
GNU Make et Makefiles

…ou comment automatiser un peu les
choses

Alexis Polti

17 septembre 2018 © Alexis Polti SE203page 2

Licence de droits d'usage

Par le téléchargement ou la consultation de ce document, l’utilisateur accepte la licence d’utilisation qui y est
attachée, telle que détaillée dans les dispositions suivantes, et s’engage à la respecter intégralement.

La licence confère à l'utilisateur un droit d'usage sur le document consulté ou téléchargé, totalement ou en partie, dans
les conditions définies ci-après, et à l’exclusion de toute utilisation commerciale.

Le droit d’usage défini par la licence autorise un usage dans un cadre académique, par un utilisateur donnant des cours
dans un établissement d’enseignement secondaire ou supérieur et à l’exclusion expresse des formations commerciales
et notamment de formation continue. Ce droit comprend :

● le droit de reproduire tout ou partie du document sur support informatique ou papier,
● le droit de diffuser tout ou partie du document à destination des élèves ou étudiants.

Aucune modification du document dans son contenu, sa forme ou sa présentation n’est autorisé.

Les mentions relatives à la source du document et/ou à son auteur doivent être conservées dans leur intégralité.

Le droit d’usage défini par la licence est personnel, non exclusif et non transmissible.

Tout autre usage que ceux prévus par la licence est soumis à autorisation préalable et expresse de l’auteur :

alexis.polti@telecom-paristech.fr

Contexte académique } sans modification

17 septembre 2018 © Alexis Polti SE203page 3

tl;dr

Comment ça marche ?
règles explicites et syntaxe de base
règles implicites
variables / variables automatiques
tout (ou presque) est déjà écrit

Conseils :
un bon Makefile est un Makefile court
lancez-vous !

17 septembre 2018 © Alexis Polti SE203page 4

La documentation

Sources de documentation
ce cours...
documentation officielle :

http://www.gnu.org/software/make/manual/
man make

livres :
"Managing projects with GNU Make" - O'Reilly
"Make — A Program for Maintaining Computer Programs" -
S.I. Feldman / BSD and System V manuals.

profs
avant toute question, lisez la documentation officielle...

http://www.gnu.org/software/make/manual/

17 septembre 2018 © Alexis Polti SE203page 5

GNU make

make
permet d'automatiser l'enchaînement de tâches
interdépendantes, en n'effectuant que le minimum
d'opérations nécessaires

Exemples :
compilation
synthèse de code Verilog
transformations batch d'images
…

17 septembre 2018 © Alexis Polti SE203page 6

GNU make

particulièrement adapté quand chaque tâche :
utilise des fichiers
pour produire un ou plusieurs fichiers
→ comparaison de dates de modification des fichiers

particulièrement adapté à la compilation de
programmes (C, C++, Ada, …)

17 septembre 2018 © Alexis Polti SE203page 7

Makefile

Fichier de commande :
1. Tout fichier spécifié par -f
2. GNUmakefile
3. makefile
4. Makefile

contient :
règles
définitions de variables / macros
directives
commentaires

17 septembre 2018 © Alexis Polti SE203page 8

Règles

Une règle indique deux choses :
quand est-ce qu'une cible doit être reconstruite
comment la reconstruire

À partir l'ensemble des règles, make :
construit un arbre de dépendances
examine les dates des dépendances / cibles
détermine le minimum d'actions à effectuer
les effectue

17 septembre 2018 © Alexis Polti SE203page 9

Règles

Règles

● 0 ou plusieurs
● cibles préalables à l'exécution de la tâche

● Commencent par une tabulation
● Liste des commandes à effectuer

● tâche à effectuer
● une ou plusieurs
● généralement : cible = fichier de sortie

cible ... : dépendances ...

 commandes

 ...

 ...

17 septembre 2018 © Alexis Polti SE203page 10

Règles

Quand ?
la cible est reconstruite :

si elle n'a aucune dépendance et qu'elle n'existe pas déjà
ou si une de ses dépendances est plus récente ou inexistante

Comment ?
chaque commande est

affichée, sauf si elle est précédée de @
puis exécutée dans son propre shell

une erreur déclenche l'arrêt de make,
sauf si la commande est précédée de -
ou si make est invoqué avec l'option -k

17 septembre 2018 © Alexis Polti SE203page 11

Règles

Lancement de make
make : reconstruit la première cible du Makefile
make cible : reconstruit la cible spécifiée

Options
-n : simule une exécution de make
-r : supprime les règles pré-écrites
-R : supprime les variables pré-écrites
-k : continue le plus loin possible même en cas d'erreur
-W fichier : simule que fichier vient d'être modifié
-d : affiche tout ce que make tente

17 septembre 2018 © Alexis Polti SE203page 12

Exemple

Exemple

lexer.l

count.c

count.h

lexer.c lexer.o

count.o

count

flex -o gcc -c

gcc -c

gcc

17 septembre 2018 © Alexis Polti SE203page 13

Exemple

Exemple
count: lexer.o count.o

gcc -g lexer.o count.o -lfl -o count

lexer.o: lexer.c
gcc -O2 -g -c lexer.c -o lexer.o

count.o: count.c count.h
gcc -O2 -g -c count.c -o count.o

lexer.c : lexer.l
flex -o lexer.c lexer.l

clean:
rm -f count
rm -f *.o
rm -f lexer.c

17 septembre 2018 © Alexis Polti SE203page 14

Exemple

Exemple
count: lexer.o count.o

gcc -g lexer.o count.o -lfl -o count

lexer.o: lexer.c
gcc -O2 -g -c lexer.c -o lexer.o

count.o: count.c count.h
gcc -O2 -g -c count.c -o count.o

lexer.c : lexer.l
flex -o lexer.c lexer.l

clean:
rm -f count
rm -f *.o
rm -f lexer.c

17 septembre 2018 © Alexis Polti SE203page 15

Exemple

Exemple
count: lexer.o count.o

gcc -g lexer.o count.o -lfl -o count

lexer.o: lexer.c
gcc -O2 -g -c lexer.c -o lexer.o

count.o: count.c count.h
gcc -O2 -g -c count.c -o count.o

lexer.c : lexer.l
flex -o lexer.c lexer.l

clean:
rm -f count
rm -f *.o
rm -f lexer.c

Duplication de code

NOOOOOON !

17 septembre 2018 © Alexis Polti SE203page 16

Où en est-on ?

On a vu
la syntaxe de base
ce qu'il ne faut jamais faire !

On va voir maintenant
les variables
les règles
que tout est déjà écrit : → customisation !

On verra plus tard
les subtilités

17 septembre 2018 © Alexis Polti SE203page 17

Variables

Variables
types :

automatiques
explicites

simple / immédiates
récursives / différées

17 septembre 2018 © Alexis Polti SE203page 18

Variables automatiques

Variables automatiques
$@ : la cible de la règle.

si plusieurs cibles : celle qui est actuellement produite

$^ : les dépendances sans doublon
$< : la première des dépendances
$? : les dépendances plus récentes que la cible
$+ : les dépendances avec doublons
$* : la racine (stem)

17 septembre 2018 © Alexis Polti SE203page 19

Variables explicites

Deux types
immédiates / simples
déférées / récursives

utilisables dans tout contexte
n'importe quel caractère sauf

#
:
=
et espace / tab

sensibles à la casse

17 septembre 2018 © Alexis Polti SE203page 20

Variables explicites

utilisation : $(COMPILE) ${COMPILE}
affectation :

selon le type
les espaces avant le contenu sont ignorés
les espaces après le contenu sont gardés

exemple :
 dir := /foo/bar # répertoire utile
 dir contient maintenant "/foo/bar "

17 septembre 2018 © Alexis Polti SE203page 21

Variables : affectation

Variables simples
CC := $(PREFIX)gcc
lors de la définition, le membre de droite est évalué /expansé et
affecté au membre de gauche

Variables récursives
CC = $(PREFIX)gcc
le membre de droite est stocké verbatim (sans être évalué /
expansé) dans le membre de gauche

Lors de l'affectation de jokers à une variable,
l'expansion n'a lieu qu'au moment de l'utilisation :
OBJS = *.o
OBJS contient "*.o"

17 septembre 2018 © Alexis Polti SE203page 22

Variables : affectation

Opérateurs
+= : pour ajouter quelque chose à la fin
?= : n'affecte que si la variable n'existe pas encore
substitution :
foo := a.o b.o c.o
bar := $(foo:%.o=%.c)

17 septembre 2018 © Alexis Polti SE203page 23

Variables : expansion

Variables : règles d'expansion
dans les affectations :

le membre de gauche est toujours expansé lors de la lecture de
l'affectation
le membre de droite est expansé immédiatement pour :=
pour +=, cela dépend du type de la variable

dans les règles :
les cibles et dépendances sont expansées immédiatement à la
lecture du Makefile
les commandes sont expansées à l'utilisation

17 septembre 2018 © Alexis Polti SE203page 24

Variables : exemple

Corrigez ce Makefile
(sensé afficher l'espace libre de /tmp)

$(OUTPUT_DIR):
 cd $@
 @$(PRINTF) "Free disk space in $@\n"
 @$(DF) $(DF_FLAGS) .

OUTPUT_DIR := /tmp

PRINTF = $(USRBIN)/printf
DF = $(BIN)/df
BIN := /bin
USRBIN := /usr/bin
DF_FLAGS = -h
DF_FLAGS = $(DF_FLAGS) -v

17 septembre 2018 © Alexis Polti SE203page 25

Variables

Variables : d'où viennent-elles ?
de la ligne de commande

exemple : make CFLAGS=-g
prime sur tout, sauf si directive override

du Makefile
c'est ce qu'on vient de voir !

de l'environnement
exemple : CFLAGS=-g make
plus basse des priorités

17 septembre 2018 © Alexis Polti SE203page 26

Variables

Variables spécifiques
spécifiques à une cible particulière
portent sur la cible ainsi que toutes ses dépendances
assignation déferrée jusqu'au début de la construction de la
cible

format :
target: variable = value
target: variable := value
target: variable += value
target: variable ?= value

exemple :
 parser.o truc.o : CPPFLAGS += -DUSE_MALLOC=1

17 septembre 2018 © Alexis Polti SE203page 27

Règles

Quatre type de règles
explicites
génériques
statiques
double ":" (double-colon)

La plupart sont déjà écrites !

17 septembre 2018 © Alexis Polti SE203page 28

Règles explicites

Règles explicites
chaque cible / dépendance est mentionnée explicitement
les dépendances sont cumulatives
exemples :

 kbd.o command.o files.o : command.h

 kbd.o : kbd.c kbd.h
 gcc -c kbd.c -o kbd.o

 command.o : command.c
 gcc -c command.c -o command.o

 files.o : files.c
 gcc -c files.c -o files.o

17 septembre 2018 © Alexis Polti SE203page 29

Règles explicites

Règles explicites
une même règle explicite peut concerner plusieurs
cibles

la dépendance s'applique à chacune des cible
l'action est la même pour chaque cible

 error warning : log.txt
 grep $@ $^ > $@

17 septembre 2018 © Alexis Polti SE203page 30

Règles génériques

Règles génériques
les noms de fichiers sont spécifiés par des expressions
régulières simples.
caractère générique : "%" (racine / stem)
ce caractère n'est pas utilisable dans les commandes.
On y utilise à la place $*
Exemples :

%.o : %.c %.h
 gcc -c $< -o $@

all : error.log warning.log
%.log : output.txt
 grep $* $^ > $@

17 septembre 2018 © Alexis Polti SE203page 31

Règles génériques

Règles génériques
si l'expression régulière ne contient pas de "/" :

les noms de répertoires sont enlevés lors de la recherche de
l'expression régulière
mais sont rajoutés lors de l'utilisation de la racine

Exemple
e%t :

dans la cible : e%t matche src/eat
dans les dépendances : c%r donne src/car
dans les commandes : $* est remplacé par src/a

17 septembre 2018 © Alexis Polti SE203page 32

Règles génériques

Règles génériques
une règle générique possédant plusieurs cibles indique
à make que la commande met à jour toutes ses cibles
en même temps

Exemple

%.tab.c %.tab.h: %.y
 bison -d $<

17 septembre 2018 © Alexis Polti SE203page 33

Règles génériques

Règles génériques
elles sont utilisées en dernier ressort, après avoir
essayé toutes les règles explicites, si les prérequis
existent ou peuvent être construits.

elles peuvent être chaînées :
les fichiers intermédiaires sont alors automatiquement détruits
sauf si on les ajoute en dépendances de .SECONDARY

17 septembre 2018 © Alexis Polti SE203page 34

Exemple

On simplifie notre exemple usuel !

17 septembre 2018 © Alexis Polti SE203page 35

Règles statiques

Règles statiques
permettent de personnaliser l'application d'une règle
générique à un ensemble de fichier

Exemple

file1.o file2.o: %.o: %.c
 $(CC) -Os -DDEBUG -c $< -o $@

17 septembre 2018 © Alexis Polti SE203page 36

Règles « :: »

Règles double-deux-points
anecdotiques....
permettent de modifier la façon dont est construite une cible
selon la dépendance qui déclenche la reconstruction
voir la documentation pour plus de détails

17 septembre 2018 © Alexis Polti SE203page 37

Règles : précisions

Cibles spéciales
.PHONY : indique que la cible n'est pas un fichier, et
qu'elle doit toujours être reconstruite

à quoi cela peut-il servir ?

.INTERMEDIATE

.SECONDARY

.PRECIOUS

.DELETE_ON_ERROR

17 septembre 2018 © Alexis Polti SE203page 38

Où en est-on ?

On a vu
la syntaxe de base
les variables
les règles

On va voir
que tout est déjà écrit : → customisation !
les subtilités

17 septembre 2018 © Alexis Polti SE203page 39

Bonne nouvelle !

Tout (ou presque) est déjà écrit !
des règles génériques et des variables ciblant les
principaux langages ont déjà été pré-écrites

vous avez donc un Makefile par défaut (et propre)
on peut afficher son contenu par make -p -f/dev/nul

vos variables d'environnement sont ajoutés au début du
Makefile par défaut en variables immédiates
votre Makefile est ajouté à la fin du Makefile par défaut

vous pouvez donc :
personnaliser les règles / variables pré-écrites
au besoin, rajouter vos propres règles / variables

17 septembre 2018 © Alexis Polti SE203page 40

Makefile par défaut

Exemple : produire un exécutable à partir d'un fichier C

truc.c truc
gcc -g -O2 truc.c -lm -o truc

 CC = cc
 LINK.c = $(CC) $(CFLAGS) $(CPPFLAGS) $(LDFLAGS) $(TARGET_ARCH)
 %: %.c
 $(LINK.c) $^ $(LOADLIBES) $(LDLIBS) -o $@

 CFLAGS = -g -O2
 LDLIBS = -lm
 all : truc

Déjà écrit

Votre Makefile

17 septembre 2018 © Alexis Polti SE203page 41

Makefile par défaut

Exemple : produire un exécutable à partir de deux fichiers C

hello.c hello.o
gcc -g -O2 hello.c
-c -o hello.o

hello

t.c t.ogcc -g -O2 t2.c
-c -o t2.o

gcc hello.o t.o
-lm -o hello

 CC = cc
 COMPILE.c = $(CC) $(CFLAGS) $(CPPFLAGS) $(TARGET_ARCH) -c
 %.o: %.c
 $(COMPILE.c) $(OUTPUT_OPTION) $<
 LINK.o = $(CC) $(LDFLAGS) $(TARGET_ARCH)
 %: %.o
 $(LINK.o) $^ $(LOADLIBES) $(LDLIBS) -o $@

Déjà écrit

 CFLAGS = -g -O2
 LDLIBS = -lm
 hello : hello.o t2.o

Votre Makefile

17 septembre 2018 © Alexis Polti SE203page 42

Makefile par défaut

Exemple : produire un exécutable à partir de n fichiers C

t1.c t1.o
gcc -g -O2 t1.c
-c -o t1.o

hellot2.c t2.ogcc -g -O2 t2.c
-c -o t2.o

gcc t1.o t2.o t3.o
-lm -o hello

 CFLAGS = -g -O2
 LDLIBS = -lm
 OBJS = t1.o t2.o t3.o
 EXE = hello
 $(EXE) : $(OBJS)
 $(LINK.o) $^ $(LOADLIBES) $(LDLIBS) -o $@

Votre Makefile

t3.c t3.ogcc -g -O2 t3.c
-c -o t3.o

17 septembre 2018 © Alexis Polti SE203page 43

Règles par défaut usuelles

PREPROCESS.S

.S

.S

LINK.s

COMPILE.s

.s

.S

LINK.s

COMPILE.S

.S

COMPILE.cpp

.cpp

COMPILE.C

.C

COMPILE.c

.c

YACC.y

.y

LEX.l

.l

.c

LINK.c

YACC.y

.y

LEX.l

.l

.o .cpp

LINK.cpp

.C

LINK.CLINK.o

exécutable

17 septembre 2018 © Alexis Polti SE203page 44

Où en est-on ?

On a vu
la syntaxe de base
les règles, les variables
que tout est déjà écrit

On va voir
quelques subtilités

17 septembre 2018 © Alexis Polti SE203page 45

Fonctions

Fonctions
$(patsubst search_pattern,replace_pattern,text)

exemple : $(patsubst %.o,%.c,$(OBJECTS))
$(VAR:pattern=replacement) est équivalent
à $(patsubst pattern,replacement,$(VAR))

$(filter pattern...,text)
exemple : C_and_S = $(filter %.c %.s,$(SOURCES))

Il en existe beaucoup d'autres ($shell, $wildcard, …)

17 septembre 2018 © Alexis Polti SE203page 46

Dépendances en C/C++

Dépendances
complexes pour des gros projets : .c, .h, …

on peut les générer automatiquement avec gcc
on les stocke dans des fichiers .d
gcc -MM -MF count.d -MP -MT count.o count.c

ces fichiers sont inclus dans le Makefile grâce à la
directive include
include traite ses arguments comme

des cibles à reconstruire
des dépendances du Makefile

avant toute action, make cherche à reconstruire le Makefile

17 septembre 2018 © Alexis Polti SE203page 47

Dépendances en C/C++

Exemple
SOURCES = count.c lexer.c

count : count.o lexer.o -lfl

-include $(subst .c,.d,$(SOURCES))

%.d : %.c
 $(CC) $(CFLAGS) $(CPPFLAGS) $(TARGET_ARCH) -M -MF $@\
 -MP $<

17 septembre 2018 © Alexis Polti SE203page 48

Dépendances en C/C++

Autre exemple
SOURCES = count.c lexer.c
CFLAGS += -MD -MP

count : count.o lexer.o -lfl

-include $(subst .c,.d,$(SOURCES))

17 septembre 2018 © Alexis Polti SE203page 49

Emplacement des sources

Séparation des sources et déclarations ?
la variable VPATH indique les répertoires additionnels où
chercher les dépendances

la directive vpath permet de faire la même chose type de fichier
par type de fichier

exemple :
 VPATH = ~/src ~/include
 vpath %.c ~/projet/src
 vpath %.h ~/projet/include

17 septembre 2018 © Alexis Polti SE203page 50

Exercice

Écrivez le Makefile du projet que vous trouverez sur le site de l'UE, de
façon à effectuer la compilation ainsi :

arm-none-eabi-gcc -Wall -Werror -g -Og -mthumb -c -o main.o main.c

arm-none-eabi-gcc -Wall -Werror -g -Og -mthumb -c -o t1.o t1.c

arm-none-eabi-gcc -Wall -Werror -g -Og -mthumb -c -o t2.o t2.c

arm-none-eabi-gcc -g -O2 -mthumb -c -o stubs.o libs/stubs.c

arm-none-eabi-gcc -L/opt/mylibs -mthumb main.o t1.o stubs.o t2.o -lm -o hello

On doit pouvoir générer hello en tapant seulement make

N'oubliez pas :

la cible clean
les dépendances en .h
que le Makefile doit être propre et concis !

17 septembre 2018 © Alexis Polti SE203page 51

Licence de droits d'usage

Par le téléchargement ou la consultation de ce document, l’utilisateur accepte la licence d’utilisation qui y est
attachée, telle que détaillée dans les dispositions suivantes, et s’engage à la respecter intégralement.

La licence confère à l'utilisateur un droit d'usage sur le document consulté ou téléchargé, totalement ou en partie, dans
les conditions définies ci-après, et à l’exclusion de toute utilisation commerciale.

Le droit d’usage défini par la licence autorise un usage dans un cadre académique, par un utilisateur donnant des cours
dans un établissement d’enseignement secondaire ou supérieur et à l’exclusion expresse des formations commerciales
et notamment de formation continue. Ce droit comprend :

● le droit de reproduire tout ou partie du document sur support informatique ou papier,
● le droit de diffuser tout ou partie du document à destination des élèves ou étudiants.

Aucune modification du document dans son contenu, sa forme ou sa présentation n’est autorisé.

Les mentions relatives à la source du document et/ou à son auteur doivent être conservées dans leur intégralité.

Le droit d’usage défini par la licence est personnel, non exclusif et non transmissible.

Tout autre usage que ceux prévus par la licence est soumis à autorisation préalable et expresse de l’auteur :

alexis.polti@telecom-paristech.fr

Contexte académique } sans modification

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43
	Diapo 44
	Diapo 45
	Diapo 46
	Diapo 47
	Diapo 48
	Diapo 49
	Diapo 50
	Diapo 51

