthesis
Gate models
Place & route
Geometric, electr. models
Manufacturing
Silicon

TELECOM
ParisTech

T S T i i

B Hardware Design Flow

Specification
Req. eng.,

modeling

. Electr. System Luvl.
Design Space

expl., partitioning

Transaction Lvl.

Implementation,
refinement

Synthesis
Place & route

Manufacturing

TELECOM
sTech

S| onename s Jgrer

I Hardware Verification vs Test

Verification Test
B Detect design bugs B Detect physical defects
B Extract properties from B Test generation from netlist
requirements according to fault model
® Applied on RTL code ® Applied on fabricated chips
® High manual effort B High automation

TELECOM

ParisTech

I rhysical Defects

<
\\ ‘ /

,\‘ccv Spot Magn ~ Det WD F—————1 500 nm
5.00kv 30 50000x TLD 6.1

B

[Source: IEEE Spectrum “The Art of Failure”]

TELECOM

ParisTech

I Stuck-at Fault Model

B

T
_L_L_L_Loooom

_L_LOO_L_LOOU
- O -0 -0 =00
O -0 =0 =00 Q

>

6/11/2018 ﬁﬁgml

I Stuck-at Fault Model

a b c| d

0 0 0]|0A

D1 o 1 0|1
b 01 1|0
>d 1 0 0/ 1

1 0 1] 0

c 1 1 0] 1
> 11 1|0

B (000) is a test vector for the shown stuck-at-1 fault

6/11/2018 ﬁﬁgml

I Stuck-at Fault Model

a sa-1
b
BX
c «[>%
sa-0

B (000) is a test vector for the shown stuck-at-1 fault
m {(010), (100), (110)} are test vectors for the stuck-at-0 fault

d
01
0
1/0
0
1/0
0
1/0
0

_L_L_L_Loooom
_L_LOO_L_LOOU
- O -0 -0 =00

6/11/2018 ﬁﬁgml

I Automatic Test Pattern Generation

ATPG
m Create a list of all possible ® Untestable faults?
(stuck-at) faults ® Hard to test faults?

B For each fault:
* Find a test pattern
* Drop all other faults
detected by this pattern

B Sequential tests?
B Test compression?

TELECOM

ParisTech

N Summary

B Validation on all levels of abstraction
E > 50% of overall costs

® Crucial for project success and product quality
B Various techniques

» Dynamic testing

« Static verification

* Model-based design

B |ntegration into development cycle

TELECOM

’arisTech

I oOutlook

B Test-Driven Design of embedded software
B [ntroduction to formal methods

® Formal specification and verification of embedded
hardware

TELECOM

ParisTech

I rreparation for Exercises

B | og in to GitLab:
https://gitlab.telecom-paristech.fr

B Go to the GitLab group:
https://gitlab.telecom-paristech.fr/MSSE/TestVerif/2018

B Request access to the group

TELECOM

ParisTech

https://gitlab.telecom-paristech.fr
https://gitlab.telecom-paristech.fr/MSSE/TestVerif/2018

I Rcferences |

DO-178B: Software Considerations in Airborne Systems and Equipment
Certification, 1982.

EN 50128 - Railway applications - Communication, signalling and processing
systems - Software for railway control and protection systems.
Technical report, European Commitee for Electrotechnical Standardization, 2001.

James W. Grenning.
Test Driven Development for Embedded C.
Pragmatic Bookshelf, Raleigh, N.C, 1! edition, May 2011.

Kelly Hayhurst, Dan S. Veerhusen, John J. Chilenski, and Leanna K. Rierson.
A practical tutorial on modified condition/decision coverage, 2001.

(=) (=) =) [=J

TELECOM

ParisTech

o] orename s Jegrer

	Goals of this Course
	Motivation
	Basic Validation Methodology
	Objectives
	Development Cycle

	Test Coverage
	Software Coverage Metrics
	Testing Requirements in the Railway Domain
	Coverage with gcc and lcov

	Testing Embedded Systems
	Hardware Verification & Test
	Appendix

