TELECOM
ParisTech

m &

INSTITUT

Mines-Télécom SystemVerilog

B rian

La logique combinatoire
Exemples

TELECOM

ParisTech

N Logique combinatoire

Rappel

B La sortie d’'un bloc combinatoire ne dépend que de la
valeur de ses entrées.

Dit autrement, pour les mémes valeurs des entrées on doit
toujours avoir les mémes valeurs de sortie.

TELECOM

ParisTech

N always_comb

En SystemVerilog on peut utiliser always_comb .

N

® Equivalent & “always @(*) ”.

B | e designer précise qu’il veut décrire de la logique
combinatoire et les outils le vérifient.

TELECOM

ParisTech

B rian

La logique combinatoire
Exemples

La généricité

Logique séquentielle synchrone

Machines a états finis

Modélisation des mémoires

TELECOM

ParisTech

Processus always pour
décrire la logique combinatoire

Exemple: Un multiplexeur 2 — 1

module mux21(s, a, b, o);

input s;
input a, b ;
output reg o ;

always @(a or b or s)
if (s) o = a;
else o0 =b;

/* Pourrait étre

0 =b;
if (s) o = a;
* ou

o=s?a:b;

*/
endmodule

TELECOM

ParisTech
6/69 SE204 Tarik Graba P1-2016/2017 =F
K i T

Processus always pour
décrire la logique combinatoire

Exemple: Un multiplexeur 2 — 1

module mux21(s, a, b, o);

input s;
input a, b ;
output reg o ;

always @(*)
if (s) o
else o

a
b

/* Pourrait étre

0 =b;

if (s) o = a;
* ou

o=s?a:b;
*/
endmodule

TELECOM

ParisTech
6/69 SE204 Tarik Graba P1-2016/2017 =F
K i T

Processus always pour
décrire la logique combinatoire

Exemple: Un multiplexeur 2 — 1

module mux21(s, a, b, o);

input s;
input a, b ;
output logic o ;

always_comb
if (s) o
else o

a
b

/* Pourrait étre

0 =b;

if (s) o = a;
* ou

o=s?a:b;
*/
endmodule

TELECOM

ParisTech
6/69 SE204 Tarik Graba P1-2016/2017 =F
K i T

I Un mux 41

a[0]
a[1]
a[2]
a[3]

module mux41(s, a, 0);

input [1:0] s
input [3:0] a

output reg o ;

always @(*)
case(s)

endcase

alo];
al1];
al2];
al[3];

/% Pourrait étre

o = a[s];
* ou

if (a

else if (a

else if (a
else if (a
*/

endmodule

= 2'de)

2'd1)
2'd2)
2'd3)

afol;
al11;
al2];
al3];

017

TELECOM

ParisTech

=5 Fig |

B Un mux incomplet

8/69 SE204 Tarik Graba

module mux_il(s, a,

input [1:0] s;
input [3:0] a;
output reg o ;

always @(*)

case(s)
2'b00: o = al0l;
2'b01: o = a[1];
2'b10: o = a[2];

endcase

endmodule

0);

P1-2016/2017

TELECOM

ParisTech

=5 Fig |

B Un mux incomplet

Que se passe-t-il sis = 3?

8/69 SE204 Tarik Graba

module mux_il(s, a,

input [1:0] s;
input [3:0] a;
output reg o ;

always @(*)

case(s)
2'b00: o = al0l;
2'b01: o = a[1];
2'b10: o = a[2];

endcase

endmodule

0);

P1-2016/2017

TELECOM

ParisTech

=5 Fig |

B Un mux incomplet

On mémorise la valeur

précédente!!
2
S
a[1] en
a[2] D Q——o0

Erreur avec always_comb

8/69 SE204 Tarik Graba

module mux_il(

input [1:0] s;
input [3:0] a;
output reg o ;

always @(*)
case(s)
2'b00: o =
2'b01: o =
2'b10: o =
endcase

endmodule

s, a, 0);

alol;
al1];
al2];

P1-2016/2017

TELECOM
ParisTech

=5 Fig |

I Un muxincomplet

Valeurs des sorties toujours définies

2,
N
w N = O

9/69 SE204 Tarik Graba

module mux_i(s, a, 0);

input [1:0] s;
input [3:0] a;
output reg o ;

always @(x)
begin
// la valeur par défaut
o = a[2];

case(s)
2'beo: o = al[0];
2'bol: o =alll;
endcase
end
/% Pourrait étre
case(s)
2'b00: o = al[0l;
2'bo1: o = alll;
default: o = a[2]
endcase
*/
endmodule

Reégles pour décrire la logique
combinatoire

B | a liste de sensibilité doit contenir toutes les entrées.

B | es valeurs des sorties doivent étre définie pour toutes les
valeurs des entrées.

Recommandations

B Liste de sensibilité automatique.

B Donner systématiquement une valeur par défaut aux
sorties.

TELECOM

’arisTech

B Exercixce

® Ecrire le code -

SystemVerilog d’'un
décodeur 7 segments

® Ecrire le code
SystemVerilog d’un -
décodeur 7 segments qui
ne décode que les

nombres de 0 a 9 -

TELECOM

ParisTech

I un décodeur 7 segments

module dec7seg (I, 0);
input [3:0] I;
output [6:0] O;
logic [6:0] O;
always_comb
case(I)
4'ho: 0 = 7'b0111111 ;
4'h1: 0 = 7'b0000110 ;
4'h2: 0 = 7'bl011011 ;
4'h3: 0 = 7'b1001111 ;
. ; 4':4; 0= 7'g1100ﬂ@ H
4'h5: 0 = 7'b1101101 ;
I —%—> Dec 7 Seg m—ri—p 0 4'h6: 0 = 7'b1111101 ;
4'h7: 0 = 7'b0000111 ;
4'h8: 0 = 7'b1111111
4'h9: 0 = 7'b1100111 ;
4'ha: 0 = 7'b1110111 ;
4'hb: 0 = 7'b1111100 ;
4'hc: 0 = 7'b0111001 ;
4'hd: 0 = 7'b1011110 ;
4'he: 0 = 7'b1111001 ;
4'hf: 0 = 7'b1110001 ;
endcase
endmodule

I Un décodeur 7 segments

utilisation d’une table

module dec7segT (I, 0);
input [3:0] I;
output [6:0] 0;
logic [6:0] O;

logic [6:0] Tab [0:15] = '{
'b0111111

'b0000110

'b1o11011

'b1001111

'b1100110

'b1101101

I —<%—>» Dec 7 Seg =~ 0 b1111101
'be000o111
'b1111111
'b1100111
'b1110111
'b1111100
'b0111001
'b1011110 ,
'b1111001
'b1110001

LUT: LookUp Table

-

always_comb 0 = Tab[I];

endmodule

I un décodeur 7 segments incomplet

module dec7segI (I, 0);
input [3:0] I;
output [6:0] O;
logic [6:0] O;
always_comb
case(I)
4'he : 0=7'bo111111 ;
4'h1 : 0 = 7'booool110 ;
4'h2 : 0= 7'blo11011 ;
. ; 4':3 H 0:7'1;1001”1 H
4'h4 : 0 =7'bl100110 ;
I —<—p| Dec 7 Seg (——i—3 0 4'h5 : 0 = 7'bl101101 ;
4'hé : 0 =7'b1111101 ;
4'h7 : 0 = 7'b0000111 ;
4'h8 0 =7'b1111111
4'h9 : 0 =7'b1100111 ;
4'd10,4'd11,
4'd12,4'd13,
4'd14,4'd15
: 0 = 7'b0000000 ;
endcase
endmodule

I un décodeur 7 segments incomplet

module dec7segI (I, 0);
input [3:0] I;
output [6:0] O;
logic [6:0] O;
always_comb
case(I)
4'ho :0=7'b0111111 ;
4'h1 0 = 7'b0000110 ;
4 7 4'h2 0 = 7'b1011011 ;
I —4%—» Dec 7 Seg —~—» 0 4'h3 0 = 7'b1001111 ;
4'h4 : 0 =7'bl100110 ;
4'h5 : 0 = 7'bl101101 ;
4'h6 : 0 =7'b1111101 ;
4'h7 0 = 7'b0000111 ;
4'h8 0 = 7'b1111111
4'h9 : 0 =7'b1100111 ;
default: 0 = 7'b0000000 ;
endcase
endmodule

I un décodeur 7 segments incomplet

module dec7segI (I, 0);
input [3:0] I;
output [6:0] O;
logic [6:0] O;
always_comb
begin
0 = 7'b0000000 ; // valeur par défaut
case(I)
4'ho 0 =7'b0111111 ;
4 7 4'h : 0 = 7'b0000110 ;
I —<—» Dec 7 Seg |—~—> 0 4'h2 : 0= 7'bl011011 ;
4'h3 : 0 =7'b1001111 ;
4'h4 : 0 =7'b1100110 ;
4'h5 : 0 =7'bl101101 ;
4'h6 : 0 =7'b1111101 ;
4'h7 : 0 = 7'bo000111 ;
4'h8 : 0 =7'b1111111
4'h9 : 0 =7'b1100111 ;
endcase
begin
endmodule

Un décodeur 7 segments incomplet

Utilisation de casez

module dec7segI (I, 0);
input [3:0] I;
output [6:0] O;
logic [6:0] O;

always_comb

casez(I)
4'h0 ;0 = 7'b01T1111 ;
4'h1 ;0 = 7'b0000110 ;
. 5 4':2 : g:rEmHoH ;
4'h3 ;0 = 7'b1001111 ;
I ——> Dec 7 Seg =~ 0 4'h4 1 0= 7'b1100110 ;
4'h5 ;0 = 7'bl101101 ;
4'h6 1 0= 7'b1111101 ;
4'h7 1 0 = 7'b0000111 ;
4'h8 2 0= 7'b1T11111 ;
4'h9 1 0= 7'b1100111 ;
451017,
4'b1172: 0 = 7'b000000R ;
endcase

endmodule

I Utiliser des fonctions

Pour “mutualiser” du code on peut utiliser des modules.

8

11— Nb1

12— NbI1

TELECOM

ParisTech

I Utiliser des fonctions

Pour “mutualiser” du code on peut aussi utiliser des fonctions.

module foo(I1,I2, 0);
input [7:0] I1,I2;
output logic 0;

// Nombre de 1 dans un mot de 8bits
function [3:0] nbr1 (input [7:0] N);
int tmp;
begin
tmp = 0;
for (int i = 0; i<8; i++)
if (N[il) tmp++;
return tmp;
// On aurait pu écrire
// nbr1 = tmp ;
end
endfunction

always_comb
0 = nbr1(I1) > nbri1(I2);

endmodule

11—

Nb1

12—

Nb1

Tarik Gr.

N B Utiliser des fonctions

différence entre taches et fonctions

En SystemVerilog il y deux type de sous-programmes:
Les fonctions: Exécution en temps nul

m Affectation bloquantes
B Pas de synchronisation (#,@,...)

Les taches: Ne renvoient pas de valeurs
B Peuvent avoir des output

Plus d’informations et des exemples Section 13 de la norme.

TELECOM

ParisTech

B rian

La généricité

TELECOM

ParisTech

B raire un code paramétrable

Les modules peuvent étre paramétrables:

® Définir leur comportement/structure en fonction de certains
parametres

Le code peut ainsi étre réutilisé dans des conditions différentes.

TELECOM

ParisTech

I Faire un code paramétrable

parameter

A
S0
8
B
8
C
8 S1
D

TELECOM

ParisTech

I Faire un code paramétrable

parameter
8
A
module adder #(parameter WIDTH = 8) SQ
(input [WIDTH-1:0] A,B, 8
output [WIDTH :07 S); B 10
s S
assign S = A + B;
C
endmodule 8 S1
D

TELECOM
ParisTech

b i |

20/69 SE204 Tarik Graba P1-2016/2017

I Faire un code paramétrable

parameter

module truc (input
output

wire [8:0] S0,S1;

adder #(.WIDTH(8))
adder #(.WIDTH(8))

adder #(.WIDTH(9))

endmodule

[7:0] A,B,C,D,
[9:0] S);

add1 (.A(A),.B(B),.S(S0));
add2 (.A(C),.B(D),.S(S1));

add3 (.A(S0),.B(S1),.5(S));

20/69 SE204 Tarik Graba

8
A
S0
8
B 10
s S
C
8 S1
D
TELECOM
ParisTech

P1-2016/2017 ﬁﬁﬂfﬁl

I Faire un code paramétrable

localparam

Parfois on a besoin de paramétres non modifiables a

I'instanciation.

parameter SIZE
parameter WIDTH
localparam I_WIDTH

input

input [I_WIDTH-1:0]
input [WIDTH-1:0]
output [WIDTH-1:0]
logic [WIDTH-1:0]

begin

end

endmodule

module Table (clk, index, valeur_e, valeur_s);

256;
8;
$clog2(SIZE);

clk;
index;
valeur_e;
valeur_s;
valeur_s;

logic [WIDTH-1:0] Tab [0:SIZE-1];
always_ff @(posedge clk)

Tab[index] <= valeur_e;
valeur_s <= Tab[index];

Un parameétre local est:
B Une constante

m Calculé a partir d’autres
constantes

Il ne sont pas modifiables a
I'extérieur du module.

TELECOM

ParisTech

017 WP

B raire un code paramétrable

Comment changer le code en fonction de ces paramétres?

TELECOM

ParisTech

I Faire un code paramétrable

generate

De fagon conditionnelle:

module adder #(parameter generic = "YES")
(input [7:0] A,B,
output [7:0] S);
generate
if (generic == "YES")
begin
assign S = A + B
end
else
begin
optimised_adder o_adder (A,B,S);
end
endgenerate

endmodule

Remplace dans ce cas des directives de préprocesseur (*ifdef)

TELECOM

ParisTech

I Faire un code paramétrable

generate

En répétant le comportement

// Extrait de la norme section 27.4
module gray2bin #(parameter W = 8)
(input [W-1:0] G,
output [W-1:01 B
)i

genvar i;

generate
for (i=0; i<W; i++)
begin:position

// Le Xor des bit i a W-1
assign B[i] = "G[W-1:i];

end
endgenerate

endmodule

I Faire un code paramétrable

generate
En répétant la structure

module struct_adder #(parameter W = 8)
(input [W-1:0] A,B, input Ci
output [W-1:0] S, output Co,m);
wire [W:0] c;

assign c[0] = Ci;
assign Co = c[W];

genvar i;
generate
for (i=0; i<W; i++)
begin:position
// ces noeuds seront dupliqués
wire s, e0, el;

xor xor@ (s , A[il, B[il);
xor xorl (S[i]l , s , c[il);
and ando (e0 , A[il, B[il);
and and1 (el , s, clil);
or or@ (c[it1], e0 , el);
end
endgenerate

assign m = position[W/2].s;
endmodule

B rian

Logique séquentielle synchrone
Exemples

TELECOM

ParisTech

N B Processus always

pour de la logique séquentielle synchrone

La bascule D

module Dff (input clk,
input D ,
output reg Q);

always @(posedge clk)
Q <=D;

endmodule

D —

A\
ok —

B A chaque front montant (posedge) de I'horloge on
mémorise la valeur de 'entrée.

m Entre les fronts d’horloge la sortie conserve sa valeur.

26/69 SE204 Tarik Graba

P1-2016/2017

TELECOM

ParisTech

=5 Fig |

N always_ff

En SystemVerilog on peut utiliser always_ff .

N O«

® Equivalent &

B | e designer précise qu'il veut décrire de la logique
séquentielle et les outils le vérifient.

always ”.

TELECOM

ParisTech

I Avec remise a zéro synchrone:

always_ff @(posedge clk)
if (reset)
begin
// Remise & zéro synchrone des registres
end
else
begin
// Que se passe-t-il a chaque front de 1'horloge

end

Si reset vaut 1 au moment du front d’horloge!

TELECOM
ParisTech

b i |

28/69 SE204 Tarik Graba P1-2016/2017

I Avec remise a zéro asynchrone:

always_ff @(posedge clk or posedge reset)
if (reset)
begin
// Remise & zéro asynchrone des registres
end
else
begin
// Que se passe-t-il a chaque front de 1'horloge

end

Si reset vaut 1 (des qu'il passe a 1) indépendamment du front
d’horloge.

TELECOM

ParisTech

I Avec remise a zéro asynchrone:

always_ff @(posedge clk or negedge nreset)
if (!nreset)
begin
// Remise & zéro asynchrone des registres
end
else
begin
// Que se passe-t-il a chaque front de 1'horloge

end

Sinreset vaut o (des qu'il passe a 0) indépendamment du front
d’horloge.

TELECOM

ParisTech

B rian

La logique combinatoire

La généricité

Logique séquentielle synchrone
Exemples

Machines a états finis

Modélisation des mémoires

TELECOM

ParisTech

B Une bascule D avec reset synchrone:

module Dff (clk, reset, D, Q);

input clk, reset ;
input D ;
D output reg Q ;
chi Q always_ff @(posedge clk)

reset if (reset)
A Q <= 1'bo;
else

Q <= D;

endmodule

ParisTech
32/69 SE204 Tarik Graba P1-2016/2017 ﬁgml

I Un registre :

Avec reset synchrone et enable

module Reg(input clk, reset, en
input [7:0] D,
output logic [7:0] Q);

always_ff @(posedge clk)
if (reset)
Q <= 8'do
else
if (en) Q <= D;

endmodule

TELECOM

ParisTech

017 ESFTTRT

B un registre a décalage:

TELECOM
ParisTech

b i |

34/69 SE204 Tarik Graba P1-2016/2017

B un registre a décalage:

module SftReg # (parameter N = 8)

(input clk, en ,
input D ,
output Q);
D logic [N-1:0] R;
en assign Q = R[0];

always_ff @(posedge clk)
if (en) R <= { D, RIN-1:11 };

endmodule

TELECOM

ParisTech
34/69 SE204 Tarik Graba P1-2016/2017 =¥
G i EAE

| e
mettre la méme valeur a tous les bits d’un vecteur

Opérateur de duplication

reg [N-1:0] A,B,C;

initial
begin
A = {N{1'b1}}; // tous les bits a 1
B = {N{1'b0}}; // tous les bits a @
C = {N{1'bz}}; // tous les bits a z

TELECOM
ParisTech

BN Astuce

mettre la méme valeur a tous les bits d’un vecteur

iel
Opérateur de duplication SEE

logic [N-1:0] A,B,C,D;
reg [N-1:0] A,B,C;

initial
initial begin
begin A ="1; // tous les bits a 1
A = {N{1'b1}}; // tous les bits a 1 B = '0; // tous les bits a @
B = {N{1'b0}}; // tous les bits a @ C = '"z; // tous les bits a z

C = {N{1'bz}}; // tous les bits a z
D = 'dl // 1 en décimal adapté
// a la taille de D!

TELECOM

ParisTech

017 WP

B un compteur :

TELECOM
ParisTech

b i |

36/69 SE204 Tarik Graba P1-2016/2017

B un compteur :

module Cpt (clk, reset, en, Q);
parameter N = 8;

input clk, reset, en ;
output logic [N-1:0] Q ;

always_ff @(posedge clk)
if (reset)
Q<= "0;
else
if (en)
Q<=Q+1;

endmodule

I Affectations bloquantes/différées

Quelle est la différence entre ces deux codes:

logic a,b,r,q;

always_ff @(posedge clk)
begin

r =ag&hb;

q<=r;
end

logic a,b,r,q;

always_ff @(posedge clk)
begin

r<=ag&hb;

q<=r;
end

37/69 SE204 Tarik Graba

P1-2016/2017

TELECOM

ParisTech

=5 Fi |

I Affectations bloquantes/différées

Quelle est la différence entre ces deux codes:

logic a,b,r,q;

always_ff @(posedge clk)
begin

r =aé&hb;

q<=r;
end

logic a,b,r,q;

always_ff @(posedge clk)
begin

r<=aé&hb;

q<=r;
end

r
bl

37/69 SE204 Tarik Graba

P1-2016/2017

TELECOM

ParisTech

=5 Fig |

I Affectations bloquantes/différées

Etici ?

logic [N:0] R; logic [N:0] R;
always_ff @(posedge clk) always_ff @(posedge clk)
begin: loop begin: loop

int 1i; int i;

for (i=0; i<N; i++) for (i=0; i<N; i++)

RLi+1] = R[iD; RLi+1] <= R[il;

end end

TELECOM

ParisTech
38/69 SE204 Tarik Graba P1-2016/2017 =¥
IECHE i EAE

I Affectations bloquantes/différées

Etici ?

logic [N:0] R;

always_ff @(posedge clk)

begin: loop
int i;
for (i=0; i<N; i++)
R[i+1] = R[i];
end

logic [N:0] R;

always_ff @(posedge clk)
begin: loop
int i;
for (i=0; i<N; i++)
R[i+1] <= R[i];

Ro—|

38/69 SE204 Tarik Graba

end
Ry A LS L Ry
TELECOM
ParisTech
P1-2016/2017 =¥
=5 Fig |

I Affectations bloquantes/différées

Que fait ce code?

logic [N-1:0] R;
logic p;

always_ff @(posedge clk)
begin: loop

int i;

logic t;

t=0;

for (i=0; i<N; i++)

t =1t *R[i];

p <=1t

end

TELECOM
ParisTech

b i |

39/69 SE204 Tarik Graba P1-2016/2017

I Affectations bloquantes/différées

Que fait ce code?

logic [N-1:0] R;
logic p;

always_ff @(posedge clk)
begin: loop

int i;

logic t;

t = 0;

for (i=0; i<N; i++)

t =t *R[iI;

p <=t

end

An_2 Rn-1

A=

39/69 SE204 Tarik Graba

P1-2016/2017

TELECOM

ParisTech

=5 Fig |

B Chemin critique/Pipeline

always_ff @(posedge clk)
begin

RO <= A;

R1 = f(RO);

0 <= g(R1);

end

always_ff @(posedge clk)
begin

RO <= A;

R1 <= f(RO);

0 <= gRI);

end

40/69 SE204 Tarik Graba

P1-2016/2017

TELECOM

ParisTech

=5 Fig |

B rian

Machines a états finis
Machines de Moore
Machines de Mealy
Machines de Mealy resynchronisées

TELECOM

ParisTech

I Machines a états finis

® Méthode pour concevoir
des automates.

B A partir d'un graphe
d’états.
®m Systéme synchrone.

TELECOM

ParisTech

Déclaration du registre d’état
et des états

En Verilog 95

*define INIT 2'b00
‘define SO0 2'bo1
*define S1 2'b10

reg [1:0] state, n_state;
//...Le code

‘undef INIT
‘undef S0
‘undef S1

TELECOM

ParisTech

Déclaration du registre d’état
et des états

En Verilog 2001

localparam INIT = 2'b00;

localparam S@ = 2'b01;
localparam S1 = 2'b10;
reg [1:0] state, n_state;
//...Le code

TELECOM

ParisTech

Déclaration du registre d’état
et des états

En SystemVerilog

enum logic[1:0] { INIT, S@, S1 } state, n_state;
//...Le code

TELECOM

ParisTech

B Modification de I'état

Synchrone

always_ff @(posedge clk)
if (reset)

state <= INIT ;
else

state <= n_state ;

B [’état initial au reset doit étre explicite.

« SiI'état initial n’est pas connu le comportement n’est pas
déterministe.

B e changement d’état se fait de fagon synchrone.

TELECOM

ParisTech

B rian

La logique combinatoire

La généricité

Logique séquentielle synchrone

Machines a états finis
Machines de Moore

Modélisation des mémoires

TELECOM

ParisTech

I Machine de Moore

B || faut mémoriser I'état (registre).
B Le prochain état dépend de I'état actuel et des entrées.

B | es sorties dépendent combinatoirement de I'état courant.

‘e

outputs

inputs
n_state state

TELECOM

ParisTech

BN processus

B Un processus séquentiel pour sauvegarder I'état.

B Deux processus combinatoires:

« Calcul de I'état futur.
« Calcul des sorties.

B n_state doit étre un signal.

outputs
inputs
P n, state state

always_comb always_comb

TELECOM
ParisTech

b i |

47/69 SE204 Tarik Graba P1-2016/2017

BN processus

always_comb

begin
// par défaut on reste
// dans 1'état courant
n_state = state ;
case (state)
INIT: if (cond@)

n_state = SO;
Se : if (condl)
n_state = S1;
S1 . if (cond2)
n_state = INIT;
endcase
end

L ——
inputs

always_ff @(posedge clk)
if (reset)

state <= INIT ;
else

state <= n_state

always_comb

begin

if (state == INIT) begin
outputl = ...

end

else if (state == S@) begin
outputl = ...

end

else if (state == S@) begin
outputl = ...

end

else begin // Par défaut
outputl = ...

end

end

—

n_state state

outputs
——

always_comb

BN processus

B Un processus séquentiel pour modifier I'état.
B Un processus combinatoire pour le calcul des sorties en fonction de
I'état.

B n_state disparait.

outputs
I

inputs
n_state state

always_comb

TELECOM
ParisTech

b i |

49/69 SE204 Tarik Graba P1-2016/2017

BN processus

always_ff @(posedge clk) alwéys_comb
if (reset) b?gln .
state <= INIT ; if (state == INIT) begin
outputl = ...
else
case (state) end))
INIT: if (cond@) elszu;fui?tite == S0) begin
state <= SO; - p
se : if (cond1)7 Sl%e i (state — 50) besin
state <= S1; o
S1 @ if (cond2) ond p
state =N else begin // Par défaut
endcase e beEln
// Sinon on reste dans ond p
// 1'état courant o

outputs
i ——
inputs

n_state state

always_comb

I hconvénient

Un changement de sortie nécessite un changement d’état et
donc au moins un cycle de latence.

clk [1L 1T

state So XS
c /
o [

TELECOM

ParisTech

Tarik Graba P1-2016/2017 ﬁﬁgml

51/69 SE204

B rian

La logique combinatoire

La généricité

Logique séquentielle synchrone

Machines a états finis

Machines de Mealy
Modélisation des mémoires

TELECOM

ParisTech

I Machines de Mealy

| || faut mémoriser I'état (registre).
B | e prochain état dépend de I'état actuel et des entrées.

B |es sorties dépendent combinatoirement de I'état courant et des

entrées.
¢ .
inputs outputs
——| —e
n_state state
A

TELECOM

ParisTech

I hconvénient

Un changement d’entrée peut étre propagé immeédiatement sur
une sortie.

clk [1L 1T

state So X S
c /
0 [

TELECOM
ParisTech

Tarik Graba P1-2016/2017 ﬁﬁgml

54/69 SE204

BN processus

B Un processus séquentiel pour modifier I'état.

B Un processus combinatoire pour le calcul des sorties en fonction de

I'état et des entrées.

always_comb

inputs
——

n_state

state

NG

outputs
L

55/69 SE204 Tarik Graba

TELECOM
ParisTech

b i |

P1-2016/2017

BN processus

always_ff @(posedge clk)
if (reset)
state <= INIT ;
else
case (state)
INIT: if (cond@)
state <= S0@;
So : if (condl)
state <= S1;
S1 : if (cond2)
state <= INIT;
endcase
// Sinon on reste dans
// 1'état courant

inputs

n_state

always_comb

begin

if (state == INIT) begin
outputl = f1(inputs ...)

end

else if (state == S@) begin

outputl = f2(inputs ...)...

end

else if (state == S@) begin
outputl = f3(inputs ...)

end

else begin // Par défaut
outputl = f4(inputs ...)

end

end

state

outputs
-

L]

I hconvénient

On relie les entrées et les sorties par un chemin combinatoire:
B e chemin critique n’est pas maitrisé.

B | a modification de la MAE modifie les performances du
reste du circuit.

TELECOM

ParisTech

B rian

La logique combinatoire

La généricité

Logique séquentielle synchrone

Machines a états finis

Machines de Mealy resynchronisées

Modélisation des mémoires

TELECOM

ParisTech

I Machines de Mealy resynchronisées

m C’est une machine de Mealy pour la quelle les sorties sont
resynchronisées pour éviter les chemins combinatoires.

m || faut ajouter des registres sur les sorties
¢ O @)

inputs outputs
N ——
n_state state

f

TELECOM

ParisTech

BN processus

B Un processus séquentiel pour modifier I'état.

® Un processus combinatoire pour le calcul des sorties en fonction de

I'état et des entrées.

B Faire apparaitre un signal interne pour les sorties avant

resynchronisation.

® Un processus séquentiel pour resynchroniser les sorties.

inputs
e

always_comb

outputs_i

n_state

state

4$7

60/69 SE204 Tarik Graba

outputs
L

P1-2016/2017

TELECOM
ParisTech

b i |

BN processus

B Un processus séquentiel pour modifier I'état.
® Un séquentiel pour le calcul des sorties

inputs
e

n_state

state

outputs
.

61/69 SE204 Tarik Graba

P1-2016/2017

TELECOM
ParisTech

b i |

BN processus

always_ff @(posedge clk)
if (reset)
state <= INIT ;
else
case (state)
INIT: if (condo@)
state <= S0@;
S0 : if (condl)
state <= S1;
S1 : if (cond2)
state <= INIT;
endcase
// Sinon on reste dans
// 1'état courant

inputs

always_ff @(posedge clk)
if (reset)
begin
// initialiser les sorties
outputl <= ...
end
else
begin
if (state == INIT) begin
output1 <= f1(inputs ..
end
else if (state == S@) begin
outputl <= f2(inputs ..
end
else if (state == S@) begin
outputl <= f3(inputs ..
end
end

>

...

>

outputs

1 processus

® Un processus séquentiel pour modifier I'état et les sorties.

inputs
e

n_state

state

outputs
L

63/69 SE204 Tarik Graba

P1-2016/2017

TELECOM
ParisTech

b i |

1 processus

always_ff @(posedge clk)
if (reset)
begin
// Initialiser 1'état
state <= INIT ;
// Initialiser les sorties
outputl <= ...
end
else
begin
// Les transitions
case (state)
INIT: if (condo)
state <= SO;
So : if (condl)
state <= S1;

S1 : if (cond2)
state <= INIT;

endcase

// Les sorties

if (state == INIT) begin
outputl <= f1(inputs ..

end

else if (state == S@) begin
outputl <= f2(inputs ..

end

else if (state == S@) begin
outputl <= f3(inputs ..

end

end

D

D

>

inputs

outputs

B rian

Modélisation des mémoires

TELECOM

ParisTech

I Vémoire synchrone

mémoire simple port

B un bus d’adresse

B 2 bus pour les données:
z . 8
e @criture Addr A
* lecture . o sram
® des sighaux de contdle i ——>
® une horloge wr

> Do

® PAS DE RESET clk

B On ne peut accéder qu'a
un seul élément dans le
méme cycle!

66/69 SE204 Tarik Graba P1-2016/2017 =T
I i T

TELECOM

N B Mémoire synchrone

66/69 SE204 Tarik Graba

mémoire simple port

un bus d’adresse

2 bus pour les données:
* écriture
* lecture

des signaux de contble

une horloge

PAS DE RESET

On ne peut accéder qu’a

un seul élément dans le
méme cycle!

module sram(input clk, wr,
input [7:0] Addr,
input [7:0] Di,
output logic [7:0] Do);

logic[7:0] mem [0:255];

always_ff @(posedge clk)
begin
if (wr)
mem[Addr] <= Di;
Do <= mem[Addr];
end

endmodule

P1-2016/2017

TELECOM
ParisTech

=5 Fig |

N B Mémoire synchrone

66/69 SE204 Tarik Graba

mémoire simple port

un bus d’adresse

2 bus pour les données:
* écriture
* lecture

des signaux de contble

une horloge

PAS DE RESET

On ne peut accéder qu’a

un seul élément dans le
méme cycle!

module sram(input clk, wr,
input [7:0] Addr,
input [7:0] Di,
output [7:0] Do);

logic[7:0] mem [0:255];
logic[7:0] Addr_r;

always_ff @(posedge clk)
begin
if (wr)
mem[Addr] <= Di;
Addr_r <= Addr;
end

assign Do = mem[Addr_r];

endmodule

P1-2016/2017

TELECOM

ParisTech

=5 Fig |

N B Mémoire synchrone

mémoire double ports

B permet un accés double 8 8
= Pécrit t1a lect N Addr1 ———>| [€—~— Addr2
emlmee a lecture a Di1 8 9 bis
la méme adresse dans Do 7e |sram_dp E 7 502
A , o] ﬁ; ﬂ;} [e]
le méme cycle n’est pas
prédictible wrl —— w2
B pourrait avoir deux clk

horloges

TELECOM

67/69 SE204 Tarik Graba P1-2016/2017 =T
e | i T

I Vémoire synchrone

mémoire double ports

module sram_dp(input clk, wrl, wr2,
input [7:0] Addr1, Addr2,
input [7:0] Di1, Di2,
output logic [7:0] Dol, Do2);

B permet un accés double
logic[7:0] mem [0:255];

W |'écriture et la lecture a
always_ff @(posedge clk)

la méme adresse dans begin
A y if (wr1)
le méme cycle n'est pas Y pemAddri] <= Dil;
PRt . Dol <= [Addri1];
prédictible Wt
B pourrait avoir deux aleaya.ff Q(pasadge clio
horloges if (wr2) _
mem[Addr2] <= Di2;
Do2 <= mem[Addr2];
end
endmodule

TELECOM

ParisTech

N B Mémoire synchrone

Initialisation du contenu

module sram(input clk, wr,
input [7:0] Addr,

B Possible seulement pour input [7:6] D1,

|eS FPGA output logic [7:0] Do);
B initial est normalement logic[7:@] mem [0:2551;

exclusivement réserveé a la initial

. . $readmemh("init.txt", mem);
simulation
always_ff @(posedge clk)

B $readmemh (ou $readmemb) P

permet d’initialiser une o, TeNCAddr] <= D;

0 <= mem rl;
table a partir d’un fichier end

endmodule

TELECOM

ParisTech

Mémoire synchrone
ROM synchrone

module rom (input clk,
input [7:0] Addr,
output logic [7:0] Do);

B Possible seulement pour
|eS FPGA logic[7:0] mem [0:255];

initial
$readmemh("init.txt", mem);

| il suffit d’enlever la
possibilité d’écrire aluays £ @(posedge c1l0)
Do <= mem[Addr];

endmodule

TELECOM

ParisTech

	La logique combinatoire
	Exemples

	La généricité
	Logique séquentielle synchrone
	Exemples

	 Machines à états finis
	 Machines de Moore
	 Machines de Mealy
	 Machines de Mealy resynchronisées

	Modélisation des mémoires

