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Digital Design for Reliability

How to design reliable processors on unreliable devices?

Defect tolerance

Fault tolerance

Prevention

Masking

Detection

Correction

5 /62
Lirida Alves de Barros-Naviner
Master Program



Defect tolerance

Based on hardening the devices

More strict design rules at mask-level

More expensive manufacturing (area)

Based on programmability

Defectuous parts of the circuit are isolated

Defect-free parts are used to implement the target function

Based on coding

Very popular for memories

Information redundancy
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Teramac Design Hierarchy

Defect-tolerance based on wires, switches, memory

a.

b.

c.

d.

LC1 LC7LC0

RC0 RC1 RC11

MultiChip Module (MCM)

MCM0 MCM1 MCM3

Printed Circuit Board (PCB)
Logic Chip (LC)

HXT0 HXT1 HXT15

Hextant (HXT)

LUT0 LUT1 LUT15

PCB4 PCB5 PCB6 PCB7

PCB0 PCB1 PCB2 PCB3

TERAMAC

Crossbar 0 Crossbar 3 Crossbar 0 Crossbar 27

Crossbar

e.

Heath et al. (1998)

864 FPGAs (647 with kind of defect), 3% of defective resources
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Nanofabric Organization

Dense regular structures with reconfigurable capabilities

Goldstein and Budiu (2001)
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Hierarchic Nanofabric

Reconfiguration at a coarser grain

• PEs can perform 8-bit arithmetic and logic operations
• Tries to minimize time-consuming task of testing an

mapping all of the nanofabric resources

RR

R R

R R

RR

Component

SEPE

SEPESEPE

SEPE

PESE

SE PE

PE SE PE SE

Region

Region Region

RegionRegion

Mapping unit

b.a.

Function flow

Chen et al. (2005)

SE= switch element, PE=processing element
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SRAM based FPGA

Defect tolerance with additional connections and redundant basic blocks
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ANR RobustFPGA Project (2014)
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SRAM based FPGA (cont.)

Test strategy: BIST, ANR RobustFPGA Project (2014)

Defaults Cartography
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Coarse & Fine Grain Redundancy

c1 c2 c3 c4

c′1 c′2 c′3 c′4

c1 c2 c3 c4

c′1 c′2 c′3 c′4
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Coarse & Fine Grain Redundancy (cont.)

c1

c2

c3

c′1

c′2

c′3

c1

c′1

c2
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c3

c3
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RobustFPGA Approach

Redundant basic blocks
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Multiple-valued Logic Approach

Use of bit stream operators

a. b.

blocks
logic

Identical

Weighted
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Schmid and Leblebici (2004)
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Modular Redundancy

M1

M2

Mn

v

..
.

..
.
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Triple Modular Redundancy

M1

M2

M3

v
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Triple Modular Redundancy (cont.)

M1

M2

M3

v1

v2

v3
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Triple Modular Redundancy (cont.)

21 /62
Lirida Alves de Barros-Naviner
Master Program



Duplication With Comparison

M1

M2 C
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Concurrent Error Detection

PxX

Z Pz
a.

Function f
Predictor

Checker

Characteristic
Output 

Input

ErrorOutput

b.

Module 1 Module 2

Comparator

Output Error

Input
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Error

Input

Outputc.
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Standby Redundancy

M1

FD1

M2

FD2

Mn

FDn

sw
ti
ch

n
→

1

..
.

Only one block is
active at a time.

The FD blocks
implement fault
detection (often code
based).

Pair and Spare: similar to standby redundancy, but with
two active modules
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NMR with Spare

n blocks are active
at a time.

The block C detects
faulty blocks. It
controls the action
of the n-out-n+ k
selector

A faulty block is
replaced by a spare
one.
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NMR with Purging

All blocks are active
in the beginning.

The voter considers
weighted inputs.

S blocks use voter’s
output to change
modules weights
(w = 0 for a faulty
block).
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Time Redundancy & Recomputing
Transient faults: Duplication

Fault detection
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Transient faults: Triplication

Fault masking
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Recomputing: Alternating Logic
Useful for permanent faults

Permanent fault detection
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Recomputing: Operands Shifting
Useful for permanent faults

- xn−1 · · · xi+1 xi · · · x1 x0

- yn−1 · · · yi+1 yi · · · y1 y0

- zn−1 · · · zi+1 zi · · · z1 z0

time = k

xn−1 xn−2 · · · xi xi−1 · · · x0 -

yn−1 yn−2 · · · yi yi−1 · · · y0 -

zn−1 zn−2 · · · zi zi−1 · · · z0 -

time = k + 1

cn−1 cn−2 · · · ci ci−1 · · · c0 -

check result

31 /62
Lirida Alves de Barros-Naviner
Master Program



Recomputing: Duplication & Comparison

Split the inputs into two parts:
A = AH‖AL and B = BH‖BL
Time t1:
f(AL, BL), with AL = AL‖AL and BL = BL‖BL
Time t2:
f(AH , BH), with AH = AH‖AH and BH = BH‖BH
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Recomputing: Swapped Operands

Split the inputs into two parts:
A = AH‖AL and B = BH‖BL
Time t1:
f(A,B)

Time t2:
f(As, Bs), with As = AL‖AH and Bs = BL‖BH
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Time Redundancy
Sigma Delta Modulation Approach

Use of bit stream operators
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Schuller et al (2005)

34 /62
Lirida Alves de Barros-Naviner
Master Program



Outline

Introduction

Manufacturing Defect Tolerance

Fault Tolerance
Hardware redundancy
Time redundancy
Information redundancy

Conclusion

35 /62
Lirida Alves de Barros-Naviner
Master Program



Information Redundancy

Add redundant bits to the information representation

Mainly used for memories (data storage)

• Error correcting coding (ECC)

Hardware/time redundancy can be viewed as information
redundancy
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Information Coding

A code is a form of information representation satisfying
some rules.

• A binary code with length n is a set of binary n-tuples
respecting the code rules.

• The set {0, 1}n of all 2n n-tuples is named codespace
• A n-tuple of the codespace that respects the code rules is

named codeword

Encoding is the process of changing a binary data k-tuple
into a codeword

• A n− k is the number of check bits
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Minimal Hamming Distance dmin

Hamming distance between two codewords

d(~x, ~y) = | {i |0 ≤ i ≤ n− 1, xi 6= yi}|

where ~x, ~y are codewords

Minimal Hamming distance is related to number of
detectable/correctable errors

n, k and dmin parameters define a (n, k, dmin) code.
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Parity Coding

We consider a n−bits code

• k = n− 1 bits of information

• 1 check bit

Example:

• Even parity: ~x = 1010⇒ ~c = 10100

• Odd parity: ~x = 1010⇒ ~c = 10101
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Parity Coding (cont.)

x2 x1 x0 c3 c2 c1 c0

0 0 0 0 0 0 0
0 0 1 0 0 1 1
0 1 0 0 1 0 1
0 1 1 0 1 1 0
1 0 0 1 0 0 1
1 0 1 1 0 1 0
1 1 0 1 1 0 0
1 1 1 1 1 1 1

Even parity coding
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Berger Codes

Check bits represent the number w of 1′s in the data word

Code length is n = k +m, where m = blog2(k + 1)c
Check bits are given by the complement of w’s binary
representation

~x = 0010⇒ ~c = 0010110
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Berger Codes (cont.)

x2 x1 x0 c4 c3 c2 c1 c0

0 0 0 0 0 0 1 1
0 0 1 0 0 1 1 0
0 1 0 0 1 0 1 0
0 1 1 0 1 1 0 1
1 0 0 1 0 0 1 0
1 0 1 1 0 1 0 1
1 1 0 1 1 0 0 1
1 1 1 1 1 1 0 0
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(n, k) Linear Code

Defined over the finite field Fq
• F2 is the set {0, 1} with ⊕ and · operations

k-dimensional subspace Ck of a vector space Vn
• Vn is a subset of Fn

q with with addition and multiplication
by scalar operations
Fn
2 is the set of all n-uples containing elements of F2.

Ck subspace is based on k linearly independent vectors.

• Any codeword of a (n, k) linear code can be written as a
linear combination of the k basis vectors {~v0, ~v1..., ~vk−1} of
subspace Ck

~c =

k−1∑

j=0

~xi~vi
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Matrix Representation

~c = ~x ·G

~c is the codeword

~x is the information word

G generator matrix

• The rows of G are k vectors which are a basis of C.

• G has n columns.
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Example

Code (5,3) over F2

Generator matrix

G =




1 0 0 1 0
0 1 0 0 1
0 0 1 1 1




(
x2 x1 x0

)
·G =

(
c4 c3 c2 c1 c0

)

(
c4 c3 c2 c1 c0

)
=
(
x2 x1 x0 x2 ⊕ x0 x1 ⊕ x0

)
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Example (cont.)

x2 x1 x0 c4 c3 c2 c1 c0

0 0 0 0 0 0 0 0
0 0 1 0 0 1 1 1
0 1 0 0 1 0 0 1
0 1 1 0 1 1 1 0
1 0 0 1 0 0 1 0
1 0 1 1 0 1 0 1
1 1 0 1 1 0 1 1
1 1 1 1 1 1 0 0

(5, 3) linear code
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Parity Check Matrix H

H is a (n− k)× k matrix used to detect errors

H.GT = 0

The product of H by a vector produces a syndrome vector

H.~rT = ~s where ~s = ~0 if ~c is a codeword

If G = [IkA], then H =
[
AT In−k

]

dC ≥ d⇔ all subsets of d− 1 columns of H are linearly
independent

• Singleton bound: n ≥ dC + k − 1
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Hamming Code

~c = ~xG = (1010)




1 1 0 1 0 0 0
1 0 1 0 1 0 0
0 1 1 0 0 1 0
1 1 1 0 0 0 1


 = (1011010)

Code (7,4):
generation matrix G,
syndrome matrix H

No error ⇒ ~s = ~cHT = ~0

~s = ~cHT = (1011010)




1 0 0
0 1 0
0 0 1

1 1 0
1 0 1
0 1 1
1 1 1




= (000)

H is in a lexicographic form

Error Vector Syndrome s = cHT

1000000 100
0100000 010
0010000 001
0001000 110
0000100 101
0000010 011
0000001 111
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Hamming Code

~c = ~xG = (1010)




1 1 0 1 0 0 0
1 0 1 0 1 0 0
0 1 1 0 0 1 0
1 1 1 0 0 0 1


 = (1011010)

Code (7,4):
generation matrix G,
syndrome matrix H

No error ⇒ ~s = ~cHT = ~0

~s = ~cHT = (1011110)




1 0 0
0 1 0
0 0 1

1 1 0
1 0 1
0 1 1
1 1 1




= (101)

H is in a lexicographic form

Error Vector Syndrome s = cHT

1000000 100
0100000 010
0010000 001
0001000 110
0000100 101
0000010 011
0000001 111
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NanoBox Approach

Dense regular structures with reconfigurable capabilities

a.

LUT

detection
Error

correction
Error

Check bits

Output

Error

NanoBox

Inputs

Inputs

Designed function
b.

Gate level

System level

Module level

Outputs

NanoBox NanoBox NanoBox NanoBox

NanoBox NanoBox NanoBox

NanoBoxNanoBoxNanoBoxNanoBox

NanoBox

Kleinosowski et al (2004)
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Concurrent Error Detection & Coding

PxX

Z Pz
a.

Function f
Predictor

Checker

Characteristic
Output 

Input

ErrorOutput

b.

Module 1 Module 2

Comparator

Output Error

Input

Error Error

Parity check

Error
Parity check

Function f Parity predictor

Error

Input

Outputc.
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TMR & Repetition Coding
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Repetition Coding

Original circuit

Circuit replica
Two−rail checker

Input Output

Error Indication

Self-dual functions: f(x0, x1, · · · , xn) = f(x0, xn, · · · , xn)
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Ripple Carry Adder

FA FA FA
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Duplicated RC Adder

FA FA FA

a b00

ci 0cicici

a ba b
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Triple Modular Redundancy (TMR)
Ripple Carry (RC) Adder

a. b.

add_rc
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TMR RC – Redundant Voters
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Conclusions

This lesson dealt with different methods for reliability
improvement

• Detection and correction of errors

• Solutions for transient and permanent errors

• Strategies based on passive and active redundancy

Reliability improvement leads to area and/or time penalties

Next time, we will explore techniques for reliability
assessment
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