
Conventions d'appels et
interruptions
…faire cohabiter du C et de l'assembleur

Tarik Graba
tarik.graba@telecom-paris.fr

Année scolaire 2020/2021

mailto:tarik.graba@telecom-paris.fr

Plan

Les sous-routines

Les conventions d'appels
La pile
Les registres
Arguments et la valeur de retour

Les exceptions
Les exceptions pour les processeurs ARM
Les exceptions pour les Cortex M

2 2020/2021 SE203 Conventions d'appels et interruptions

Flot d'exécution linéaire

Un processeur exécute les instructions les unes après les autres de façon linéaire.
• Le PC est incrémenté (+4 ou +2)

On peut faire des branchements pour aller vers une instruction précise.
• sur ARM on a l'instruction b (branch)

Ces instructions de branchement permettent d'implémenter des tests, boucles….
• Voir le cours sur la cross-compilation

3 2020/2021 SE203 Conventions d'appels et interruptions

Les routines/sous-routines

Une routine est un fragment du programme à qui on donne la main.
on donne le contrôle à la routine à partir du programme,
la routine s'exécute,
à la fin on revient au programme appelant (juste après l'appel).

• le programme appelant est en attente de la fin de la sous-routine

Cette routine peut, elle-même, appeler une sous-routine.

4 2020/2021 SE203 Conventions d'appels et interruptions

Les routines/sous-routines

Une routine peut être une:
fonction si elle retourne un résultat
une procédure si elle ne retourne pas de résultat

En langage C le terme fonction est utilisé dans les deux cas.

5 2020/2021 SE203 Conventions d'appels et interruptions

Les routines/sous-routines

Pour se simplifier la vie:
L'appelant (Caller):

• la partie du programme où on appelle la sous-routine
L'appelée (Callee):

• la sous-routine qui est appelée

6 2020/2021 SE203 Conventions d'appels et interruptions

Les routines/sous-routines

@A+000

Caller

@A+004
@A+008
@A+00C
@A+010
@A+014
@A+018
@A+01C
@A+020
@A+024
@A+028
@A+02C
@A+030
@A+034
@A+038

@B+000
@B+004
@B+008
@B+00C
@B+010
@B+014
@B+018

Callee

call

return

On appelle la sous-routine en gardant
l'adresse de retour

• L'instruction BL(Branch and Link)
sauvegarde l'adresse de retour dans le
registre lr

Au retour, on revient à l'adresse qui suit
l'appel à la sous-routine

• Il faut remettre lr dans pc

• MOV pc, lr ou BX lr

7 2020/2021 SE203 Conventions d'appels et interruptions

Les routines/sous-routines

@A+000

Caller

@A+004
@A+008
@A+00C
@A+010
@A+014
@A+018
@A+01C
@A+020
@A+024
@A+028
@A+02C
@A+030
@A+034
@A+038

@B+000
@B+004
@B+008
@B+00C
@B+010
@B+014
@B+018

Callee

call

return

Questions

Où stocker les variables locales?

• Utiliser des registres? Lesquels?
• Les stocker en mémoire? où?

Comment transmettre des arguments et
récupérer la valeur de retour?

• Utiliser des registres? Lesquels?
• Les stocker en mémoire? où?

Tout n'est pas connu à la compilation:

• des appels imbriqués,
• des appels récursifs, des fonctions

réentrantes

8 2020/2021 SE203 Conventions d'appels et interruptions

Les routines/sous-routines

@A+000

Caller

@A+004
@A+008
@A+00C
@A+010
@A+014
@A+018
@A+01C
@A+020
@A+024
@A+028
@A+02C
@A+030
@A+034
@A+038

@B+000
@B+004
@B+008
@B+00C
@B+010
@B+014
@B+018

Callee

call

return

Il nous faut

Des conventions:

• où stocker les choses,
• comment utiliser la mémoire,
• quels registres utiliser,
• qui en est responsable,
• où se trouvent les arguments, les

valeurs de retour…

9 2020/2021 SE203 Conventions d'appels et interruptions

Plan

Les sous-routines

Les conventions d'appels
La pile
Les registres
Arguments et la valeur de retour

Les exceptions
Les exceptions pour les processeurs ARM
Les exceptions pour les Cortex M

10 2020/2021 SE203 Conventions d'appels et interruptions

Pourquoi une convention?

Permettre l'interopérabilité de sous-routines:
générées à partir de langages différents (C et assembleur par exemple),
des compilateurs différents, ou des versions différentes du même compilateur.

En définissant:
comment l'appelant doit configurer l'environnement de l'appelé,
et ce qu'a le droit de faire l'appelé et comment il doit restaurer l'environnement avant de
rendre la main.

11 2020/2021 SE203 Conventions d'appels et interruptions

Pourquoi une convention?
Pour les processeurs ARM

Des conventions définies dans plusieurs documents [Lien vers le site d'ARM]
AAPCS : Procedure Call Standard for the Arm Architecture [Lien]

définit les conventions bas niveaux
ABI : Application Binary Interface

des extensions de compatibilité liées aux exécutables et binaires
les formats et organisation des binaires (elf par exemple),
les bibliothèques, certains langages (C++ par exemple), les OS (Linux par
exemple)

EABI : ABI pour les applications embarquées
utilisée dans le contexte de systèmes embarqué sans système
d'exploitation (baremetal) ou avec des OS temps réel.

12 2020/2021 SE203 Conventions d'appels et interruptions

https://developer.arm.com/architectures/system-architectures/software-standards/abi
https://developer.arm.com/documentation/ihi0042/j

Plan

Les sous-routines

Les conventions d'appels
La pile
Les registres
Arguments et la valeur de retour

Les exceptions
Les exceptions pour les processeurs ARM
Les exceptions pour les Cortex M

13 2020/2021 SE203 Conventions d'appels et interruptions

La pile

La pile est un espace mémoire dynamique qui permet de stocker l'environnement d'une
sous-routine:

Ses variables locales/automatiques
Certains arguments
Des sauvegardes de contexte

Sur les processeurs ARM, elle est gérée de façon logicielle. Des instructions doivent être
ajoutées pour empiler (sauvegarder en mémoire) ou dépiler (restaurer) des éléments.

14 2020/2021 SE203 Conventions d'appels et interruptions

La pile
Principe

Un exemple:
une fonction f avec ses variables locales
elle appelle la fonction g qui a aussi des
variables locales
g appelle une sous-fonction h

void f(){

int vf0 , vf1 , vf2;

....

g();

...

}

void g(){

int vg0 , vg1 , vg2 , vg3;

....

h();

...

}

void h(){

int vh0 , vh1;

....

}

15 2020/2021 SE203 Conventions d'appels et interruptions

La pile
Principe

Dans la fonction f on place les variables en
mémoire:

à la suite
un pointeur nous donne l'adresse de la
dernière variable
on connait la position de toutes les
variables par rapport à ce pointeur

C'est notre pointeur de pile (stack pointer sp)

f
vf0

vf2
vf1

sp

mémoire

15 2020/2021 SE203 Conventions d'appels et interruptions

La pile
Principe

À l'appel de la fonction g:
on fait avancer le pointeur de pile
suffisamment pour réserver de l'espace
pour les variables de g

• on connait le nombre de variables
locales

les variables locales sont référencées par
rapport au même pointeur sp

f n'a pas d'information sur l'espace nécessaire
pour les variables locales de g.
Le code qui crée la pile de g appartient à g.
Il est appelé prologue.

f
vf0

vf2
vf1

sp

g

vg0

vg2
vg1

vg3 sp

mémoire

call

15 2020/2021 SE203 Conventions d'appels et interruptions

La pile
Principe

À l'appel de la fonction h on refait la même
chose.

f
vf0

vf2
vf1

g h

vg0

vg2
vg1

vg3

vh0
vh1

sp

sp

mémoire

call

15 2020/2021 SE203 Conventions d'appels et interruptions

La pile
Principe

À la fin de l'exécution de h:
on restaure la valeur de sp en le faisant
reculer du bon nombre de cases
on rend la main à g

Le code qui restaure le contexte de l'appelant
est appelé épilogue. Il fait forcément partie de
h car comme le prologue il doit savoir combien
d'éléments sont empilés.

f
vf0

vf2
vf1

sp

g h

vg0

vg2
vg1

vg3

vh0
vh1

sp

mémoire

return

sp

15 2020/2021 SE203 Conventions d'appels et interruptions

La pile
Principe

À la fin de l'exécution de g on refait la même
chose.

Pour ne pas dégrader les performances, les
données empilées ne sont pas effacées. On
n'a juste plus de référence pour y accéder.

f
vf0

vf2
vf1

sp

g h

vg0

vg2
vg1

vg3

vh0
vh1

mémoire

return

sp

15 2020/2021 SE203 Conventions d'appels et interruptions

La convention de pile sur ARM
Full Descending stack

Le registre r13(sp) est le pointeur de pile (stack
pointer)
Le pointeur de pile contient l'adresse de la dernière
donnée empilée (case pleine)
Avant chaque empilement le pointeur de pile doit
être décrémenté (la pile descend)

mémoire

next in stack

0x4

0x0

STACK
sp

em
piler

dé
pi

le
r

16 2020/2021 SE203 Conventions d'appels et interruptions

La convention de pile sur ARM
D'autres contraintes

La valeur registre r13(sp) doit être multiple de 4
• la pile servant à sauvegarder des registres, elle doit être alignée sur des adresses de mots

de 32 bits
La pile doit être alignée sur une un double mot (8 octets) aux interfaces

• lors de l'appel d'une sous-routine
• nécessaire pour certains mécanismes liés aux exceptions

pour assurer l'alignement le compilateur va ajouter dans la pile des éléments
normalement inutiles

17 2020/2021 SE203 Conventions d'appels et interruptions

L'activation record/pile d'appel

Du jargon:
Activation record
Pile d'appel (Call frame)

L'espace mémoire utilisée par une sous-routine pour la sauvegarde du contexte et ses
variables locales.

Alloué à chaque activation (après l'appel) de la sous-routine.
Pour les processeurs ARM (et beaucoup d'autres) sur la pile.

18 2020/2021 SE203 Conventions d'appels et interruptions

L'activation record/pile d'appel
Qu'y trouve-t-on?

L'appelant (caller) doit sauvegarder son
adresse de retour

• lorsqu'on appelle BL le registre lr est
modifié

• toute fonction qui appelle une
sous-routine doit donc prévoir de
sauvegarder lr dans sa frame

• la sauvegarde se fait dans le prologue et
la restauration dans l'épilogue de
l'appelant

Une fonction qui ne fait pas d'appel, peut
s'économiser cette sauvegarde.

f

vf0

vf2
vf1

sp

mémoire

lr_f

fr
am
e

de
 f

19 2020/2021 SE203 Conventions d'appels et interruptions

L'activation record/pile d'appel
Qu'y trouve-t-on?

L'appelant (caller) doit sauvegarder son
adresse de retour

• lorsqu'on appelle BL le registre lr est
modifié

• toute fonction qui appelle une
sous-routine doit donc prévoir de
sauvegarder lr dans sa frame

• la sauvegarde se fait dans le prologue et
la restauration dans l'épilogue de
l'appelant

Une fonction qui ne fait pas d'appel, peut
s'économiser cette sauvegarde.

f

vf0

vf2
vf1

sp

g

vg0

vg2
vg1

vg3 sp

mémoire

lr_f

lr_g

fr
am
e

de
 f

fr
am
e

de
 g

19 2020/2021 SE203 Conventions d'appels et interruptions

L'activation record/pile d'appel
Qu'y trouve-t-on?

L'appelant (caller) doit sauvegarder son
adresse de retour

• lorsqu'on appelle BL le registre lr est
modifié

• toute fonction qui appelle une
sous-routine doit donc prévoir de
sauvegarder lr dans sa frame

• la sauvegarde se fait dans le prologue et
la restauration dans l'épilogue de
l'appelant

Une fonction qui ne fait pas d'appel, peut
s'économiser cette sauvegarde.

f

vf0

vf2
vf1

g h

vg0

vg2
vg1

vg3

vh0
vh1 sp

sp

mémoire

lr_f

lr_g

fr
am
e

de
 f

fr
am
e

de
 g

fr
am
e

de
 h

19 2020/2021 SE203 Conventions d'appels et interruptions

L'activation record/pile d'appel
le frame pointer (fp)

Tout n'est pas forcément connu à la compilation!

Par exemple, un tableau local dont la taille dépend d'un argument:
int f(){

int vf0 , vf1;

...

vf1 = g(4);

....

vf0 = g(2);

...

}

int g(int n){

int T[n];

....

h(...);

...

}

Il existe aussi la fonction alloca qui permet d'allouer de l'espace sur la pile.
20 2020/2021 SE203 Conventions d'appels et interruptions

L'activation record/pile d'appel
le frame pointer (fp)

On a besoin d'une référence fixe à la frame
• on garde donc l'adresse du début de la frame dans le frame pointer
• sur ARM, on utilise le registre r11(fp)

• si une sous-routine utilise le frame pointer, elle doit sauvegarder sa valeur
le pointeur de pile avance toujours et pointe vers la fin de la frame

• ce qui est connu à la compilation est référencé par rapport à fp

• ce qui dynamique est référencé par rapport à sp

21 2020/2021 SE203 Conventions d'appels et interruptions

L'activation record/pile d'appel
le frame pointer (fp)

Après l'appel on entre dans le
prologue la fonction.

f

vf0
vf1 sp

gmémoire

lr_f

fr
am
e

de
 f sp

22 2020/2021 SE203 Conventions d'appels et interruptions

L'activation record/pile d'appel
le frame pointer (fp)

Comme précédemment sauvegarde
les registres et on réserve l'espace
pour les variables locales

l'adresse de retour
comme on va utiliser fp on le
sauvegarde aussi

On positionne sp à la fin de la frame
et fp au début.

f

vf0
vf1 sp

g

n sp

mémoire

lr_f

lr_g

fr
am
e

de
 f

fr
am
e

de
 g

sp
fpfp_f

22 2020/2021 SE203 Conventions d'appels et interruptions

L'activation record/pile d'appel
le frame pointer (fp)

On fait avancer le pointeur de pile
(sp) pour allouer l'espace nécessaire
au tableau.
On a donc:

fp qui est stable et permet
d'accéder aux variables
automatiques
sp qui permet d'accéder aux
variables dynamiques sur la pile

f

vf0
vf1

g

n

T[2]
T[3]

T[1]
sp

mémoire

lr_f

lr_g

fr
am
e

de
 f

fr
am
e

de
 g

T[0]

sp

fp_f fp

22 2020/2021 SE203 Conventions d'appels et interruptions

L'activation record/pile d'appel
le frame pointer (fp)

comme le pointeur de pile a avancé,
on est compatible avec le
comportement précédent lors de
l'appel à une sous-routine.

f

vf0
vf1

g h

n

T[2]
T[3]

T[1]

vh0
vh1 sp

sp

mémoire

lr_f

lr_g

fr
am
e

de
 f

fr
am
e

de
 g

fr
am
e

de
 h

T[0]

fp

fp_f

22 2020/2021 SE203 Conventions d'appels et interruptions

Plan

Les sous-routines

Les conventions d'appels
La pile
Les registres
Arguments et la valeur de retour

Les exceptions
Les exceptions pour les processeurs ARM
Les exceptions pour les Cortex M

23 2020/2021 SE203 Conventions d'appels et interruptions

Les registres
Quel rôle?

Sur ARM, il y a 16 registres utilisables par le programmeur. Si on veut de l'interopérabilité, il faut se
mettre d'accord sur leur usage:

registre alias rôle

r15 pc compteur programme
r14 lr adresse de retour (Link register)
r13 sp pointeur de pile (stack pointer)
r12 ip Intra-procedure-call register
r11 fp/v8 pointeur de frame (ou registre variable 8)
r10 v7 registre variable 7
r9 v6 registre variable 6
r8 v5 registre variable 5
r7 v4 registre variable 4
r6 v3 registre variable 3
r5 v2 registre variable 2
r4 v1 registre variable 1
r3 a4 argument/registre temporaire 4
r2 a3 argument/registre temporaire 3
r1 a2 argument/résultat/registre temporaire 2
r0 a1 argument/résultat/registre temporaire 1

24 2020/2021 SE203 Conventions d'appels et interruptions

Les registres
Qui en est responsable?

Qui doit sauvegarder le contenu des registres?

L'appelant (caller), connait les registres dont il a besoin, il les sauvegarde tous avant de donner la
main à la sous-routine. Il les restaurera au retour de l'appel.

• Si la sous-routine ne s'en sert pas, il les aura sauvegardés pour rien

L'appelé (callee), connait les registres qu'il va modifier, il les sauvegarde tous puis les restaure
avant de rendre la main.

• Il les a peut-être sauvegardés pour rien.

Pour les processeurs ARM (et pour la majorité des processeurs RISC) on a "beaucoup" registres
internes. On peut se partager la responsabilité des registres entre caller et callee.
On n'a besoin de sauvegarder un registre que si on a utilisé tous nos registres.

25 2020/2021 SE203 Conventions d'appels et interruptions

Les registres
Qui en est responsable?

registre save

r10/v7 callee
r9/v6 callee
r8/v5 callee
r7/v4 callee
r6/v3 callee
r5/v2 callee
r4/v1 callee
r3/a4 caller
r2/a3 caller
r1/a2 caller
r0/a1 caller

Les registres temporaires, contenant les arguments peuvent être modifiés par l'appelé (callee),

si l'appelé a besoin de plus de registres, il doit les sauvegarder avant.

26 2020/2021 SE203 Conventions d'appels et interruptions

Les registres
Qui en est responsable?

Pour les registres spéciaux:

registre save

r14/lr caller
r13/sp callee
r12/ip caller
r11/fp callee

lr: l'appelant (caller) le sauvegarde avant d'appeler une sous-routine,
sp/fp: l'appelé (callee) les sauvegarde avant de construire sa frame.

27 2020/2021 SE203 Conventions d'appels et interruptions

Les registres
Stratégies de sauvegarde

Le code de sauvegarde et de restauration est ajouté:

• à chaque appel dans le caller,
• une fois au début et à la fin du callee.

• Si on veut optimiser la taille du programme, on favorisera les registres callee-save.

Une procédure terminale (qui ne revient pas) favorisera les caller-save.

Une procédure non terminale favorisera:

• les callee-save si le contenu des registres est nécessaire après l'appel,
• les caller-save pour le reste.

28 2020/2021 SE203 Conventions d'appels et interruptions

Plan

Les sous-routines

Les conventions d'appels
La pile
Les registres
Arguments et la valeur de retour

Les exceptions
Les exceptions pour les processeurs ARM
Les exceptions pour les Cortex M

29 2020/2021 SE203 Conventions d'appels et interruptions

Arguments

Sans trop entrer dans le détail:
Les 4 premiers arguments s'ils tiennent sur 32 bits utilisent les registres r0, r1, r2, r3
Les arguments suivants sont mis sur la pile (sp pointe sur le premier).
Si l'argument tient sur 64 bits il utilise deux registres consécutifs.
Pour les tableaux (en C) c'est l'adresse du premier élément qui est passée.
Les grosses (plus que 128 bits) structures de données sont copiées sur la pile.

30 2020/2021 SE203 Conventions d'appels et interruptions

La valeur de retour

Sans trop entrer dans le détail:
Si le retour tient sur 32 bits on utilise r0

Si le retour tient sur 64 bits on utilise r0 et r1
Si c'est plus grand
Pour les grosses structures de données, l'espace nécessaire sera alloué par l'appelant et
un argument supplémentaire sera ajouté pour y passer l'adresse.

31 2020/2021 SE203 Conventions d'appels et interruptions

L'activation record/pile d'appel
Résumons

Partage des registres entre
caller et callee et convention de
sauvegarde
Organisation de la pile et
pointeurs utilisant des registres
Convention pour les passages
d'arguments et des valeurs de
retour

v0

t0

sp

Memory

lr_c

ca
ll
er

fr
am
e

ca
ll
ee

fr
am
e

fp

fp_c

v1

t1

ad
dr
es
se
s

...

...

...

...

st
ac
k
(f
ul
l
de
sc
en
di
ng
)

var
auto

var
temp

caller
fp/lr

ax
ay

callee
add.args

caller
save regsry

rx

32 2020/2021 SE203 Conventions d'appels et interruptions

Plan

Les sous-routines

Les conventions d'appels
La pile
Les registres
Arguments et la valeur de retour

Les exceptions
Les exceptions pour les processeurs ARM
Les exceptions pour les Cortex M

33 2020/2021 SE203 Conventions d'appels et interruptions

interruptions/exceptions

Les exceptions sont un mécanisme qui permet d'interrompre le programme en cours et
d'exécuter une routine (handler) particulière pour la prendre en charge.
On va parler d'interruption, quand c'est un évènement intentionnel pour lequel on doit
réagir.

• Souvent cet évènement est provoqué par une source extérieure au processeur.
• Après avoir réagi à l'interruption on retourne au programme principal

Alors qu'on parle d'exception quand c'est un évènement imprévu (une erreur par
exemple) qui empêche la poursuite du programme.

• Souvent on doit remédier à l'erreur et on ne revient pas dans l'état initial

34 2020/2021 SE203 Conventions d'appels et interruptions

interruptions/exceptions
Par exemple

une interruption générée par un périphérique
• un timer qui génère une interruption à intervalles réguliers
• une unité de communication qui génère une interruption à la réception d'un message

une instruction qui permet de générer une interruption de façon logicielle
• ce qui permet de déclencher des mécanismes gérés par un moniteur ou un système

d'exploitation

une exception due à la division par zéro
un accès interdit en mémoire

• alignement non respecté
• rien à cette adresse
• zone protégée
• …

35 2020/2021 SE203 Conventions d'appels et interruptions

interruptions/exceptions

1. Un évènement survient durant l'exécution

2. On arrête l'exécution du programme
3. On sauvegarde le contexte

• On peut être amené à identifier l'origine
de l'exception

4. On sert l'interruption (handle)
5. On restaure le contexte
6. On redonne la main au programme

sauvegarde
du

contexte

restauration
du

contexte

Programme
principal

service
(handler)

1

2

3

4

5

6

36 2020/2021 SE203 Conventions d'appels et interruptions

interruptions/exceptions

1. Un évènement survient durant l'exécution
2. On arrête l'exécution du programme

3. On sauvegarde le contexte

• On peut être amené à identifier l'origine
de l'exception

4. On sert l'interruption (handle)
5. On restaure le contexte
6. On redonne la main au programme

sauvegarde
du

contexte

restauration
du

contexte

Programme
principal

service
(handler)

1

2

3

4

5

6

36 2020/2021 SE203 Conventions d'appels et interruptions

interruptions/exceptions

1. Un évènement survient durant l'exécution
2. On arrête l'exécution du programme
3. On sauvegarde le contexte

• On peut être amené à identifier l'origine
de l'exception

4. On sert l'interruption (handle)
5. On restaure le contexte
6. On redonne la main au programme

sauvegarde
du

contexte

restauration
du

contexte

Programme
principal

service
(handler)

1

2

3

4

5

6

36 2020/2021 SE203 Conventions d'appels et interruptions

interruptions/exceptions

1. Un évènement survient durant l'exécution
2. On arrête l'exécution du programme
3. On sauvegarde le contexte

• On peut être amené à identifier l'origine
de l'exception

4. On sert l'interruption (handle)

5. On restaure le contexte
6. On redonne la main au programme

sauvegarde
du

contexte

restauration
du

contexte

Programme
principal

service
(handler)

1

2

3

4

5

6

36 2020/2021 SE203 Conventions d'appels et interruptions

interruptions/exceptions

1. Un évènement survient durant l'exécution
2. On arrête l'exécution du programme
3. On sauvegarde le contexte

• On peut être amené à identifier l'origine
de l'exception

4. On sert l'interruption (handle)
5. On restaure le contexte

6. On redonne la main au programme

sauvegarde
du

contexte

restauration
du

contexte

Programme
principal

service
(handler)

1

2

3

4

5

6

36 2020/2021 SE203 Conventions d'appels et interruptions

interruptions/exceptions

1. Un évènement survient durant l'exécution
2. On arrête l'exécution du programme
3. On sauvegarde le contexte

• On peut être amené à identifier l'origine
de l'exception

4. On sert l'interruption (handle)
5. On restaure le contexte
6. On redonne la main au programme

sauvegarde
du

contexte

restauration
du

contexte

Programme
principal

service
(handler)

1

2

3

4

5

6

36 2020/2021 SE203 Conventions d'appels et interruptions

Plan

Les sous-routines

Les conventions d'appels
La pile
Les registres
Arguments et la valeur de retour

Les exceptions
Les exceptions pour les processeurs ARM
Les exceptions pour les Cortex M

37 2020/2021 SE203 Conventions d'appels et interruptions

Exception ARM
ARM historiques, Cortex-A et Cortex-R

L'architecture défini un nombre
fixe de sources d'exceptions

Pour plus de granularité, la
gestion se fait de façon
logicielle

Exception source

Reset Remise à zéro du processeur
Undefined Instruction non définie
Supervisor Call Interruption logicielle (svc)
Prefetch Abort Erreur d'accès aux instructions
Data Abort Erreur d'accès aux données
IRQ interrupt Interruption HW
FIQ interrupt Interruption rapide

38 2020/2021 SE203 Conventions d'appels et interruptions

Exception ARM
ARM historiques, Cortex-A et Cortex-R

En cas d'exception, le processeur change de
mode et exécute une instruction de la table
des vecteurs

• Chaque case de la table ne peut
contenir qu'une seule instruction

• Il suffit d'y mettre un branchement vers
un handler plus complet

La table se trouve à une adresse prédéfinie
par l'architecture (ou le fabricant)

• souvent en 0x00000000 et/ou
0xFFFF0000

Offset vector

0x00 Reset

0x04 Undefined

0x08 Supervisor Call

0x0C Prefetch Abort

0x10 Data Abort

0x14 Hyper. trap if supported

0x18 IRQ interrupt

0x1C FIQ interrupt

39 2020/2021 SE203 Conventions d'appels et interruptions

Exception ARM
ARM historiques, Cortex-A et Cortex-R

En fonction de l'exception quelques registres
sont sauvegardés en interne du processeur

• Au moins cpsr (dans spcr), pc et sp
• On peut avoir une pile différente en

fonction du mode

Tout autre sauvegarde de contexte,
nécessaire à l'appel d'une fonction en C doit
être fait de façon logicielle

Le retour d'une exception nécessite une
instruction particulière (ERET, MOVS, LDR)

• restaure le mode et le cpsr

Ça ne concerne bien sûr pas le reset

User/Syst.

r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

r15 (pc)

Superv.

r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r13svc

r14svc

r15 (pc)

FIQ

r0

r1

r2

r3

r4

r5

r6

r7
r8fiq

r9fiq

r10fiq

r11fiq

r12fiq

r13fiq

r14fiq

r15 (pc)

IRQ

r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12
r13irq

r14irq

r15 (pc)

Abort

r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r13abt

r14abt

r15 (pc)

Undef

r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r13und

r14und

r15 (pc)

40 2020/2021 SE203 Conventions d'appels et interruptions

Exception ARM
ARM historiques, Cortex-A et Cortex-R

En fonction de l'exception quelques registres
sont sauvegardés en interne du processeur

• Au moins cpsr (dans spcr), pc et sp
• On peut avoir une pile différente en

fonction du mode

Tout autre sauvegarde de contexte,
nécessaire à l'appel d'une fonction en C doit
être fait de façon logicielle

Le retour d'une exception nécessite une
instruction particulière (ERET, MOVS, LDR)

• restaure le mode et le cpsr

Ça ne concerne bien sûr pas le reset

Programme
principal

service
(handler)

chgment
de

mode

sauvegarde
du

contexte

ret.
d'excep.

restauration
du

contexte

logicielle

logicielle

HW

HW

40 2020/2021 SE203 Conventions d'appels et interruptions

Plan

Les sous-routines

Les conventions d'appels
La pile
Les registres
Arguments et la valeur de retour

Les exceptions
Les exceptions pour les processeurs ARM
Les exceptions pour les Cortex M

41 2020/2021 SE203 Conventions d'appels et interruptions

Exceptions sur les Cortex-M
Architecture ARMv6m et ARMv7m

Le fonctionnement des exceptions pour les Cortex-M a été entièrement revu pour:
simplifier la gestion des exceptions par les programmeurs

• en gérant certains aspects matériellement,
garantir l'interopérabilité

• en supprimant la nécessité d'écrire du code ad hoc pour la sauvegarde et la restauration de
contexte,

permettre de gérer un grand nombre d'interruptions,
• utile dans un contexte micro-contrôleur,
• sauvegarde et la restauration de contexte,
• gestion des priorités.

42 2020/2021 SE203 Conventions d'appels et interruptions

Exceptions sur les Cortex-M
Architecture ARMv6m et ARMv7m

plus de granularité permet
d'identifier plus simplement la
source de l'exception

les interruptions sont
différentiées

en fonction de l'implémentation
on peut avoir jusqu'à 256
interruptions

Num Exception source

1 Reset Remise à zéro du processeur
2 NMI Interruption non masquable
3 HardFault Une erreur…
4 MemManage Accès en mémoire interdit
5 BusFault Autres erreurs d'accès
6 UsageFault Instruction non définie ou mal utilisée

7-10 Réservés …
11 SVCall Supervisor Call SVC
12 DebugMonitor Pour le débugueur
13 Réservé …
14 PendSV Changement de contexte asynchrone
15 SystTick Interruption du timer interne
16 Ext. Interrupt 0 Ext. Inter. 0
… … …

16+N Ext. Interrupt 0 Ext. Inter. N

43 2020/2021 SE203 Conventions d'appels et interruptions

Exceptions sur les Cortex-M
Architecture ARMv6m et ARMv7m

Table des vecteurs
Contient l'adresse des handlers
Par défaut à la position 0x00000000

• Le registre VTOR (Vector Table Origin)
permet de changer l'adresse de base

La case 0 contien la valeur de sp au reset

Offset Exception

0x00 sp au reset
0x04 Reset

0x08 NMI

0x0C HardFault

0x10 MemManage

0x14 BusFault

0x18 UsageFault

… …
0x2C SVCall

0x30 DebugMonitor

… …
0x38 PendSV

0x3C SystTick

0x40 Ext. Interrupt 0

… …

44 2020/2021 SE203 Conventions d'appels et interruptions

Exceptions sur les Cortex-M
Architecture ARMv6m et ARMv7m

Table des vecteurs
Permet de déclarer les
handlers comme des
fonctions C
Définir la table des hablers
comme une table de
pointeurs de fonctions

extern unsigned int _stack;

void init ();

void NMI_Handler ();

void HardFault_Handler ();

...

void IRQ0_Handler ();

...

void* vectors [] = {

(void *)& _stack , // initial stack pointer

init , // 1 init is called after reset

NMI_Handler , // 2 NMI

HardFault_Handler , // 3 Hard Fault

...

IRQ0_Handler , // 16 IRQ0

...

Si les handlers sont des fonctions en C, il faut respecter les conventions d'appel.

45 2020/2021 SE203 Conventions d'appels et interruptions

Exceptions sur les Cortex-M
Architecture ARMv6m et ARMv7m

1. Un évènement déclenche l'exception

2. Sauvegarde automatique du contexte sur
la pile (l'alignement est conservé)

• fait par le matériel
• sp est décrémenté
• le contenu de lr est remplacé par une

valeur spéciale

3. charge le pc avec l'adresse du handler
4. Le retour du handler est détecté en

identifiant la valeur spéciale de lr

5. Le contexte est restauré à partir de la pile
et on retourne au programme d'origine

sauvegarde
automatique

du
contexte

restauration
automatique

du
contexte

Programme
principal

service
(handler)

Procédure
standard

1

2

3

5

4

46 2020/2021 SE203 Conventions d'appels et interruptions

Exceptions sur les Cortex-M
Architecture ARMv6m et ARMv7m

reg. xPSR

Adresse de retour

reg. lr(r14)

reg. r12

reg. r3

reg. r2

reg. r1

reg. r0

dans le programme principal

1. Un évènement déclenche l'exception
2. Sauvegarde automatique du contexte sur

la pile (l'alignement est conservé)

• fait par le matériel
• sp est décrémenté
• le contenu de lr est remplacé par une

valeur spéciale

3. charge le pc avec l'adresse du handler
4. Le retour du handler est détecté en

identifiant la valeur spéciale de lr

5. Le contexte est restauré à partir de la pile
et on retourne au programme d'origine

sauvegarde
automatique

du
contexte

restauration
automatique

du
contexte

Programme
principal

service
(handler)

Procédure
standard

1

2

3

5

4

46 2020/2021 SE203 Conventions d'appels et interruptions

Exceptions sur les Cortex-M
Architecture ARMv6m et ARMv7m

1. Un évènement déclenche l'exception
2. Sauvegarde automatique du contexte sur

la pile (l'alignement est conservé)
• fait par le matériel
• sp est décrémenté
• le contenu de lr est remplacé par une

valeur spéciale

3. charge le pc avec l'adresse du handler
4. Le retour du handler est détecté en

identifiant la valeur spéciale de lr

5. Le contexte est restauré à partir de la pile
et on retourne au programme d'origine

sauvegarde
automatique

du
contexte

restauration
automatique

du
contexte

Programme
principal

service
(handler)

Procédure
standard

1

2

3

5

4

46 2020/2021 SE203 Conventions d'appels et interruptions

Exceptions sur les Cortex-M
Architecture ARMv6m et ARMv7m

1. Un évènement déclenche l'exception
2. Sauvegarde automatique du contexte sur

la pile (l'alignement est conservé)
• fait par le matériel
• sp est décrémenté
• le contenu de lr est remplacé par une

valeur spéciale

3. charge le pc avec l'adresse du handler

4. Le retour du handler est détecté en
identifiant la valeur spéciale de lr

5. Le contexte est restauré à partir de la pile
et on retourne au programme d'origine

sauvegarde
automatique

du
contexte

restauration
automatique

du
contexte

Programme
principal

service
(handler)

Procédure
standard

1

2

3

5

4

46 2020/2021 SE203 Conventions d'appels et interruptions

Exceptions sur les Cortex-M
Architecture ARMv6m et ARMv7m

1. Un évènement déclenche l'exception
2. Sauvegarde automatique du contexte sur

la pile (l'alignement est conservé)
• fait par le matériel
• sp est décrémenté
• le contenu de lr est remplacé par une

valeur spéciale

3. charge le pc avec l'adresse du handler
4. Le retour du handler est détecté en

identifiant la valeur spéciale de lr

5. Le contexte est restauré à partir de la pile
et on retourne au programme d'origine

sauvegarde
automatique

du
contexte

restauration
automatique

du
contexte

Programme
principal

service
(handler)

Procédure
standard

1

2

3

5

4

46 2020/2021 SE203 Conventions d'appels et interruptions

Exceptions sur les Cortex-M
Architecture ARMv6m et ARMv7m

1. Un évènement déclenche l'exception
2. Sauvegarde automatique du contexte sur

la pile (l'alignement est conservé)
• fait par le matériel
• sp est décrémenté
• le contenu de lr est remplacé par une

valeur spéciale

3. charge le pc avec l'adresse du handler
4. Le retour du handler est détecté en

identifiant la valeur spéciale de lr

5. Le contexte est restauré à partir de la pile
et on retourne au programme d'origine

sauvegarde
automatique

du
contexte

restauration
automatique

du
contexte

Programme
principal

service
(handler)

Procédure
standard

1

2

3

5

4

46 2020/2021 SE203 Conventions d'appels et interruptions

Exceptions sur les Cortex-M
Architecture ARMv6m et ARMv7m

Plus?
NVIC: Nested Vectored Interrupt Controler

• Pour la gestion automatique des interruptions imbriquées et des priorités

ARMv7-M Architecture Reference Manual [Lien vers le site d'ARM]

47 2020/2021 SE203 Conventions d'appels et interruptions

https://developer.arm.com/documentation/ddi0403/ed/

	Les sous-routines
	Les conventions d'appels
	La pile
	Les registres
	Arguments et la valeur de retour

	Les exceptions
	Les exceptions pour les processeurs ARM
	Les exceptions pour les Cortex M

