
SystemVerilog
Comment décrire du matériel

Tarik Graba
Année scolaire 2016/2017



Plan

La logique combinatoire
Exemples

La généricité

Logique séquentielle synchrone
Exemples

Machines à états finis
Machines de Moore
Machines de Mealy
Machines de Mealy resynchronisées

Modélisation des mémoires

2/69 SE204 Tarik Graba P1-2016/2017



Logique combinatoire

Rappel

La sortie d’un bloc combinatoire ne dépend que de la
valeur de ses entrées.

Dit autrement, pour les mêmes valeurs des entrées on doit
toujours avoir les mêmes valeurs de sortie.

3/69 SE204 Tarik Graba P1-2016/2017



always_comb

En SystemVerilog on peut utiliser always_comb .

Équivalent à “always @(*) ”.
Le designer précise qu’il veut décrire de la logique
combinatoire et les outils le vérifient.

4/69 SE204 Tarik Graba P1-2016/2017



Plan

La logique combinatoire
Exemples

La généricité

Logique séquentielle synchrone
Exemples

Machines à états finis
Machines de Moore
Machines de Mealy
Machines de Mealy resynchronisées

Modélisation des mémoires

5/69 SE204 Tarik Graba P1-2016/2017



Processus always pour
décrire la logique combinatoire

Exemple: Un multiplexeur 2→ 1

module mux21( s, a, b, o );

input s;

input a, b ;

output reg o ;

always @(a or b or s)

if (s) o = a;

else o = b;

/* Pourrait être

o = b;

if (s) o = a;

* ou

o = s? a : b;

*/

endmodule

s

a

b
o

1

0

6/69 SE204 Tarik Graba P1-2016/2017



Processus always pour
décrire la logique combinatoire

Exemple: Un multiplexeur 2→ 1

module mux21( s, a, b, o );

input s;

input a, b ;

output reg o ;

always @(*)

if (s) o = a;

else o = b;

/* Pourrait être

o = b;

if (s) o = a;

* ou

o = s? a : b;

*/

endmodule

s

a

b
o

1

0

6/69 SE204 Tarik Graba P1-2016/2017



Processus always pour
décrire la logique combinatoire

Exemple: Un multiplexeur 2→ 1

module mux21( s, a, b, o );

input s;

input a, b ;

output logic o ;

always_comb

if (s) o = a;

else o = b;

/* Pourrait être

o = b;

if (s) o = a;

* ou

o = s? a : b;

*/

endmodule

s

a

b
o

1

0

6/69 SE204 Tarik Graba P1-2016/2017



Un mux 4→1

a[0]
a[1]
a[2]
a[3]

o

s
2

0
1
2
3

module mux41( s, a, o );

input [1:0] s;

input [3:0] a;

output reg o ;

always @(*)

case(s)

2'b00: o = a[0];

2'b01: o = a[1];

2'b10: o = a[2];

2'b11: o = a[3];

endcase

/* Pourrait être

o = a[s];

* ou

if (a == 2'd0) o = a[0];

else if (a == 2'd1) o = a[1];

else if (a == 2'd2) o = a[2];

else if (a == 2'd3) o = a[3];

*/

endmodule

7/69 SE204 Tarik Graba P1-2016/2017



Un mux incomplet

module mux_il( s, a, o );

input [1:0] s;

input [3:0] a;

output reg o ;

always @( * )

case(s)

2'b00: o = a[0];

2'b01: o = a[1];

2'b10: o = a[2];

endcase

endmodule

8/69 SE204 Tarik Graba P1-2016/2017



Un mux incomplet

Que se passe-t-il si s = 3?

module mux_il( s, a, o );

input [1:0] s;

input [3:0] a;

output reg o ;

always @( * )

case(s)

2'b00: o = a[0];

2'b01: o = a[1];

2'b10: o = a[2];

endcase

endmodule

8/69 SE204 Tarik Graba P1-2016/2017



Un mux incomplet

On mémorise la valeur
précédente!!

a[0]
a[1]

s
2

0
1
2
3

a[2] oQD

en

6= 3

Erreur avec always_comb

module mux_il( s, a, o );

input [1:0] s;

input [3:0] a;

output reg o ;

always @( * )

case(s)

2'b00: o = a[0];

2'b01: o = a[1];

2'b10: o = a[2];

endcase

endmodule

8/69 SE204 Tarik Graba P1-2016/2017



Un mux incomplet
Valeurs des sorties toujours définies

a[0]
a[1] o

s
2

0
1
2
3

a[2]

module mux_i( s, a, o );

input [1:0] s;

input [3:0] a;

output reg o ;

always @(*)

begin

// la valeur par défaut

o = a[2];

case(s)

2'b00: o = a[0];

2'b01: o = a[1];

endcase

end

/* Pourrait être

case(s)

2'b00: o = a[0];

2'b01: o = a[1];

default: o = a[2];

endcase

*/

endmodule

9/69 SE204 Tarik Graba P1-2016/2017



Règles pour décrire la logique
combinatoire

La liste de sensibilité doit contenir toutes les entrées.
Les valeurs des sorties doivent être définie pour toutes les
valeurs des entrées.

Recommandations

Liste de sensibilité automatique.
Donner systématiquement une valeur par défaut aux
sorties.

10/69 SE204 Tarik Graba P1-2016/2017



Exercixce

Écrire le code
SystemVerilog d’un
décodeur 7 segments
Écrire le code
SystemVerilog d’un
décodeur 7 segments qui
ne décode que les
nombres de 0 à 9

0

1

2

3

4

5

6

11/69 SE204 Tarik Graba P1-2016/2017



Un décodeur 7 segments

Dec 7 Seg OI
4 7

module dec7seg ( I, O );

input [3:0] I;

output [6:0] O;

logic [6:0] O;

always_comb

case(I)

4'h0: O = 7'b0111111 ;

4'h1: O = 7'b0000110 ;

4'h2: O = 7'b1011011 ;

4'h3: O = 7'b1001111 ;

4'h4: O = 7'b1100110 ;

4'h5: O = 7'b1101101 ;

4'h6: O = 7'b1111101 ;

4'h7: O = 7'b0000111 ;

4'h8: O = 7'b1111111 ;

4'h9: O = 7'b1100111 ;

4'ha: O = 7'b1110111 ;

4'hb: O = 7'b1111100 ;

4'hc: O = 7'b0111001 ;

4'hd: O = 7'b1011110 ;

4'he: O = 7'b1111001 ;

4'hf: O = 7'b1110001 ;

endcase

endmodule

12/69 SE204 Tarik Graba P1-2016/2017



Un décodeur 7 segments
utilisation d’une table

Dec 7 Seg OI
4 7

LUT: LookUp Table

module dec7segT ( I, O );

input [3:0] I;

output [6:0] O;

logic [6:0] O;

logic [6:0] Tab [0:15] = '{

'b0111111 ,

'b0000110 ,

'b1011011 ,

'b1001111 ,

'b1100110 ,

'b1101101 ,

'b1111101 ,

'b0000111 ,

'b1111111 ,

'b1100111 ,

'b1110111 ,

'b1111100 ,

'b0111001 ,

'b1011110 ,

'b1111001 ,

'b1110001 };

always_comb O = Tab[I];

endmodule

13/69 SE204 Tarik Graba P1-2016/2017



Un décodeur 7 segments incomplet

Dec 7 Seg OI
4 7

module dec7segI ( I, O );

input [3:0] I;

output [6:0] O;

logic [6:0] O;

always_comb

case(I)

4'h0 : O = 7'b0111111 ;

4'h1 : O = 7'b0000110 ;

4'h2 : O = 7'b1011011 ;

4'h3 : O = 7'b1001111 ;

4'h4 : O = 7'b1100110 ;

4'h5 : O = 7'b1101101 ;

4'h6 : O = 7'b1111101 ;

4'h7 : O = 7'b0000111 ;

4'h8 : O = 7'b1111111 ;

4'h9 : O = 7'b1100111 ;

4'd10,4'd11,

4'd12,4'd13,

4'd14,4'd15

: O = 7'b0000000 ;

endcase

endmodule

14/69 SE204 Tarik Graba P1-2016/2017



Un décodeur 7 segments incomplet

Dec 7 Seg OI
4 7

module dec7segI ( I, O );

input [3:0] I;

output [6:0] O;

logic [6:0] O;

always_comb

case(I)

4'h0 : O = 7'b0111111 ;

4'h1 : O = 7'b0000110 ;

4'h2 : O = 7'b1011011 ;

4'h3 : O = 7'b1001111 ;

4'h4 : O = 7'b1100110 ;

4'h5 : O = 7'b1101101 ;

4'h6 : O = 7'b1111101 ;

4'h7 : O = 7'b0000111 ;

4'h8 : O = 7'b1111111 ;

4'h9 : O = 7'b1100111 ;

default: O = 7'b0000000 ;

endcase

endmodule

14/69 SE204 Tarik Graba P1-2016/2017



Un décodeur 7 segments incomplet

Dec 7 Seg OI
4 7

module dec7segI ( I, O );

input [3:0] I;

output [6:0] O;

logic [6:0] O;

always_comb

begin

O = 7'b0000000 ; // valeur par défaut

case(I)

4'h0 : O = 7'b0111111 ;

4'h1 : O = 7'b0000110 ;

4'h2 : O = 7'b1011011 ;

4'h3 : O = 7'b1001111 ;

4'h4 : O = 7'b1100110 ;

4'h5 : O = 7'b1101101 ;

4'h6 : O = 7'b1111101 ;

4'h7 : O = 7'b0000111 ;

4'h8 : O = 7'b1111111 ;

4'h9 : O = 7'b1100111 ;

endcase

begin

endmodule

14/69 SE204 Tarik Graba P1-2016/2017



Un décodeur 7 segments incomplet
Utilisation de casez

Dec 7 Seg OI
4 7

module dec7segI ( I, O );

input [3:0] I;

output [6:0] O;

logic [6:0] O;

always_comb

casez(I)

4'h0 : O = 7'b0111111 ;

4'h1 : O = 7'b0000110 ;

4'h2 : O = 7'b1011011 ;

4'h3 : O = 7'b1001111 ;

4'h4 : O = 7'b1100110 ;

4'h5 : O = 7'b1101101 ;

4'h6 : O = 7'b1111101 ;

4'h7 : O = 7'b0000111 ;

4'h8 : O = 7'b1111111 ;

4'h9 : O = 7'b1100111 ;

4'b101?,

4'b11??: O = 7'b0000000 ;

endcase

endmodule

15/69 SE204 Tarik Graba P1-2016/2017



Utiliser des fonctions

Pour “mutualiser” du code on peut utiliser des modules.

Nb1I1
8

Nb1
8

I2

O

16/69 SE204 Tarik Graba P1-2016/2017



Utiliser des fonctions
Pour “mutualiser” du code on peut aussi utiliser des fonctions.

module foo( I1,I2, O );

input [7:0] I1,I2;

output logic O;

// Nombre de 1 dans un mot de 8bits

function [3:0] nbr1 (input [7:0] N);

int tmp;

begin

tmp = 0;

for (int i = 0; i<8; i++)

if (N[i]) tmp++;

return tmp;

// On aurait pu écrire

// nbr1 = tmp ;

end

endfunction

always_comb

O = nbr1(I1) > nbr1(I2);

endmodule

Nb1I1
8

Nb1
8

I2

O

16/69 SE204 Tarik Graba P1-2016/2017



Utiliser des fonctions
différence entre tâches et fonctions

En SystemVerilog il y deux type de sous-programmes:
Les fonctions: Exécution en temps nul

Affectation bloquantes
Pas de synchronisation (#,@,…)

Les tâches: Ne renvoient pas de valeurs
Peuvent avoir des output

Plus d’informations et des exemples Section 13 de la norme.

17/69 SE204 Tarik Graba P1-2016/2017



Plan

La logique combinatoire
Exemples

La généricité

Logique séquentielle synchrone
Exemples

Machines à états finis
Machines de Moore
Machines de Mealy
Machines de Mealy resynchronisées

Modélisation des mémoires

18/69 SE204 Tarik Graba P1-2016/2017



Faire un code paramétrable

Les modules peuvent être paramétrables:

Définir leur comportement/structure en fonction de certains
paramètres

Le code peut ainsi être réutilisé dans des conditions différentes.

19/69 SE204 Tarik Graba P1-2016/2017



Faire un code paramétrable
parameter

8

8

8

A

B

C

D

S0

S1

S

8

10

20/69 SE204 Tarik Graba P1-2016/2017



Faire un code paramétrable
parameter

module adder #(parameter WIDTH = 8)

(input [WIDTH-1:0] A,B,

output [WIDTH :0] S );

assign S = A + B;

endmodule

8

8

8

A

B

C

D

S0

S1

S

8

10

20/69 SE204 Tarik Graba P1-2016/2017



Faire un code paramétrable
parameter

module truc ( input [7:0] A,B,C,D,

output [9:0] S );

wire [8:0] S0,S1;

adder #(.WIDTH(8)) add1 (.A(A),.B(B),.S(S0));

adder #(.WIDTH(8)) add2 (.A(C),.B(D),.S(S1));

adder #(.WIDTH(9)) add3 (.A(S0),.B(S1),.S(S));

endmodule

8

8

8

A

B

C

D

S0

S1

S

8

10

20/69 SE204 Tarik Graba P1-2016/2017



Faire un code paramétrable
localparam

Parfois on a besoin de paramètres non modifiables à
l’instanciation.

module Table (clk, index, valeur_e, valeur_s);

parameter SIZE = 256;

parameter WIDTH = 8;

localparam I_WIDTH = $clog2(SIZE);

input clk;

input [I_WIDTH-1:0] index;

input [WIDTH-1:0] valeur_e;

output [WIDTH-1:0] valeur_s;

logic [WIDTH-1:0] valeur_s;

logic [WIDTH-1:0] Tab [0:SIZE-1];

always_ff @(posedge clk)

begin

Tab[index] <= valeur_e;

valeur_s <= Tab[index];

end

endmodule

Un paramètre local est:
Une constante
Calculé à partir d’autres
constantes

Il ne sont pas modifiables à
l’extérieur du module.

21/69 SE204 Tarik Graba P1-2016/2017



Faire un code paramétrable

Comment changer le code en fonction de ces paramètres?

22/69 SE204 Tarik Graba P1-2016/2017



Faire un code paramétrable
generate

De façon conditionnelle:

module adder #( parameter generic = "YES" )

( input [7:0] A,B,

output [7:0] S);

generate

if ( generic == "YES")

begin

assign S = A + B ;

end

else

begin

optimised_adder o_adder (A,B,S);

end

endgenerate

endmodule

Remplace dans ce cas des directives de préprocesseur (`ifdef )

23/69 SE204 Tarik Graba P1-2016/2017



Faire un code paramétrable
generate

En répétant le comportement

// Extrait de la norme section 27.4

module gray2bin #(parameter W = 8)

( input [W-1:0] G,

output [W-1:0] B

);

genvar i;

generate

for ( i=0; i<W; i++ )

begin:position

// Le Xor des bit i à W-1

assign B[i] = ^G[W-1:i];

end

endgenerate

endmodule

24/69 SE204 Tarik Graba P1-2016/2017



Faire un code paramétrable
generate

En répétant la structure

module struct_adder #( parameter W = 8 )

( input [W-1:0] A,B, input Ci,

output [W-1:0] S, output Co,m );

wire [W:0] c;

assign c[0] = Ci;

assign Co = c[W];

genvar i;

generate

for ( i=0; i<W; i++ )

begin:position

// ces noeuds seront dupliqués

wire s, e0, e1;

xor xor0 ( s , A[i], B[i] );

xor xor1 ( S[i] , s , c[i] );

and and0 ( e0 , A[i], B[i] );

and and1 ( e1 , s , c[i] );

or or0 ( c[i+1], e0 , e1 );

end

endgenerate

assign m = position[W/2].s;

endmodule

24/69 SE204 Tarik Graba P1-2016/2017



Plan

La logique combinatoire
Exemples

La généricité

Logique séquentielle synchrone
Exemples

Machines à états finis
Machines de Moore
Machines de Mealy
Machines de Mealy resynchronisées

Modélisation des mémoires

25/69 SE204 Tarik Graba P1-2016/2017



Processus always
pour de la logique séquentielle synchrone

La bascule D

module Dff ( input clk,

input D ,

output reg Q );

always @(posedge clk)

Q <= D;

endmodule

QD

clk

A chaque front montant (posedge ) de l’horloge on
mémorise la valeur de l’entrée.
Entre les fronts d’horloge la sortie conserve sa valeur.

26/69 SE204 Tarik Graba P1-2016/2017



always_ff

En SystemVerilog on peut utiliser always_ff .

Équivalent à “always ”.
Le designer précise qu’il veut décrire de la logique
séquentielle et les outils le vérifient.

27/69 SE204 Tarik Graba P1-2016/2017



Avec remise à zéro synchrone:

always_ff @(posedge clk)

if (reset)

begin

// Remise à zéro synchrone des registres

...

end

else

begin

// Que se passe-t-il à chaque front de l'horloge

...

end

Si reset vaut 1 au moment du front d’horloge!

28/69 SE204 Tarik Graba P1-2016/2017



Avec remise à zéro asynchrone:

always_ff @(posedge clk or posedge reset)

if (reset)

begin

// Remise à zéro asynchrone des registres

...

end

else

begin

// Que se passe-t-il à chaque front de l'horloge

...

end

Si reset vaut 1 (dès qu’il passe à 1) indépendamment du front
d’horloge.

29/69 SE204 Tarik Graba P1-2016/2017



Avec remise à zéro asynchrone:

always_ff @(posedge clk or negedge nreset)

if (!nreset)

begin

// Remise à zéro asynchrone des registres

...

end

else

begin

// Que se passe-t-il à chaque front de l'horloge

...

end

Si nreset vaut 0 (dès qu’il passe à 0) indépendamment du front
d’horloge.

30/69 SE204 Tarik Graba P1-2016/2017



Plan

La logique combinatoire
Exemples

La généricité

Logique séquentielle synchrone
Exemples

Machines à états finis
Machines de Moore
Machines de Mealy
Machines de Mealy resynchronisées

Modélisation des mémoires

31/69 SE204 Tarik Graba P1-2016/2017



Une bascule D avec reset synchrone:

D
reset

Q

module Dff ( clk, reset, D, Q );

input clk, reset ;

input D ;

output reg Q ;

always_ff @(posedge clk)

if (reset)

Q <= 1'b0;

else

Q <= D;

endmodule

32/69 SE204 Tarik Graba P1-2016/2017



Un registre :
Avec reset synchrone et enable

reset

Q
N

D
N 0

1

en

module Reg( input clk, reset, en,

input [7:0] D,

output logic [7:0] Q );

always_ff @(posedge clk)

if (reset)

Q <= 8'd0;

else

if (en) Q <= D;

endmodule

33/69 SE204 Tarik Graba P1-2016/2017



Un registre à décalage:

1
0

1
0

1
0

Q

en

D
R0RN−1 R1

34/69 SE204 Tarik Graba P1-2016/2017



Un registre à décalage:

1
0

1
0

1
0

Q

en

D
R0RN−1 R1

module SftReg # ( parameter N = 8 )

( input clk, en ,

input D ,

output Q );

logic [N-1:0] R;

assign Q = R[0];

always_ff @(posedge clk)

if (en) R <= { D, R[N-1:1] };

endmodule

34/69 SE204 Tarik Graba P1-2016/2017



Astuce
mettre la même valeur à tous les bits d’un vecteur

Opérateur de duplication

reg [N-1:0] A,B,C;

initial

begin

A = {N{1'b1}}; // tous les bits à 1

B = {N{1'b0}}; // tous les bits à 0

C = {N{1'bz}}; // tous les bits à z

...

35/69 SE204 Tarik Graba P1-2016/2017



Astuce
mettre la même valeur à tous les bits d’un vecteur

Opérateur de duplication

reg [N-1:0] A,B,C;

initial

begin

A = {N{1'b1}}; // tous les bits à 1

B = {N{1'b0}}; // tous les bits à 0

C = {N{1'bz}}; // tous les bits à z

...

Magie!

logic [N-1:0] A,B,C,D;

initial

begin

A = '1; // tous les bits à 1

B = '0; // tous les bits à 0

C = 'z; // tous les bits à z

...

D = 'd1 // 1 en décimal adapté

// à la taille de D!

35/69 SE204 Tarik Graba P1-2016/2017



Un compteur :

reset

Q
NN 0

1

en
1

36/69 SE204 Tarik Graba P1-2016/2017



Un compteur :

reset

Q
NN 0

1

en
1

module Cpt ( clk, reset, en, Q );

parameter N = 8;

input clk, reset, en ;

output logic [N-1:0] Q ;

always_ff @(posedge clk)

if (reset)

Q <= '0;

else

if (en)

Q <= Q + 1;

endmodule

36/69 SE204 Tarik Graba P1-2016/2017



Affectations bloquantes/différées

Quelle est la différence entre ces deux codes:

logic a,b,r,q;

always_ff @(posedge clk)

begin

r = a & b;

q <= r;

end

logic a,b,r,q;

always_ff @(posedge clk)

begin

r <= a & b;

q <= r;

end

37/69 SE204 Tarik Graba P1-2016/2017



Affectations bloquantes/différées

Quelle est la différence entre ces deux codes:

logic a,b,r,q;

always_ff @(posedge clk)

begin

r = a & b;

q <= r;

end

b
a r q

logic a,b,r,q;

always_ff @(posedge clk)

begin

r <= a & b;

q <= r;

end

b
a r q

37/69 SE204 Tarik Graba P1-2016/2017



Affectations bloquantes/différées

Et ici ?

logic [N:0] R;

always_ff @(posedge clk)

begin: loop

int i;

for (i=0; i<N; i++)

R[i+1] = R[i];

end

logic [N:0] R;

always_ff @(posedge clk)

begin: loop

int i;

for (i=0; i<N; i++)

R[i+1] <= R[i];

end

38/69 SE204 Tarik Graba P1-2016/2017



Affectations bloquantes/différées

Et ici ?

logic [N:0] R;

always_ff @(posedge clk)

begin: loop

int i;

for (i=0; i<N; i++)

R[i+1] = R[i];

end

R0 RN

logic [N:0] R;

always_ff @(posedge clk)

begin: loop

int i;

for (i=0; i<N; i++)

R[i+1] <= R[i];

end

R0
R1 R2 RN

38/69 SE204 Tarik Graba P1-2016/2017



Affectations bloquantes/différées

Que fait ce code?

logic [N-1:0] R;

logic p;

always_ff @(posedge clk)

begin: loop

int i;

logic t;

t = 0;

for (i=0; i<N; i++)

t = t ^ R[i];

p <= t;

end

39/69 SE204 Tarik Graba P1-2016/2017



Affectations bloquantes/différées
Que fait ce code?

logic [N-1:0] R;

logic p;

always_ff @(posedge clk)

begin: loop

int i;

logic t;

t = 0;

for (i=0; i<N; i++)

t = t ^ R[i];

p <= t;

end

R0 R1 R2 RN−2 RN−1

p

39/69 SE204 Tarik Graba P1-2016/2017



Chemin critique/Pipeline

always_ff @(posedge clk)

begin

R0 <= A;

...

R1 = f(R0);

...

O <= g(R1);

...

end

A
R0

O
R1f g

tpc

always_ff @(posedge clk)

begin

R0 <= A;

...

R1 <= f(R0);

...

O <= g(R1);

...

end

A
R0

R1

Of g

tpf tpg

40/69 SE204 Tarik Graba P1-2016/2017



Plan

La logique combinatoire
Exemples

La généricité

Logique séquentielle synchrone
Exemples

Machines à états finis
Machines de Moore
Machines de Mealy
Machines de Mealy resynchronisées

Modélisation des mémoires

41/69 SE204 Tarik Graba P1-2016/2017



Machines à états finis

Méthode pour concevoir
des automates.
A partir d’un graphe
d’états.
Système synchrone.

S0

S1

cond0cond2

cond1

Init

cond0

cond2

cond1

42/69 SE204 Tarik Graba P1-2016/2017



Déclaration du registre d’état
et des états

En Verilog 95

`define INIT 2'b00

`define S0 2'b01

`define S1 2'b10

reg [1:0] state, n_state;

//...Le code

`undef INIT

`undef S0

`undef S1

43/69 SE204 Tarik Graba P1-2016/2017



Déclaration du registre d’état
et des états

En Verilog 2001

localparam INIT = 2'b00;

localparam S0 = 2'b01;

localparam S1 = 2'b10;

reg [1:0] state, n_state;

//...Le code

43/69 SE204 Tarik Graba P1-2016/2017



Déclaration du registre d’état
et des états

En SystemVerilog

enum logic[1:0] { INIT, S0, S1 } state, n_state;

//...Le code

43/69 SE204 Tarik Graba P1-2016/2017



Modification de l’état

Synchrone

always_ff @(posedge clk)

if (reset)

state <= INIT ;

else

state <= n_state ;

L’état initial au reset doit être explicite.
• Si l’état initial n’est pas connu le comportement n’est pas

déterministe.

Le changement d’état se fait de façon synchrone.

44/69 SE204 Tarik Graba P1-2016/2017



Plan

La logique combinatoire
Exemples

La généricité

Logique séquentielle synchrone
Exemples

Machines à états finis
Machines de Moore
Machines de Mealy
Machines de Mealy resynchronisées

Modélisation des mémoires

45/69 SE204 Tarik Graba P1-2016/2017



Machine de Moore

Il faut mémoriser l’état (registre).

Le prochain état dépend de l’état actuel et des entrées.

Les sorties dépendent combinatoirement de l’état courant.

stateinputs n_state

outputs

46/69 SE204 Tarik Graba P1-2016/2017



3 processus

Un processus séquentiel pour sauvegarder l’état.

Deux processus combinatoires:
• Calcul de l’état futur.
• Calcul des sorties.

n_state doit être un signal.

stateinputs n_state

outputs

always_combalways_ffalways_comb

47/69 SE204 Tarik Graba P1-2016/2017



3 processus

always_comb

begin

// par défaut on reste

// dans l'état courant

n_state = state ;

case (state)

INIT: if (cond0)

n_state = S0;

S0 : if (cond1)

n_state = S1;

S1 : if (cond2)

n_state = INIT;

endcase

end

always_ff @(posedge clk)

if (reset)

state <= INIT ;

else

state <= n_state ;

always_comb

begin

if (state == INIT) begin

output1 = ...

end

else if (state == S0) begin

output1 = ...

end

else if (state == S0) begin

output1 = ...

end

else begin // Par défaut

output1 = ...

end

end

stateinputs n_state

outputs

always_combalways_ffalways_comb

48/69 SE204 Tarik Graba P1-2016/2017



2 processus

Un processus séquentiel pour modifier l’état.
Un processus combinatoire pour le calcul des sorties en fonction de
l’état.
n_state disparaît.

stateinputs n_state

outputs

always_ff always_comb

49/69 SE204 Tarik Graba P1-2016/2017



2 processus

always_ff @(posedge clk)

if (reset)

state <= INIT ;

else

case (state)

INIT: if (cond0)

state <= S0;

S0 : if (cond1)

state <= S1;

S1 : if (cond2)

state <= INIT;

endcase

// Sinon on reste dans

// l'état courant

always_comb

begin

if (state == INIT) begin

output1 = ...

end

else if (state == S0) begin

output1 = ...

end

else if (state == S0) begin

output1 = ...

end

else begin // Par défaut

output1 = ...

end

end

stateinputs n_state

outputs

always_ff always_comb

50/69 SE204 Tarik Graba P1-2016/2017



Inconvénient

Un changement de sortie nécessite un changement d’état et
donc au moins un cycle de latence.

clk

state S0 S1

c

o

S0

S1

c

c

o <= 0

o <= 1

51/69 SE204 Tarik Graba P1-2016/2017



Plan

La logique combinatoire
Exemples

La généricité

Logique séquentielle synchrone
Exemples

Machines à états finis
Machines de Moore
Machines de Mealy
Machines de Mealy resynchronisées

Modélisation des mémoires

52/69 SE204 Tarik Graba P1-2016/2017



Machines de Mealy

Il faut mémoriser l’état (registre).

Le prochain état dépend de l’état actuel et des entrées.

Les sorties dépendent combinatoirement de l’état courant et des
entrées.

staten_state

outputsinputs

53/69 SE204 Tarik Graba P1-2016/2017



Inconvénient

Un changement d’entrée peut être propagé immédiatement sur
une sortie.

clk

state S0 S1

c

o

S0

S1

c

c

o <= c

o <= 1

54/69 SE204 Tarik Graba P1-2016/2017



2 processus

Un processus séquentiel pour modifier l’état.
Un processus combinatoire pour le calcul des sorties en fonction de
l’état et des entrées.

staten_state

outputsinputs

always_ff always_comb

55/69 SE204 Tarik Graba P1-2016/2017



2 processus

always_ff @(posedge clk)

if (reset)

state <= INIT ;

else

case (state)

INIT: if (cond0)

state <= S0;

S0 : if (cond1)

state <= S1;

S1 : if (cond2)

state <= INIT;

endcase

// Sinon on reste dans

// l'état courant

always_comb

begin

if (state == INIT) begin

output1 = f1(inputs ...)

end

else if (state == S0) begin

output1 = f2(inputs ...)...

end

else if (state == S0) begin

output1 = f3(inputs ...)

end

else begin // Par défaut

output1 = f4(inputs ...)

end

end

staten_state

outputsinputs

always_ff always_comb

56/69 SE204 Tarik Graba P1-2016/2017



Inconvénient

On relie les entrées et les sorties par un chemin combinatoire:
Le chemin critique n’est pas maitrisé.
La modification de la MAE modifie les performances du
reste du circuit.

57/69 SE204 Tarik Graba P1-2016/2017



Plan

La logique combinatoire
Exemples

La généricité

Logique séquentielle synchrone
Exemples

Machines à états finis
Machines de Moore
Machines de Mealy
Machines de Mealy resynchronisées

Modélisation des mémoires

58/69 SE204 Tarik Graba P1-2016/2017



Machines de Mealy resynchronisées

C’est une machine de Mealy pour la quelle les sorties sont
resynchronisées pour éviter les chemins combinatoires.

Il faut ajouter des registres sur les sorties

staten_state

inputs outputs

59/69 SE204 Tarik Graba P1-2016/2017



3 processus

Un processus séquentiel pour modifier l’état.
Un processus combinatoire pour le calcul des sorties en fonction de
l’état et des entrées.
Faire apparaitre un signal interne pour les sorties avant
resynchronisation.
Un processus séquentiel pour resynchroniser les sorties.

always_ff always_comb

staten_state

inputs outputs

always_ff

outputs_i

60/69 SE204 Tarik Graba P1-2016/2017



2 processus

Un processus séquentiel pour modifier l’état.
Un séquentiel pour le calcul des sorties

always_ff

staten_state

inputs outputs

always_ff

61/69 SE204 Tarik Graba P1-2016/2017



2 processus

always_ff @(posedge clk)

if (reset)

state <= INIT ;

else

case (state)

INIT: if (cond0)

state <= S0;

S0 : if (cond1)

state <= S1;

S1 : if (cond2)

state <= INIT;

endcase

// Sinon on reste dans

// l'état courant

always_ff @(posedge clk)

if (reset)

begin

// initialiser les sorties

output1 <= ...

end

else

begin

if (state == INIT) begin

output1 <= f1(inputs ...)

end

else if (state == S0) begin

output1 <= f2(inputs ...)...

end

else if (state == S0) begin

output1 <= f3(inputs ...)

end

end

always_ff

staten_state

inputs outputs

always_ff

62/69 SE204 Tarik Graba P1-2016/2017



1 processus

Un processus séquentiel pour modifier l’état et les sorties.

staten_state

inputs outputs

always_ff

63/69 SE204 Tarik Graba P1-2016/2017



1 processus
always_ff @(posedge clk)

if (reset)

begin

// Initialiser l'état

state <= INIT ;

// Initialiser les sorties

output1 <= ...

end

else

begin

// Les transitions

case (state)

INIT: if (cond0)

state <= S0;

S0 : if (cond1)

state <= S1;

...

...

S1 : if (cond2)

state <= INIT;

endcase

// Les sorties

if (state == INIT) begin

output1 <= f1(inputs ...)

end

else if (state == S0) begin

output1 <= f2(inputs ...)...

end

else if (state == S0) begin

output1 <= f3(inputs ...)

end

end

staten_state

inputs outputs

always_ff

64/69 SE204 Tarik Graba P1-2016/2017



Plan

La logique combinatoire
Exemples

La généricité

Logique séquentielle synchrone
Exemples

Machines à états finis
Machines de Moore
Machines de Mealy
Machines de Mealy resynchronisées

Modélisation des mémoires

65/69 SE204 Tarik Graba P1-2016/2017



Mémoire synchrone
mémoire simple port

un bus d’adresse
2 bus pour les données:

• écriture
• lecture

des signaux de contôle
une horloge
PAS DE RESET
On ne peut accéder qu’à
un seul élément dans le
même cycle!

8

8

sram
8

Do

Addr

Di

wr

clk

66/69 SE204 Tarik Graba P1-2016/2017



Mémoire synchrone
mémoire simple port

un bus d’adresse
2 bus pour les données:

• écriture
• lecture

des signaux de contôle
une horloge
PAS DE RESET
On ne peut accéder qu’à
un seul élément dans le
même cycle!

module sram(input clk, wr,

input [7:0] Addr,

input [7:0] Di,

output logic [7:0] Do );

logic[7:0] mem [0:255];

always_ff @(posedge clk)

begin

if (wr)

mem[Addr] <= Di;

Do <= mem[Addr];

end

endmodule

66/69 SE204 Tarik Graba P1-2016/2017



Mémoire synchrone
mémoire simple port

un bus d’adresse
2 bus pour les données:

• écriture
• lecture

des signaux de contôle
une horloge
PAS DE RESET
On ne peut accéder qu’à
un seul élément dans le
même cycle!

module sram(input clk, wr,

input [7:0] Addr,

input [7:0] Di,

output [7:0] Do );

logic[7:0] mem [0:255];

logic[7:0] Addr_r;

always_ff @(posedge clk)

begin

if (wr)

mem[Addr] <= Di;

Addr_r <= Addr;

end

assign Do = mem[Addr_r];

endmodule

66/69 SE204 Tarik Graba P1-2016/2017



Mémoire synchrone
mémoire double ports

permet un accès double
l’écriture et la lecture à
la même adresse dans
le même cycle n’est pas
prédictible
pourrait avoir deux
horloges

sram_dp

8

8

8

8 8

8

Addr1

Di1

Do1

wr1

clk

wr2

Do2

Di2

Addr2

67/69 SE204 Tarik Graba P1-2016/2017



Mémoire synchrone
mémoire double ports

permet un accès double
l’écriture et la lecture à
la même adresse dans
le même cycle n’est pas
prédictible
pourrait avoir deux
horloges

module sram_dp(input clk, wr1, wr2,

input [7:0] Addr1, Addr2,

input [7:0] Di1, Di2,

output logic [7:0] Do1, Do2 );

logic[7:0] mem [0:255];

always_ff @(posedge clk)

begin

if (wr1)

mem[Addr1] <= Di1;

Do1 <= mem[Addr1];

end

always_ff @(posedge clk)

begin

if (wr2)

mem[Addr2] <= Di2;

Do2 <= mem[Addr2];

end

endmodule

67/69 SE204 Tarik Graba P1-2016/2017



Mémoire synchrone
Initialisation du contenu

Possible seulement pour
les FPGA
initial est normalement
exclusivement réservé à la
simulation
$readmemh (ou $readmemb )
permet d’initialiser une
table à partir d’un fichier

module sram(input clk, wr,

input [7:0] Addr,

input [7:0] Di,

output logic [7:0] Do );

logic[7:0] mem [0:255];

initial

$readmemh("init.txt", mem);

always_ff @(posedge clk)

begin

if (wr)

mem[Addr] <= Di;

Do <= mem[Addr];

end

endmodule

68/69 SE204 Tarik Graba P1-2016/2017



Mémoire synchrone
ROM synchrone

Possible seulement pour
les FPGA
il suffit d’enlever la
possibilité d’écrire

module rom (input clk,

input [7:0] Addr,

output logic [7:0] Do );

logic[7:0] mem [0:255];

initial

$readmemh("init.txt", mem);

always_ff @(posedge clk)

Do <= mem[Addr];

endmodule

69/69 SE204 Tarik Graba P1-2016/2017


	La logique combinatoire
	Exemples

	La généricité
	Logique séquentielle synchrone
	Exemples

	 Machines à états finis 
	 Machines de Moore
	 Machines de Mealy 
	 Machines de Mealy resynchronisées 

	Modélisation des mémoires

