
ELECINF102
Processeurs et Architectures Numériques

Contrôle de connaissances

14 juin 2018 à 08h30

Document autorisé : une feuille recto-verso

Durée : 1h30

Ce contrôle comporte 3 parties indépendantes pouvant donc être traitées dans n’importe quel ordre...
1. Réalisation d’un digicode.
2. Analyse et mise au goût du jour d’un vieux schéma.
3. Détection des touches du clavier d’un digicode.

Consignes importantes : Si des schémas sont réalisés, ils doivent être impérativement clairs et sans
ambiguïté. Les dimensions des bus doivent être indiquées. Si nécessaire le sens des signaux doit être précisé.
Pour la logique synchrone, les signaux d’horloge et d’initialisation asynchrone (reset) ne seront pas repré-
sentés dans ces schémas, mais l’état des bascules D à l’initialisation sera indiqué.

Si des codes SystemVerilog sont écrits, tous les signaux utilisés doivent être correctement déclarés, leur
taille (nombre de bit) doit être définie. Les processus synchrones, ou combinatoires doivent être clairement
distingués.

N’oubliez pas d’inscrire nom, prénom, et numéro de casier sur votre copie.

Bon courage !

1



Télécom ParisTech, ELECINF102, 2017–2018

1 Réalisation d’un Digicode
On désire réaliser un digicode. L’objectif de l’exercice est de concevoir un système permettant de détecter
l’entrée du bon code (246A) sur un clavier et qui, dans ce cas, passse une sortie S à 1 pendant un cycle
d’horloge permettant ainsi d’ouvrir la serrure.

Le système dispose d’une horloge clk à 10MHz et d’un signal d’initialisation reset_n, actif à l’état bas.
Ces deux signaux seront implicites sur les schémas, donc non représentés. On se contentera d’indiquer la
valeur d’initialisation des éventuelles bascules D. Enfin l’appui d’une touche est sensée durer plusieur cycles
d’horloge.

Vous disposez d’un clavier tel que décrit en figure 1. Ce clavier dispose en sortie d’un bus synchrone sur 4
bits, C[3:0], indiquant la touche appuyée :

• Si on appuie sur touche, C prend comme valeur le numéro de la touche : 0 pour la touche 0, 1 pour
la touche 1, . . . , 9 pour la touche 9, 10 (0xA) pour la touche A, 11 (0xB) pour la touche B.

• Si on n’appuie sur aucune touche, ou si on appuie sur deux touches en même temps, C prend comme
valeur 15 (0xF en hexadécimal).

Figure 1 – Digicode

Question 1 Détection de l’appui sur une touche
Faites le schéma d’un dispositif qui produit un signal enable passant à 1 pendant un seul cycle d’horloge

lorsqu’une touche est pressée, quelle que soit la durée de l’appui sur la touche.

Question 2 Détection du code
Faites le schéma d’un dispositif qui produit un signal OK qui passe à 1 uniquement lorsque l’utilisateur a

entré le bon code (246A). Ce signal peut rester à 1 aussi longtemps qu’on le souhaite. Si l’utilisateur a entré
une séquence de touches ne correspondant pas au bon code, ce signal doit passer à 0.

Question 3 Ouverture de la porte
Faites le schéma d’un dispositif prenant en entrée le signal OK produit à la question 2 et produisant,

lorsque cette entrée passe à 1, un signal de sortie S qui ne vaudra 1 que pendant un seul cycle d’horloge.

2



Télécom ParisTech, ELECINF102, 2017–2018

2 Analyse et mise au goût du jour d’un vieux vieux schéma
Votre chef a retrouvé un vieux schéma montré en figure 2. Il désire en réaliser une nouvelle version. Pour

cela vous devez utiliser le langage SystemVerilog. Les bascules du schéma sont supposées être mises à 0 au
moment de la réinitialisation.

D

D Q

Q

A1 A0

F1 C1 OK

rst_n

clk

F0 C0

rst_n

clk

Figure 2 – Vieux schéma

Question 1 : Ecrivez (sans astuces...) le code SystemVerilog correspondant au schéma. Le code doit être
complet de l’entête de module, à la fin de module.

Question 2 : Montrez que le couple de signaux C1C0 ne peut jamais atteindre la valeur 11.

Vous montrez votre code à votre chef, il n’est pas content, il n’y comprend rien. Il vous propose alors la
méthode suivante :

• Considérer les entrées A1 et A0 comme le codage binaire sur 2 bits d’un nombre nommé A
• Considérer que les signaux C1 et C0 comme le codage binaire d’un état C dont les valeurs symboliques
seront nommées S0 pour le code 00, S1 pour 01, S2 pour 10.

Question 3 : Quand C est dans l’état S0, pour quelle(s) valeur(s) de A peut on changer d’état, et pour
aller vers quel(s) état(s) futur(s) ?

Question 4 : Quand C est dans l’état S1, pour quelle(s) valeur(s) de A peut on changer d’état, et pour
aller vers quel(s) état(s) futur(s) ?

Question 5 : Quand C est dans l’état S2, pour quelles(s) valeur(s) de A peut on changer d’état, et pour
aller vers quel(s) état(s) futur(s) ?

Question 6 : En déduire un graphe d’états correspondant au circuit (sans oublier d’indiquer la valeur du
signal OK dans chacun des états).

Question 7 : En déduire un code SystemVerilog équivalent au schéma, plus "compréhensible" pour un être
humain et ne faisant pas usage d’équations booléennes.

3



Télécom ParisTech, ELECINF102, 2017–2018

3 Détection des touches d’un digicode
L’objectif de l’exercice est de concevoir un système permettant de détecter quelle touche du clavier d’un
digicode est appuyée.

Le système dispose d’une horloge clk à 10MHz et d’un signal d’initialisation reset_n, actif à l’état bas.

Vous disposez d’un clavier, dit “à balayage” comme décrit en figure 3. Le clavier dispose de deux sorties,
data et scanning chacune sur un bit. Le clavier balaye en permanence les lignes et colonnes du clavier
suivant la séquence suivante :

• Il balaye les 3 colonnes une par une, de la gauche vers la droite, et passe data à 1 quand il détecte
une touche appuyée sur la colonne courante.

• Puis balaye les 4 lignes une par une en commençant par le haut, et passe data à 1 quand il détecte
une touche appuyée sur la ligne courante.

• Le signal scanning passe à 1 pendant toute la durée du balayage.
• Entre deux balayages, scanning repasse à 0 pendant exactement un cycle d’horloge.

Figure 3 – Digicode

Les figures suivantes montrent quelques cas de figure d’utilisation du clavier. Dans ces chronogrammes, la
ligne “Étape” indique ce que le clavier est en train de balayer.

• Si on n’appuie sur aucune touche, on obtiendra le chronogramme de la figure 4.
• Si on appuie sur la touche 2 (colonne 1, ligne 0), on obtiendra le chronogramme de la figure 5.
• Si on appuie sur la touche B (colonne 2, ligne 3), on obtiendra le chronogramme de la figure 6.

Question 1 Interprétation des chronogrammes
Examinez le chronogramme de la figure 7. Qu’a fait l’utilisateur du clavier ?

4



Télécom ParisTech, ELECINF102, 2017–2018

Figure 4 – Aucune touche

Figure 5 – Touche 2

Figure 6 – Touche B

Figure 7 – Que fait l’utilisateur ?

5



Télécom ParisTech, ELECINF102, 2017–2018

L’objectif de la suite est d’écrire le code SystemVerilog d’un système faisant en sorte que ce clavier ait le
comportement suivant :

• Quand une touche est pressée, on sort son numéro sur le signal key.
• Quand aucun touche n’est pressée, ou quand plusieurs touches sont pressées à la fois, on sort 0xF.

Dans la suite vous allez construire le code bloc par bloc. Chaque bloc est simple, sans piège, et
fait moins de 8 lignes.
On partira du squelette de module suivant :

module keyboard_decoder(input logic clk,

input logic reset_n,

input logic scanning,

input logic data,

output logic[3:0] key

);

// Votre code ici !

endmodule

Question 2 Génération des étapes
On veut un “compteur d’étape” cpt qui vaut 0 par défaut, est incrémenté à la fin de chaque cycle où
scanning vaut 1, et remis à zéro à la fin d’un cycle où scanning vaut 0.

• Jusqu’à combien doit pouvoir compter ce compteur ?
• Écrivez le code SystemVerilog d’un bloc séquentiel qui génère cpt.

Question 3 Stockage de la colonne
On veut stocker dans un signal col le numéro de la colonne de la touche pressée. Si aucune touche n’est
appuyée, ou si plusieurs touches sont appuyées, on y stockera n’importe quoi.

• Sur combien de bits doit être codé col ?
• En remarquant que pour générer col il suffit de regarder data pendant que cpt est compris entre 0
et 2, donnez le code SystemVerilog d’un bloc séquentiel qui génère col.

Question 4 Stockage de la ligne
On veut stocker dans un signal line le numéro de la ligne touche pressée. Si aucune touche n’est appuyée,
ou si plusieurs touches sont appuyées, on y stockera n’importe quoi.

• Sur combien de bits doit être codé line ?
• En remarquant que pour générer line il suffit de regarder data pendant que cpt est compris entre 3
et 6, donnez le code SystemVerilog d’un bloc séquentiel qui génère line.

6



Télécom ParisTech, ELECINF102, 2017–2018

Question 5 Détection d’un appui valide
Pendant que scanning est haut, combien de fois data est il a 1 pendant le balayage si :
• l’utilisateur n’appuie sur aucune touche,
• l’utilisateur appuie sur une seule touche,
• l’utilisateur appuie sur plusieurs touches ?

Donnez le code SystemVerilog d’un bloc séquentiel qui génère un n_data indiquant le nombre de fois où
data est passé à 1 pendant que scanning était haut.

Question 6 Génération de la sortie key
À partir des signaux générés prédécemment, on propose le code suivant pour générer la sortie key.

// Lorsque qu’on a finit le scan, on sort le numéro de la touche appuyée.

// Pour cela, il faut que n_data ==... Sinon, ça veut dire qu’on n’a

// appuyé sur aucune touche ou qu’on a commencé à appuyer pendant que

// clavier scannait ou qu’on a appuyé sur deux touches en même temps.

always @(posedge clk or negedge reset_n)

if(!reset_n)

// Au reset, on sort le code "aucune touche" : 0xF.

key <= 0xF;

// Lorsque le compteur indique qu’on a finit le scan,

else if (cpt==8)

// si on a bien eu l’appui d’une seule touche, on génère son code sur key.

if (n_data == ...)

// Pour les touches de 1 à A compris, c’est simple.

key <= col + (3*line);

// Pour 0 et B, c’est un cas particulier.

if ((line == 3) & (col == 1))

key <= 0;

if ((line == 3) & (col == 2))

key <= 0xB;

else

// sinon (n_data est invalide), on sort le code 0xF.

key <= 4’hF;

Corrigez ce code.

7


	Réalisation d'un Digicode
	Analyse et mise au goût du jour d'un vieux vieux schéma
	Détection des touches d'un digicode

