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N Logique combinatoire

Rappel

B La sortie d’'un bloc combinatoire ne dépend que de la
valeur de ses entrées.

Dit autrement, pour les mémes valeurs des entrées on doit
toujours avoir les mémes valeurs de sortie.
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N always_comb

En SystemVerilog on peut utiliser always_comb .

N

® Equivalent & “always @(*) ”.

B | e designer précise qu’il veut décrire de la logique
combinatoire et les outils le vérifient.
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Processus always pour
décrire la logique combinatoire

Exemple: Un multiplexeur 2 — 1

module mux21( s, a, b, o );

input s;
input a, b ;
output reg o ;

always @(a or b or s)
if (s) o = a;
else o0 =b;

/* Pourrait étre

0 =b;
if (s) o = a;
* ou

o=s?a:b;

*/
endmodule
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Processus always pour
décrire la logique combinatoire

Exemple: Un multiplexeur 2 — 1

module mux21( s, a, b, o );

input s;
input a, b ;
output reg o ;

always @(*)
if (s) o
else o

a
b

/* Pourrait étre

0 =b;

if (s) o = a;
* ou

o=s?a:b;
*/
endmodule
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Processus always pour
décrire la logique combinatoire

Exemple: Un multiplexeur 2 — 1

module mux21( s, a, b, o );

input s;
input a, b ;
output logic o ;

always_comb
if (s) o
else o

a
b

/* Pourrait étre

0 =b;

if (s) o = a;
* ou

o=s?a:b;
*/
endmodule
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I Un mux 41

a[0]
a[1]
a[2]
a[3]

module mux41( s, a, 0 );

input [1:0] s
input [3:0] a

output reg o ;

always @(*)
case(s)

endcase

alo];
al1];
al2];
al[3];

/% Pourrait étre

o = a[s];
* ou

if (a

else if (a

else if (a
else if (a
*/

endmodule

= 2'de)

2'd1)
2'd2)
2'd3)

afol;
al11;
al2];
al3];

017
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B Un mux incomplet

8/69 SE204 Tarik Graba

module mux_il( s, a,

input [1:0] s;
input [3:0] a;
output reg o ;

always @( * )

case(s)
2'b00: o = al0l;
2'b01: o = a[1];
2'b10: o = a[2];

endcase

endmodule

0);

P1-2016/2017
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B Un mux incomplet

Que se passe-t-il sis = 3?

8/69 SE204 Tarik Graba

module mux_il( s, a,

input [1:0] s;
input [3:0] a;
output reg o ;

always @( * )

case(s)
2'b00: o = al0l;
2'b01: o = a[1];
2'b10: o = a[2];

endcase

endmodule

0);

P1-2016/2017
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B Un mux incomplet

On mémorise la valeur

précédente!!
2
S
a[1] en
a[2] D Q——o0

Erreur avec always_comb

8/69 SE204 Tarik Graba

module mux_il(

input [1:0] s;
input [3:0] a;
output reg o ;

always @( * )
case(s)
2'b00: o =
2'b01: o =
2'b10: o =
endcase

endmodule

s, a, 0);

alol;
al1];
al2];

P1-2016/2017
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I Un muxincomplet

Valeurs des sorties toujours définies

2,
N
w N = O

9/69 SE204 Tarik Graba

module mux_i( s, a, 0 );

input [1:0] s;
input [3:0] a;
output reg o ;

always @(x)
begin
// la valeur par défaut
o = a[2];

case(s)
2'beo: o = al[0];
2'bol: o =alll;
endcase
end
/% Pourrait étre
case(s)
2'b00: o = al[0l;
2'bo1: o = alll;
default: o = a[2]
endcase
*/
endmodule




Reégles pour décrire la logique
combinatoire

B | a liste de sensibilité doit contenir toutes les entrées.

B | es valeurs des sorties doivent étre définie pour toutes les
valeurs des entrées.

Recommandations

B Liste de sensibilité automatique.

B Donner systématiquement une valeur par défaut aux
sorties.
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’arisTech



B Exercixce

® Ecrire le code -

SystemVerilog d’'un
décodeur 7 segments

® Ecrire le code
SystemVerilog d’un -
décodeur 7 segments qui
ne décode que les

nombres de 0 a 9 -
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I un décodeur 7 segments

module dec7seg ( I, 0 );
input [3:0] I;
output [6:0] O;
logic [6:0] O;
always_comb
case(I)
4'ho: 0 = 7'b0111111 ;
4'h1: 0 = 7'b0000110 ;
4'h2: 0 = 7'bl011011 ;
4'h3: 0 = 7'b1001111 ;
. ; 4':4; 0= 7'g1100ﬂ@ H
4'h5: 0 = 7'b1101101 ;
I —%—> Dec 7 Seg m—ri—p 0 4'h6: 0 = 7'b1111101 ;
4'h7: 0 = 7'b0000111 ;
4'h8: 0 = 7'b1111111
4'h9: 0 = 7'b1100111 ;
4'ha: 0 = 7'b1110111 ;
4'hb: 0 = 7'b1111100 ;
4'hc: 0 = 7'b0111001 ;
4'hd: 0 = 7'b1011110 ;
4'he: 0 = 7'b1111001 ;
4'hf: 0 = 7'b1110001 ;
endcase
endmodule




I Un décodeur 7 segments

utilisation d’une table

module dec7segT ( I, 0);
input [3:0] I;
output [6:0] 0;
logic [6:0] O;

logic [6:0] Tab [0:15] = '{
'b0111111

'b0000110

'b1o11011

'b1001111

'b1100110

'b1101101

I —<%—>» Dec 7 Seg =~ 0 b1111101
'be000o111
'b1111111
'b1100111
'b1110111
'b1111100
'b0111001
'b1011110 ,
'b1111001
'b1110001

LUT: LookUp Table

-

always_comb 0 = Tab[I];

endmodule




I un décodeur 7 segments incomplet

module dec7segI ( I, 0 );
input [3:0] I;
output [6:0] O;
logic [6:0] O;
always_comb
case(I)
4'he  : 0=7'bo111111 ;
4'h1 : 0 = 7'booool110 ;
4'h2  : 0= 7'blo11011 ;
. ; 4':3 H 0:7'1;1001”1 H
4'h4 : 0 =7'bl100110 ;
I —<—p| Dec 7 Seg (——i—3 0 4'h5  : 0 = 7'bl101101 ;
4'hé : 0 =7'b1111101 ;
4'h7 : 0 = 7'b0000111 ;
4'h8 0 =7'b1111111
4'h9 : 0 =7'b1100111 ;
4'd10,4'd11,
4'd12,4'd13,
4'd14,4'd15
: 0 = 7'b0000000 ;
endcase
endmodule




I un décodeur 7 segments incomplet

module dec7segI ( I, 0 );
input [3:0] I;
output [6:0] O;
logic [6:0] O;
always_comb
case(I)
4'ho :0=7'b0111111 ;
4'h1 0 = 7'b0000110 ;
4 7 4'h2 0 = 7'b1011011 ;
I —4%—» Dec 7 Seg —~—» 0 4'h3 0 = 7'b1001111 ;
4'h4 : 0 =7'bl100110 ;
4'h5 : 0 = 7'bl101101 ;
4'h6 : 0 =7'b1111101 ;
4'h7 0 = 7'b0000111 ;
4'h8 0 = 7'b1111111
4'h9 : 0 =7'b1100111 ;
default: 0 = 7'b0000000 ;
endcase
endmodule




I un décodeur 7 segments incomplet

module dec7segI ( I, 0 );
input [3:0] I;
output [6:0] O;
logic [6:0] O;
always_comb
begin
0 = 7'b0000000 ; // valeur par défaut
case(I)
4'ho 0 =7'b0111111 ;
4 7 4'h : 0 = 7'b0000110 ;
I —<—» Dec 7 Seg |—~—> 0 4'h2  : 0= 7'bl011011 ;
4'h3 : 0 =7'b1001111 ;
4'h4 : 0 =7'b1100110 ;
4'h5 : 0 =7'bl101101 ;
4'h6 : 0 =7'b1111101 ;
4'h7 : 0 = 7'bo000111 ;
4'h8 : 0 =7'b1111111
4'h9 : 0 =7'b1100111 ;
endcase
begin
endmodule




Un décodeur 7 segments incomplet

Utilisation de casez

module dec7segI ( I, 0 );
input [3:0] I;
output [6:0] O;
logic [6:0] O;

always_comb

casez(I)
4'h0 ;0 = 7'b01T1111 ;
4'h1 ;0 = 7'b0000110 ;
. 5 4':2 : g:rEmHoH ;
4'h3 ;0 = 7'b1001111 ;
I ——> Dec 7 Seg =~ 0 4'h4 1 0= 7'b1100110 ;
4'h5 ;0 = 7'bl101101 ;
4'h6 1 0= 7'b1111101 ;
4'h7 1 0 = 7'b0000111 ;
4'h8 2 0= 7'b1T11111 ;
4'h9 1 0= 7'b1100111 ;
451017,
4'b1172: 0 = 7'b000000R ;
endcase

endmodule




I Utiliser des fonctions

Pour “mutualiser” du code on peut utiliser des modules.

8

11— Nb1

12— NbI1
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I Utiliser des fonctions

Pour “mutualiser” du code on peut aussi utiliser des fonctions.

module foo( I1,I2, 0 );
input [7:0] I1,I2;
output logic 0;

// Nombre de 1 dans un mot de 8bits
function [3:0] nbr1 (input [7:0] N);
int tmp;
begin
tmp = 0;
for (int i = 0; i<8; i++)
if (N[il) tmp++;
return tmp;
// On aurait pu écrire
// nbr1 = tmp ;
end
endfunction

always_comb
0 = nbr1(I1) > nbri1(I2);

endmodule

11—

Nb1

12—

Nb1

Tarik Gr.




N B Utiliser des fonctions

différence entre taches et fonctions

En SystemVerilog il y deux type de sous-programmes:
Les fonctions: Exécution en temps nul

m Affectation bloquantes
B Pas de synchronisation (#,@,...)

Les taches: Ne renvoient pas de valeurs
B Peuvent avoir des output

Plus d’informations et des exemples Section 13 de la norme.

TELECOM
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B raire un code paramétrable

Les modules peuvent étre paramétrables:

® Définir leur comportement/structure en fonction de certains
parametres

Le code peut ainsi étre réutilisé dans des conditions différentes.

TELECOM

ParisTech



I Faire un code paramétrable

parameter

A
S0
8
B
8
C
8 S1
D

TELECOM
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I Faire un code paramétrable

parameter
8
A
module adder #(parameter WIDTH = 8) SQ
(input [WIDTH-1:0] A,B, 8
output [WIDTH :07 S ); B 10
s S
assign S = A + B;
C
endmodule 8 S1
D

TELECOM
ParisTech
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I Faire un code paramétrable

parameter

module truc ( input
output

wire [8:0] S0,S1;

adder #(.WIDTH(8))
adder #(.WIDTH(8))

adder #(.WIDTH(9))

endmodule

[7:0] A,B,C,D,
[9:0] S );

add1 (.A(A),.B(B),.S(S0));
add2 (.A(C),.B(D),.S(S1));

add3 (.A(S0),.B(S1),.5(S));

20/69 SE204 Tarik Graba

8
A
S0
8
B 10
s S
C
8 S1
D
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ParisTech
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I Faire un code paramétrable

localparam

Parfois on a besoin de paramétres non modifiables a

I'instanciation.

parameter SIZE
parameter WIDTH
localparam I_WIDTH

input

input [I_WIDTH-1:0]
input [WIDTH-1:0]
output [WIDTH-1:0]
logic [WIDTH-1:0]

begin

end

endmodule

module Table (clk, index, valeur_e, valeur_s);

256;
8;
$clog2(SIZE);

clk;
index;
valeur_e;
valeur_s;
valeur_s;

logic [WIDTH-1:0] Tab [0:SIZE-1];
always_ff @(posedge clk)

Tab[index] <= valeur_e;
valeur_s <= Tab[index];

Un parameétre local est:
B Une constante

m Calculé a partir d’autres
constantes

Il ne sont pas modifiables a
I'extérieur du module.

TELECOM

ParisTech
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B raire un code paramétrable

Comment changer le code en fonction de ces paramétres?

TELECOM
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I Faire un code paramétrable

generate

De fagon conditionnelle:

module adder #( parameter generic = "YES" )
( input [7:0] A,B,
output [7:0] S);
generate
if ( generic == "YES")
begin
assign S = A + B
end
else
begin
optimised_adder o_adder (A,B,S);
end
endgenerate

endmodule

Remplace dans ce cas des directives de préprocesseur (*ifdef )

TELECOM
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I Faire un code paramétrable

generate

En répétant le comportement

// Extrait de la norme section 27.4
module gray2bin #(parameter W = 8)
( input [W-1:0] G,
output [W-1:01 B
)i

genvar i;

generate
for ( i=0; i<W; i++ )
begin:position

// Le Xor des bit i a W-1
assign B[i] = "G[W-1:i];

end
endgenerate

endmodule




I Faire un code paramétrable

generate
En répétant la structure

module struct_adder #( parameter W = 8 )
( input [W-1:0] A,B, input Ci
output [W-1:0] S, output Co,m );
wire [W:0] c;

assign c[0] = Ci;
assign Co = c[W];

genvar i;
generate
for ( i=0; i<W; i++ )
begin:position
// ces noeuds seront dupliqués
wire s, e0, el;

xor xor@ ( s , A[il, B[il );
xor xorl ( S[i]l , s , c[il);
and ando ( e0 , A[il, B[il );
and and1 ( el , s, clil );
or or@ ( c[it1], e0 , el );
end
endgenerate

assign m = position[W/2].s;
endmodule




B rian

Logique séquentielle synchrone
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N B Processus always

pour de la logique séquentielle synchrone

La bascule D

module Dff ( input clk,
input D ,
output reg Q );

always @(posedge clk)
Q <=D;

endmodule

D —

A\
ok —

B A chaque front montant (posedge ) de I'horloge on
mémorise la valeur de 'entrée.

m Entre les fronts d’horloge la sortie conserve sa valeur.

26/69 SE204 Tarik Graba

P1-2016/2017
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N always_ff

En SystemVerilog on peut utiliser always_ff .

N O«

® Equivalent &

B | e designer précise qu'il veut décrire de la logique
séquentielle et les outils le vérifient.

always ”.

TELECOM
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I Avec remise a zéro synchrone:

always_ff @(posedge clk)
if (reset)
begin
// Remise & zéro synchrone des registres
end
else
begin
// Que se passe-t-il a chaque front de 1'horloge

end

Si reset vaut 1 au moment du front d’horloge!

TELECOM
ParisTech

b i |
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I Avec remise a zéro asynchrone:

always_ff @(posedge clk or posedge reset)
if (reset)
begin
// Remise & zéro asynchrone des registres
end
else
begin
// Que se passe-t-il a chaque front de 1'horloge

end

Si reset vaut 1 (des qu'il passe a 1) indépendamment du front
d’horloge.

TELECOM

ParisTech




I Avec remise a zéro asynchrone:

always_ff @(posedge clk or negedge nreset)
if (!nreset)
begin
// Remise & zéro asynchrone des registres
end
else
begin
// Que se passe-t-il a chaque front de 1'horloge

end

Sinreset vaut o (des qu'il passe a 0) indépendamment du front
d’horloge.

TELECOM
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B Une bascule D avec reset synchrone:

module Dff ( clk, reset, D, Q );

input clk, reset ;
input D ;
D output reg Q ;
chi Q always_ff @(posedge clk)

reset if (reset)
A Q <= 1'bo;
else

Q <= D;

endmodule

ParisTech
32/69 SE204 Tarik Graba P1-2016/2017 ﬁgml




I Un registre :

Avec reset synchrone et enable

module Reg( input clk, reset, en
input [7:0] D,
output logic [7:0] Q );

always_ff @(posedge clk)
if (reset)
Q <= 8'do
else
if (en) Q <= D;

endmodule

TELECOM

ParisTech
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B un registre a décalage:

TELECOM
ParisTech
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B un registre a décalage:

module SftReg # ( parameter N = 8 )

( input clk, en ,
input D ,
output Q );
D logic [N-1:0] R;
en assign Q = R[0];

always_ff @(posedge clk)
if (en) R <= { D, RIN-1:11 };

endmodule

TELECOM

ParisTech
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| e
mettre la méme valeur a tous les bits d’un vecteur

Opérateur de duplication

reg [N-1:0] A,B,C;

initial
begin
A = {N{1'b1}}; // tous les bits a 1
B = {N{1'b0}}; // tous les bits a @
C = {N{1'bz}}; // tous les bits a z

TELECOM
ParisTech




BN Astuce

mettre la méme valeur a tous les bits d’un vecteur

iel
Opérateur de duplication SEE

logic [N-1:0] A,B,C,D;
reg [N-1:0] A,B,C;

initial
initial begin
begin A ="1; // tous les bits a 1
A = {N{1'b1}}; // tous les bits a 1 B = '0; // tous les bits a @
B = {N{1'b0}}; // tous les bits a @ C = '"z; // tous les bits a z

C = {N{1'bz}}; // tous les bits a z
D = 'dl // 1 en décimal adapté
// a la taille de D!

TELECOM

ParisTech
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B un compteur :

TELECOM
ParisTech
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B un compteur :

module Cpt ( clk, reset, en, Q );
parameter N = 8;

input clk, reset, en ;
output logic [N-1:0] Q ;

always_ff @(posedge clk)
if (reset)
Q<= "0;
else
if (en)
Q<=Q+1;

endmodule




I Affectations bloquantes/différées

Quelle est la différence entre ces deux codes:

logic a,b,r,q;

always_ff @(posedge clk)
begin

r =ag&hb;

q<=r;
end

logic a,b,r,q;

always_ff @(posedge clk)
begin

r<=ag&hb;

q<=r;
end

37/69 SE204 Tarik Graba
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I Affectations bloquantes/différées

Quelle est la différence entre ces deux codes:

logic a,b,r,q;

always_ff @(posedge clk)
begin

r =aé&hb;

q<=r;
end

logic a,b,r,q;

always_ff @(posedge clk)
begin

r<=aé&hb;

q<=r;
end

r
bl

37/69 SE204 Tarik Graba

P1-2016/2017
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I Affectations bloquantes/différées

Etici ?

logic [N:0] R; logic [N:0] R;
always_ff @(posedge clk) always_ff @(posedge clk)
begin: loop begin: loop

int 1i; int i;

for (i=0; i<N; i++) for (i=0; i<N; i++)

RLi+1] = R[iD; RLi+1] <= R[il;

end end

TELECOM

ParisTech
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I Affectations bloquantes/différées

Etici ?

logic [N:0] R;

always_ff @(posedge clk)

begin: loop
int i;
for (i=0; i<N; i++)
R[i+1] = R[i];
end

logic [N:0] R;

always_ff @(posedge clk)
begin: loop
int i;
for (i=0; i<N; i++)
R[i+1] <= R[i];

Ro—|

38/69 SE204 Tarik Graba
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I Affectations bloquantes/différées

Que fait ce code?

logic [N-1:0] R;
logic p;

always_ff @(posedge clk)
begin: loop

int i;

logic t;

t=0;

for (i=0; i<N; i++)

t =1t *R[i];

p <=1t

end

TELECOM
ParisTech

b i |
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I Affectations bloquantes/différées

Que fait ce code?

logic [N-1:0] R;
logic p;

always_ff @(posedge clk)
begin: loop

int i;

logic t;

t = 0;

for (i=0; i<N; i++)

t =t *R[iI;

p <=t

end

An_2 Rn-1

A=

39/69 SE204 Tarik Graba
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B Chemin critique/Pipeline

always_ff @(posedge clk)
begin

RO <= A;

R1 = f(RO);

0 <= g(R1);

end

always_ff @(posedge clk)
begin

RO <= A;

R1 <= f(RO);

0 <= gRI);

end

40/69 SE204 Tarik Graba

P1-2016/2017
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B rian

Machines a états finis
Machines de Moore
Machines de Mealy
Machines de Mealy resynchronisées
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I Machines a états finis

® Méthode pour concevoir
des automates.

B A partir d'un graphe
d’états.
®m Systéme synchrone.

TELECOM
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Déclaration du registre d’état
et des états

En Verilog 95

*define INIT 2'b00
‘define SO0  2'bo1
*define S1  2'b10

reg [1:0] state, n_state;
//...Le code

‘undef INIT
‘undef S0
‘undef S1

TELECOM
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Déclaration du registre d’état
et des états

En Verilog 2001

localparam INIT = 2'b00;

localparam S@ = 2'b01;
localparam S1 = 2'b10;
reg [1:0] state, n_state;
//...Le code

TELECOM

ParisTech



Déclaration du registre d’état
et des états

En SystemVerilog

enum logic[1:0] { INIT, S@, S1 } state, n_state;
//...Le code

TELECOM

ParisTech



B Modification de I'état

Synchrone

always_ff @(posedge clk)
if (reset)

state <= INIT ;
else

state <= n_state ;

B [’état initial au reset doit étre explicite.

« SiI'état initial n’est pas connu le comportement n’est pas
déterministe.

B e changement d’état se fait de fagon synchrone.

TELECOM
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B rian

La logique combinatoire

La généricité

Logique séquentielle synchrone

Machines a états finis
Machines de Moore

Modélisation des mémoires
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I Machine de Moore

B || faut mémoriser I'état (registre).
B Le prochain état dépend de I'état actuel et des entrées.

B | es sorties dépendent combinatoirement de I'état courant.

‘e

outputs

inputs
n_state state

TELECOM

ParisTech



BN processus

B Un processus séquentiel pour sauvegarder I'état.

B Deux processus combinatoires:

« Calcul de I'état futur.
« Calcul des sorties.

B n_state doit étre un signal.

outputs
inputs
P n, state state

always_comb always_comb

TELECOM
ParisTech

b i |
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BN processus

always_comb

begin
// par défaut on reste
// dans 1'état courant
n_state = state ;
case (state)
INIT: if (cond@)

n_state = SO;
Se : if (condl)
n_state = S1;
S1 . if (cond2)
n_state = INIT;
endcase
end

L ——
inputs

always_ff @(posedge clk)
if (reset)

state <= INIT ;
else

state <= n_state

always_comb

begin

if (state == INIT) begin
outputl = ...

end

else if (state == S@) begin
outputl = ...

end

else if (state == S@) begin
outputl = ...

end

else begin // Par défaut
outputl = ...

end

end

—

n_state state

outputs
——

always_comb




BN processus

B Un processus séquentiel pour modifier I'état.
B Un processus combinatoire pour le calcul des sorties en fonction de
I'état.

B n_state disparait.

outputs
I

inputs
n_state state

always_comb

TELECOM
ParisTech

b i |
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BN processus

always_ff @(posedge clk) alwéys_comb
if (reset) b?gln .
state <= INIT ; if (state == INIT) begin
outputl = ...
else
case (state) end ) )
INIT: if (cond@) elszu;fui?tite == S0) begin
state <= SO; - p
se : if (cond1)7 Sl%e i (state — 50) besin
state <= S1; o
S1 @ if (cond2) ond p
state =N else begin // Par défaut
endcase e beEln
// Sinon on reste dans ond p
// 1'état courant o

outputs
i ——
inputs

n_state state

always_comb




I hconvénient

Un changement de sortie nécessite un changement d’état et
donc au moins un cycle de latence.

clk [ 1L 1T

state So XS
c /
o [

TELECOM

ParisTech

Tarik Graba P1-2016/2017 ﬁﬁgml
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I Machines de Mealy

| || faut mémoriser I'état (registre).
B | e prochain état dépend de I'état actuel et des entrées.

B |es sorties dépendent combinatoirement de I'état courant et des

entrées.
¢ .
inputs outputs
——| —e
n_state state
A

TELECOM

ParisTech



I hconvénient

Un changement d’entrée peut étre propagé immeédiatement sur
une sortie.

clk [ 1L 1T

state So X S
c /
0 [

TELECOM
ParisTech

Tarik Graba P1-2016/2017 ﬁﬁgml
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BN processus

B Un processus séquentiel pour modifier I'état.

B Un processus combinatoire pour le calcul des sorties en fonction de

I'état et des entrées.

always_comb

inputs
——

n_state

state

NG

outputs
L

55/69 SE204 Tarik Graba
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BN processus

always_ff @(posedge clk)
if (reset)
state <= INIT ;
else
case (state)
INIT: if (cond@)
state <= S0@;
So : if (condl)
state <= S1;
S1 : if (cond2)
state <= INIT;
endcase
// Sinon on reste dans
// 1'état courant

inputs

n_state

always_comb

begin

if (state == INIT) begin
outputl = f1(inputs ...)

end

else if (state == S@) begin

outputl = f2(inputs ...)...

end

else if (state == S@) begin
outputl = f3(inputs ...)

end

else begin // Par défaut
outputl = f4(inputs ...)

end

end

state

outputs
-

L]




I hconvénient

On relie les entrées et les sorties par un chemin combinatoire:
B e chemin critique n’est pas maitrisé.

B | a modification de la MAE modifie les performances du
reste du circuit.

TELECOM

ParisTech



B rian

La logique combinatoire

La généricité

Logique séquentielle synchrone

Machines a états finis

Machines de Mealy resynchronisées

Modélisation des mémoires

TELECOM

ParisTech



I Machines de Mealy resynchronisées

m C’est une machine de Mealy pour la quelle les sorties sont
resynchronisées pour éviter les chemins combinatoires.

m || faut ajouter des registres sur les sorties
¢ O @)

inputs outputs
N ——
n_state state

f

TELECOM

ParisTech



BN processus

B Un processus séquentiel pour modifier I'état.

® Un processus combinatoire pour le calcul des sorties en fonction de

I'état et des entrées.

B Faire apparaitre un signal interne pour les sorties avant

resynchronisation.

® Un processus séquentiel pour resynchroniser les sorties.

inputs
e

always_comb

outputs_i

n_state

state

4$7
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BN processus

B Un processus séquentiel pour modifier I'état.
® Un séquentiel pour le calcul des sorties

inputs
e

n_state

state

outputs
.

61/69 SE204 Tarik Graba
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BN processus

always_ff @(posedge clk)
if (reset)
state <= INIT ;
else
case (state)
INIT: if (condo@)
state <= S0@;
S0 : if (condl)
state <= S1;
S1 : if (cond2)
state <= INIT;
endcase
// Sinon on reste dans
// 1'état courant

inputs

always_ff @(posedge clk)
if (reset)
begin
// initialiser les sorties
outputl <= ...
end
else
begin
if (state == INIT) begin
output1 <= f1(inputs ..
end
else if (state == S@) begin
outputl <= f2(inputs ..
end
else if (state == S@) begin
outputl <= f3(inputs ..
end
end

>

...

>

outputs




1 processus

® Un processus séquentiel pour modifier I'état et les sorties.

inputs
e

n_state

state

outputs
L
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1 processus

always_ff @(posedge clk)
if (reset)
begin
// Initialiser 1'état
state <= INIT ;
// Initialiser les sorties
outputl <= ...
end
else
begin
// Les transitions
case (state)
INIT: if (condo)
state <= SO;
So : if (condl)
state <= S1;

S1 : if (cond2)
state <= INIT;

endcase

// Les sorties

if (state == INIT) begin
outputl <= f1(inputs ..

end

else if (state == S@) begin
outputl <= f2(inputs ..

end

else if (state == S@) begin
outputl <= f3(inputs ..

end

end

D

D

>

inputs

outputs
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I Vémoire synchrone

mémoire simple port

B un bus d’adresse

B 2 bus pour les données:
z . 8
e @criture Addr A
* lecture . o sram
® des sighaux de contdle i ——>
® une horloge wr

> Do

® PAS DE RESET clk

B On ne peut accéder qu'a
un seul élément dans le
méme cycle!

66/69 SE204 Tarik Graba P1-2016/2017 =T
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N B Mémoire synchrone

66/69 SE204 Tarik Graba

mémoire simple port

un bus d’adresse

2 bus pour les données:
* écriture
* lecture

des signaux de contble

une horloge

PAS DE RESET

On ne peut accéder qu’a

un seul élément dans le
méme cycle!

module sram(input clk, wr,
input [7:0] Addr,
input [7:0] Di,
output logic [7:0] Do );

logic[7:0] mem [0:255];

always_ff @(posedge clk)
begin
if (wr)
mem[Addr] <= Di;
Do <= mem[Addr];
end

endmodule

P1-2016/2017

TELECOM
ParisTech
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N B Mémoire synchrone

66/69 SE204 Tarik Graba

mémoire simple port

un bus d’adresse

2 bus pour les données:
* écriture
* lecture

des signaux de contble

une horloge

PAS DE RESET

On ne peut accéder qu’a

un seul élément dans le
méme cycle!

module sram(input clk, wr,
input [7:0] Addr,
input [7:0] Di,
output [7:0] Do );

logic[7:0] mem [0:255];
logic[7:0] Addr_r;

always_ff @(posedge clk)
begin
if (wr)
mem[Addr] <= Di;
Addr_r <= Addr;
end

assign Do = mem[Addr_r];

endmodule

P1-2016/2017

TELECOM

ParisTech
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N B Mémoire synchrone

mémoire double ports

B permet un accés double 8 8
= Pécrit t1a lect N Addr1 ———>| [ €—~— Addr2
emlmee a lecture a Di1 8 9 bis
la méme adresse dans Do 7e  |sram_dp E 7 502
A , o] ﬁ; ﬂ;} [e]
le méme cycle n’est pas
prédictible wrl —— w2
B pourrait avoir deux clk

horloges

TELECOM
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I Vémoire synchrone

mémoire double ports

module sram_dp(input clk, wrl, wr2,
input [7:0] Addr1, Addr2,
input [7:0] Di1, Di2,
output logic [7:0] Dol, Do2 );

B permet un accés double
logic[7:0] mem [0:255];

W |'écriture et la lecture a
always_ff @(posedge clk)

la méme adresse dans begin
A y if (wr1)
le méme cycle n'est pas Y pemAddri] <= Dil;
PRt . Dol <= [Addri1];
prédictible Wt
B pourrait avoir deux aleaya.ff Q(pasadge clio
horloges if (wr2) _
mem[Addr2] <= Di2;
Do2 <= mem[Addr2];
end
endmodule

TELECOM

ParisTech




N B Mémoire synchrone

Initialisation du contenu

module sram(input clk, wr,
input [7:0] Addr,

B Possible seulement pour input [7:6] D1,

|eS FPGA output logic [7:0] Do );
B initial est normalement logic[7:@] mem [0:2551;

exclusivement réserveé a la initial

. . $readmemh("init.txt", mem);
simulation
always_ff @(posedge clk)

B $readmemh (ou $readmemb ) P

permet d’initialiser une o, TeNCAddr] <= D;

0 <= mem rl;
table a partir d’un fichier end

endmodule

TELECOM

ParisTech




Mémoire synchrone
ROM synchrone

module rom (input clk,
input [7:0] Addr,
output logic [7:0] Do );

B Possible seulement pour
|eS FPGA logic[7:0] mem [0:255];

initial
$readmemh("init.txt", mem);

| il suffit d’enlever la
possibilité d’écrire aluays £ @(posedge c1l0)
Do <= mem[Addr];

endmodule

TELECOM

ParisTech
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