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I \What it’s all about. ..

B Understanding the notion of side-channel analysis (SCA)
B Understanding classic side-channel attacks

B Understanding counter-measures against side-channel
attacks
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BB General Context

B Algorithm
B |mplementation
e Hardware (ASIC, FPGA...)
e Software running on a processor (soft-core on an FPGA,
micro-controller in an embedded system, general purpose
CPU, specialized processor)
m With a specific security objective
e Confidentiality (example: cipher algorithm)
e Authentification (example: PIN code verification)
e ...
B Handling a secret (can be the algorithm itself) that must
not be accessible to the adversary
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N Example

® Example: Cryptographic algorithm implemented on a
smart card

B [nput: plain text message

B Qutput: encrypted message

B By construction, the cryptographic key, which is embedded

within the smart card, is not accessible via any operation
on the input/output interface of the card.
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I athematical View

B KERCKHOFFS principle: P, C et E are public, security
depends on K, which is unknown to the adversary

® There are numerous robust algorithms following this model
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A CRYPTO NERDS
1 MAGINATION -

HIS LAPTOP's ENCRYPTED
LETS BUILD A MILLION-DOLLAR,
Cr.uerR. To CRACK I T-

NO GooD! IT'S
U096 -BIT 'R‘&P\‘

E\JIL T-"LHN
15 FOILED! ™~

N Cryptanalysis vs Reality...

WHAT WoULD
| ACTUALLY HAPPEN:

HIS LAPTOP'S ENCRYPTED.
DRUG HIM AND RIT HIM WITH
THIS $5 WRENCH UNTIL
HE TELIS US THE PASSWORD.

GOT IT

“/Q

[Source: https://www.xked.com/538/]
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https://www.xkcd.com/538/

m In real life...

...there’s hardware

Power consumption EM radiation
% K /\F/\’

L

C
% Computation time

® Additional input/output channels: Side-channels
Electromagnetic radiation (EM)

Power consumption

Computation time
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I Side-channel Attacks

B Side-channels depend on the implementation of an
algorithm:

e In software
e In hardware
B Side-channels cannot be observed on the algorithmic
(mathematical, cryptanalytic) level.

B The implementation may leak sensitive information
(secrets) via side-channels, even if those secrets never
appear on the input/output interface.

B As a consequence, a passive observation can allow an
attacker to get hold of the secret!
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I Concrete Example

Function verifying a PIN code

boolean verifyPIN(byte[] inputPIN)
{
for (int i = 0; i < correctPIN.length; i++)
if (inputPIN[i] !'= correctPIN[i])
return false;

return true;

}

B Suppose that the arrays inputPIN and correctPIN have
size 4 and contain digits only (0-9)

® What is the complexity of an exhaustive search
(try all the PINs)?

® Can the attacker be smarter than that?
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I Concrete Example

Function verifying a PIN code

B The attacker can measure the function’s execution time

B Note that the function returns once it finds a wrong digit

B The attacker can try Oxxx, 1xxx, ..., 9xxx

B One of those digits will result in a slightly longer execution,
indicating the first correct digit

m Using this result, she can repeat the same test for the
second (third, fourth) digit

B Complexity: We need a maximum of 40 tests
(vs 9999 tests for an exhaustive search)

B The side-channel exploited by the attacker is the execution
time = timing attack
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Power Consumption of a CMOS Circuit

The inverter

B Given input x =0
— V=0 Vdd -1
— nMOS is blocking

— pMOS is open
— Vy = Vdd |:
— Logic outputis y = 1 X -y
® Given input x = 1
— VX = Vdd |:

— nMOS is open

— pMOS is blocking V
- V,=0 ss —
— Logic outputis y =0
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I Power Consumption of a CMOS Circuit

Energy dissipation

Vdd Vdd

IGoar
d ] Cpar d ﬁpaf_\\ Cpar

Vi Vi

Rising edge Falling edge

G
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I Power Consumption of a CMOS Circuit

Information leakage

®m Except for static leakage current, a CMOS circuit only
consumes power during state changes of its gates
(dynamic power consumption)

®m By observing the power consumption of a circuit, we can
deduce its activity

B Note that the number of gates changing their output
depends on both the operations and the manipulated data

B Thus, the power consumption can reveal information on
the executed operations and the involved data, including
secrets
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I Simple Power Analysis (SPA)
Example: RSA

B Modular exponentiation algorithm
Inputs : M, K
R=1,;
fori=|K|—1;i>0;i——do

R=R?;

if Ki==1 then

R=RxM;

end if
end for
Return R = M¥ ;

® Power consumption profile
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I Simple Power Analysis (SPA)

Example: RSA

®m Recovery of the full secret (i.e. the key in case of RSA)
with a single measurement

B Information is leaked due to different operations depending
on the secret (multiply vs square) with a different power
consumption profile.

B This type of attack using a single measure is called Simple
Power Analysis

B Note that the computation time also leaks some
information (difficult to exploit in this case)
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I Differential Power Analysis

m Often, the leakage is not as obvious

B Need to use a large number of measures

B Need to use statistical tools

B This type of attack is called DPA (Differential Power
Analysis)

B There are several variants (CPA, ...)
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I DPA: The Ingredients

Leakage Model M A model (function) predicting the behavior
of the observed side-channel of the system,
depending on a hypothesis on the system state

Distinguisher D Statistical tool that allows to detect a
correlation between the real system’s behavior
and our prediction
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I DPA: The Ingredients

Leakage Model M A model (function) predicting the behavior
of the observed side-channel of the system,
depending on a hypothesis on the system state

Distinguisher D Statistical tool that allows to detect a
correlation between the real system’s behavior
and our prediction

B Since the internal state of the system — in particular the
secret — is unknown to the attacker, we need to make a
hypothesis

B This hypothesis can be correct or wrong

B The distinguisher allows us to tell the good hypothesis
(correct key) from the wrong ones (wrong keys)
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I DPA Manual 1/2

1. Determine a sensitive variable S depending on a part of
the secret and on known inputs or outputs.

2. Establish a leakage model M( S ) dependingon S.

3. Perform observations (measurements) of the circuit’s
behavior on the considered side-channel, varying the
known inputs or outputs.
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I DPA Manual 2/2

4. Analyze the data: For each possible value of S
e For each known input/output P used during the

observations, calculate M( S, P)

e Use the distinguisher D to check if there is a correlation
between the behavior predicted by the leakage model
(depending on the hypothesis) and the real world
observations

® For the correct value of S, the leakage model predicts
correctly the circuit’s behavior. As a consequence, the
observations will be correlated to the model, and the
distinguisher will detect this correlation.

B For all other (wrong) values of S, the model does not
predict correctly the behavior, and there will be no
correlation between the model and the observations.
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I DPA Overview

time hypothesis
(rr, Wy = M N N My M1y, S = )M, § =2) - M(1y, S = H)
(1o, Wp = ol MM iy M(12, 8 = 1)M(Tz, § =2) -+ M(12,/8 = H)

observation

(In, WN:W\W/W\JMM%) M(Iy, S =1)M(Iy, S =2) -+ M(In, S =H)

B I;: Plain text message (or other known inputs/outputs)
® |V;: Measured power consumption (power trace)

B M: Leakage model, depending on secret S (and possibly
known inputs/outputs)

= Find a correlation between  and
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N Performing a DPA Attack

1. Which leakage model to choose?
2. Which distinguisher to choose?
3. How to perform the measurements?
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N Example

® Context: Hardware implementation of DES (Data
Encryption Standard) in ECB mode

® What we are looking for: key (56 bits)
B The adversary can send plain text messages to the circuit

B She can read the cipher text and measure the power
consumption during the encryption

®m Used attack: DPA (Differential Power Analysis)
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I Example: DPA vs DES

DES: algorithmic view

\ Plaintext (64 bits) |

L R
0 0 K,
round|
><
\ Ly \ Ay |
SK;
16 rounds ﬁF\ ?
>—<
| Lo | Re |
|
\ Lig \ Ris ‘

\ Ciphertext (64 bits) \
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I Exemple: DPA vs DES

DES: iterative hardware implementation

\ IP (Plaintext) \

SK;

G

IP Initial permutation
F Feistel function
SK; Sub-key (round key)
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I Exemple: DPA vs DES

DES: Feistel function

R; (32 bits) SK; (48 bits)

2 A A A A A A A A A A A A A A A A A R A
81 82 83 84 85 86 S7 88

PREEIEES

E Extension (32 to 48 bits)
P Permutation (bit shuffling)
S; Substitution
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I Example: DPA vs DES

Power consumption model

® How to construct M?
B Power consumption during encryption operation

B Problems
e DES is not alone on the chip (I/0...)
e Power consumption of DES heavily depends on the key
(56 bits), but we cannot test all 2% hypotheses (that’s just
brute force...)
® We need to concentrate on the power consumption of a
part of the circuit, depending on a part of the key

B We consider the power consumption of the remaining
circuit elements as noise

FEIGT I
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I Example: DPA vs DES

State register on DES data path

B Value change of the state registers (L; et R;) during an
encryption operation (first round)

clk ‘ L [
L L L= R [
R; Ro Rr — Lo & F(Ro, SKo) )
T
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I Example: DPA vs DES

Power consumption of the state registers

clk ‘ L [
L; I L= Y
R Fo R — Lo & F(Ro, 5K) )
T

B Power consumption of register R; at time T;:

PF?,'(T1) = 5 X HD(R(), LO @ F(Ro, SKO ))
B Known variables: Ry et Ly (depending directly on plain text)
® Unknown variables: SKj (48 bits of the key K), Ty, and ¢

m Still too many hypotheses: 248
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I Example: DPA vs DES

Zoom on the Feistel function

R; (32 bits) SK; (48 bits)

%‘3 Ve
N

AU A A A A A A A A A A A A A A A A
S; S, 83 Ss S5 86 Sy Sg

N

32

® How to construct a power consumption model depending
on fewer bits of the secret key?
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I Example: DPA vs DES

Zoom on the Feistel function

R; (32 bits)

[3,4,5,6,7,8]
[6,7,8,9,10,11] T~ [6,7,8,9,10,11]
N

SK; (48 bits)

67891011
JIJIIQVIII VLD LU LI LI I LI LIIT]
Si So S3 Sy Ss S S7 Ss
LI WL JIIL JITL JIIL JIJL JIJL JITJ

4567

[12,27,1,17]

TELECOM
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I Example: DPA vs DES

Impact of the SBox 2 (first round)

y IP(Plaintext) \
[12,27,1,17]
L R;
[12,27,1,17] [6,7,8,9,10,11]
SKi
f\[12,27,1,17]J\[3,4,5,6,7,8]
D )
[12,27,1,17]
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I Example: DPA vs DES

Power consumption of state registers (impact SBox 2)

clk ‘ L [
L L L =R [
R; Fo R — Lo & F(Ro, 5Ko) )
T

® Considering bits [12,27,1,17] of register R;

B Before Ty, their value depends on Ry and thus directly on
the (known) plain text

m After Ty, their value depends on

e Bits [12,27,1,17] of Ly (known)
e Bits [3,4,5,6,7,8] of Ry (known)
e Bits [6,7,8,9,10,11] of SKy (unknown)
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I Example: DPA vs DES

Power consumption model HD on 4 bits

® Power consumption model: Pg1227.1,17)(T1) =
d x HD(Ro[12,27,1,17], Ly[12,27,1,17] &
F(Ry[3,4,5,6,7,8], SKp [6,7,8,9,10,11])
B Depends on a hypothesis on 6 bits of the first round key
(28 = 64 possible hypotheses)
B This model is only valid at instant T4
B 5 possible output values (Hamming distance on 4 bits):
{0,4,20,36,40}
B |n the following, we suppose ¢ = 1
B Finally: Py(I, S) = PR,.[12,2771,17](T1), where
e I isthe plain text
e S isthe hypothesis on SKj [6,7,8,9,10,11]
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I Example: DPA vs DES

Power consumption model vs actual power consumption

® QOur model only predicts the power consumption of a small
part of the circuit (4 flip flops) and only at one precise
moment (T7)

B Actual power consumption at T5:
Prea/(Ia K ) T1) = P4(I7 Sgood) + PfeST(Ia K 9 T1)7

where Sy COrresponds to the good hypothesis (correct
value of SKj [6,7,8,9,10,11] depending on K)

B We suppose that Presi(I, K, Ty) is statistically
independent of P4(I, Sgooa)
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I Example: DPA vs DES

Measurements

® For the good hypothesis on S (Syooq), at instant Ty, the
actual power consumption depends partially on our model
P4(1,°8))

B This dependency is weak, so we need a lot of
measurements in order to detect it using the distinguisher

® Perform N measurements (with constant key) for varying
plain text messages I1,...,Iy
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I Example: DPA vs DES

Measurements

B Power measurement during one encryption operation =

power trace

B Trace = vector of samples: W(I;,, K ,t)fort=0,..., T —1

(with T the number of samples per trace)

W(I/, K ) t) = Prea/(Iia K ) t) +-measure

® |n the following, we assume that the traces are aligned,
i.e. that the index of the sample corresponding to instant T4

is the same for all traces

TELECOM Y
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I Example: DPA vs DES

Example power trace

I

0000000000

B Arbitrary units (x: time, y: power consumption)

o
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I Example: DPA vs DES

Analysis algorithm

1. Make a hypothesis on S = Sy (64 possible values,
including the good one: Syooq)

2. Partition the set of traces depending on the prediction of
the power consumption model: for each trace W(1;, K ,t)
(i=1,....N)

e Compute the power consumption model: P4(I;, Sy)

(5 possible values)
e Classify the trace in one of 5 sets Ep,—o, ..., Ep,—4:

Ep,—j = {W(1;, K ,t)| Pa(Ti, SH) = j}

wgim




I Example: DPA vs DES

Analysis algorithm

3. For each of the 5 sets, compute a mean trace (each
sample i of the mean trace is the arithmetic mean of the
i-th sample of all the traces in this set):

We,—i(1) Z W(1;, K ,t)
WEEP4 =

fort =0,..., T —1and with n = |Ep,_;| the number of
traces in Ep,—_;

TELECOM ’\”
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I Example: DPA vs DES

Analysis algorithm

4. Compute a differential trace (for each hypothesis):
Wa(t) = 2 x We,—o(t) — We,1(t) + Wp,=a(t) + 2 x Wp,—a(t)

fort=0,..., T —1

5. Then find the maximum sample in the differential trace:
D(SH) = maxt Wa(t)

6. Finally, we need to find out for which hypothesison S,

D(Sy) is maximal. This should be the good hypothesis:
Sgood = argmax D
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I Example: DPA vs DES

Example of a differential trace

0015

0010

0.005 N

500 1000 1500 2000 2500 3000 3500 2000

B 64 differential traces superposed for SBox 2
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I Example: DPA vs DES

Why does it work?
® We have:

W(Iia K ) t) = Preal(Iia K ) t) +-measure

B At time instant Ty:
Preal(Ia K ) T1) = P4(I7 Sgood) + Prest(Iy K s T1)

® |t follows:
W(II7 K 9 T1) = P4(II7 Sgood)+PreSf(Ii7 K 9 T1 )+-measure

® We consider the measurement noise and the power
consumption of the rest of the circuit globally as noise:

W(1;, K, T1) = Pa(Ii, Sgood) +-

wEim




I Example: DPA vs DES

Why does it work? (good hypothesis)

B | et’s suppose we make the correct hypothesis on
S (i.e. Sy = Sgood)

m |f we apply the power consumption model, it correctly
predicts, for each observation, the behavior of 4 bits of the
state register

® Therefore, the partitioning of the whole set of traces is
consistent with the real behavior of these 4 bits:

Forje {0,...,4}, YW € Ep,—;, we have:

W(Ii> K>T1) :j+-

wEim




I Example: DPA vs DES

Why does it work? (good hypothesis)

B When we compute the mean traces, this consistency is
preserved:
We,—(T1) = j + INoisé|
B The equation of the differential trace distinguishes this

coherence for the sample correspoding to T:

Wa(T1) = =2 x Wp,—o(T1) — Wp,—1(T1) + Wp,—5(T1) + 2 x Wp,_4(T1)

= —2 x (0 + [INGS&]) — (1 + INGISE]) + (3 -+ INGiSEY) + 2 ~ (4 -+ [INGiSe])

~ 10
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I Example: DPA vs DES

Why does it work? (good hypothesis)




I Example: DPA vs DES
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I Example: DPA vs DES

Why does it work? (good hypothesis)

Weyeo Wt Weo Wes Wheps

Wa(t) = =2 x We,—o(t) = We,—1(t) + Wp,—3(t) +2 x Wp,_4(1)
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I Example: DPA vs DES

Why does it work? (good hypothesis)

Weyeo Wt Weo Wes Wheps

Wa(t) = =2 x We,—o(t) = We,—1(t) + Wp,—3(t) +2 x Wp,_4(1)

FEIGT I
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I Example: DPA vs DES

Why does it work? (bad hypothesis)

B Now suppose we have made a wrong hypothesis on
S (SH 7& Sgood)

B When applying the power consumption model, it does not
predict correctly the power consumption of the state
register

B Therefore, the partitioning of the traces is inconsistent with
the real behavior of the state register:

Forjc {0,...,4}, YW(I;, K ,t) € Ep,—j, we have:

W(1;, K, Tq) = k; + [Noise|

for some k; € {0,...,4}

wgim




I Example: DPA vs DES

Why does it work? (bad hypothesis)

B As a consequence of the inconsistent (more or less
random) partitioning, the mean traces of the different
partitions are identical:

We,—j(T1) = 2 + [INGise]

B The equation for the differential trace results in a value
around 0O:

Wa(T1) = =2 x Wp,—o(T1) = Wp,—1(T1) + Wp,—5(T1) + 2 x Wp,_4(T1)

=2 x (2 + [Neise]) — (2 + [Noisel) + (2 -+ [Neisel) + 2 x (2 -+ [Neise])

~0

B This is also the case for all other samples which do not
correspond to Ty, for good and bad hypotheses

wEim




I Example: DPA vs DES

Why does it work? (bad hypothesis)

Wp,—o Wp=1 Wp—2 Wp_3 Wp_4
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I Example: DPA vs DES

Why does it work?

B As a conclusion, all samples of all differential traces are
approximately zero except for the one corresponding to
time instant T; for the good hypothesis on S

FEIGT I




I DPA in a Nutshell

1: Inputs: Model M, traces Wi, inputs I;for1 <i< N
2: for each hypothesis Sy on secret S do

for j € range M do
compute mean trace W
9: end for
10:  compute differential trace Wa
11: D(SH) <— maxg WA(I')
12: end for
13: Sgood < argmaxD
14: Return Syp0q

3: forie{1,...,N}do

4: j— M(1;,Sy)

5: E./Vl—j<_ EM_/U{W,'}
6: end for

7:

8:

e ’




I Example: DPA vs DES

Final observations

B We have recovered 6 bits of SKj , which gives us directly
6 bits of K

B By repeating the attack on the other S-boxes, we can
recover all 48 bits of SKj , and therefore 48 bits of K

B For the remaining 8 bits, we can attack the second round
(the first round is now entirely known), or just do an
exhaustive search

m Total complexity of the attack: 64 hypotheses for each of

the 8 S-boxes plus exhaustive search: 64 x 8 + 256
operations'

"What is the complexity of one operation”

o
Urien e 2015 2020 ~
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I | cakage Models

® Hamming weight: M( S)=HW(S)
e Suitable for buses which are reset to zero (or high
impedance) after transmission
B Hamming distance [2]:
M(S)=HD(S, S 1)=HW(S & S_1)
e Suitable for hardware implementations (CMOS power
consumption)
® Switching distance [8]: M( S ) = 1 for transition 0 — 1,
and (1 — ¢) for transition 1 — 0, else 0
e Suitable for near field EM

e ’




Statistical Distinguishers
Classification by [9]

B Partitioning
¢ Difference of means [7]: DPA
e Covariance [1]
e Mutual information [5]: MIA
® Comparison
e Correlation [2]: CPA
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I Correlation Power Analysis (CPA)

PEARSON correlation coefficient

oxXoy
where cov(X, Y) = E[(X — E[X])(Y — E[Y])]-

m |f there is a linear dependence between the prediction of
the leakage model and the real behavior of the circuit, the
linear correlation coefficient can be used to test the
hypothesis

gmu“*‘
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I Correlation Power Analysis (CPA)

pdf

Good key hypothesis = correlation # 0
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I Correlation Power Analysis (CPA)

pdf

Bad key hypothesis = correlation ~ 0
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I Template Attack [4]

Principle

® |f we dispose of a second circuit, which is identical to the
target circuit, and which we are able to control, we can
perform a template attack

B The idea is to learn (profile) how the circuit leaks before
using this knowledge on the target circuit for an attack with
few traces

® There is two phases

1. The profiling phase on the test circuit
2. The attack phase on the target circuit

FEIGT I




I Template Attack

Profiling

We assume that the circuit executes one out of of K operations:
O1, ..., Ok (example: manipulating a sensitive variable)

1. Collect multiple traces of the test circuit for each of the K
operations Oy, ..., Ok
2. Compute the mean traces: Wy, ..., Wg

3. Optional: Compute the differences between mean traces in
order to identify points of interest Py, ..., Py

e ’




I Template Attack

Profiling

4. For each operation O;:

4.1 For each trace W of this operation O;, the noise vector for
W is given as

(W) = (W[P] = Wi[P],..., W[PN] — W,[PN])

4.2 Compute the noise covariance matrix: for any pair P, and
P, of points of interest

%ilu, v] = cov(INI[P.]. INE,[P.])

4.3 The template for operation O; is (W, ¥;)

FEIGT I




I Template Attack

Attack phase
Given an observation S of the target circuit

1. For each possible operation O;:
1.1 Compute the observed noise vector

n =[NJ,(S) = (SIPi] - Wi[Pi]...., SIPx] — Wi[Px])

1.2 Compute the probability to observe n (multivariate normal
distribution)

1 1 Ts—1
i(N) = ——— ——n'Y'n),
pm) = — el T )

where |¥;| is the determinant of ¥;

2. The most probable operation is the one for which the
probability of observing the noise n is maximal

FEIGT I




I Template Attack

Improvements

B A Principal Component Analysis (PCA) can be used to
reduce the size of the templates

B Template attacks are very powerful and can often recover
the entire secret using a single or few traces
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I Timing Attacks

B Attacks based on power consumption or EM radiation
require physical access to the target device

B |n contrast, timing attacks can be performed remotely,
including over a network
B Examples:
e Remote key recovery over the network [3]
e Key recovery from another virtual machine running on the
same host [6]
B Possible sources of timing variations:
e Algorithmic
e Hardware optimizations of the host processor: cache,
pipeline, ...

wgim
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I Timing Attacks

Example: Attacking RSA over the network [3]

® RSA in OpenSSL (version 0.9.7)

B Due to some optimizations (Chinese remainder theorem,
Montgomery reduction, sliding window expoentiation,
Karatsuba multiplication) the execution time slightly
depends on the secret key

B The attack has been demonstrated locally and remotely
over a network

B Taking the mean of many tries, the latency and jitter
introduced by the network are not sufficient to mask the
small timing variations

B More attacks in the p-architecture chapter

e ’
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I Conclusion

B Physical implementations leak information on various
side-channels

e Power
e EM radiation
e Timing
e ...
B |f the leakage depends on sensitive data (such as a
cryptographic key), it can be exploited by a side-channel
attack

B These attack mostly require physical access to the target
system

m Statistical side-channel attacks can be very effective

e ’
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