
ChibiOS
SE302

Samuel TARDIEU
samuel.tardieu@telecom-paris.fr
Septembre 2019



Plan

Services du système d’exploitation

Anatomie d’une application

2/23 Télécom Paris SE302 – Samuel Tardieu Septembre 2019



Caractéristiques principales (1/2)

logiciel libre ;
supporte un grand nombre de micro-contrôleurs ;
système temps-réel multi-tâches préemptif ;
se combine avec l’application finale lors de la compilation
et de l’édition de liens ;
existe en deux variantes : RT (complet, mais très efficace)
et NIL (minuscule, avec moins de services de haut
niveau) ;
existe sous cinq licences : GPL (pour évaluation et
développement interne), GPL + exception non
contaminante, version commerciale gratuite (en échange
de publicité pour ChibiOS) et versions commerciales
payantes petits/moyens volumes ou grands volumes.

3/23 Télécom Paris SE302 – Samuel Tardieu Septembre 2019



Caractéristiques principales (2/2)

initialisation statique possible de toutes les structures de
données ;
aucune limite arbitraire codée en dur ;
peu d’opportunités d’erreurs dans l’API ;
possède un HAL (hardware abstraction layer ) permettant
de s’abstraire des opérations de bas niveau et un EX
(external devices) gérant les composants externes (IMU,
etc.) ;
se charge des opérations d’initialisation du système ;
s’intègre avec d’autres logiciels libres (systèmes de
fichiers, piles réseau, etc.) ;
est activement maintenu (ChibiOS 19.1.3 est sorti en juillet
2019).

4/23 Télécom Paris SE302 – Samuel Tardieu Septembre 2019



Threads

ChibiOS permet d’utiliser un nombre quelconque de threads
qui s’exécuteront de manière concurrente.

Chaque thread a une priorité, qui peut être dynamique si
cette option est activée.
Seuls les threads de plus haute priorité parmi ceux qui sont
prêts à s’exécuter ont accès au CPU, en mode round-robin
configurable (quantum de temps) ou désactivable..
Les threads peuvent être suspendus par eux-même ou par
d’autres (à éviter !) et redémarrés.
Les threads peuvent se synchroniser, se donner
rendez-vous, etc.

En SE302 et en projet, on souhaite ne jamais stopper un
thread depuis un autre.

5/23 Télécom Paris SE302 – Samuel Tardieu Septembre 2019



Gestion du temps

ChibiOS offre un système complet de gestion du temps :
Le programme a accès aux timers matériel : timers précis,
configurables, compteurs, décompteurs, enregistrant la
date d’événements externes.
Le programme a accès à un nombre quelconque de timers
virtuels, implémentés en utilisant un timer matériel, avec
possibilité de callback (RT).
Les primitives bloquantes de synchronisation vues par la
suite disposent toutes de possibilité d’expiration (timeout).
Le système peut fonctionner sans timer périodique (mode
tickless).

6/23 Télécom Paris SE302 – Samuel Tardieu Septembre 2019



Outils de synchronisation (1/2)

ChibiOS offre un large choix d’outils de synchronisation :

Les sémaphores (compteurs, et binaires dans RT)
permettent de produire des ressources ou d’attendre leur
production.

⇒ déblocage d’un thread par une ISR

Les verrous (mutex, RT) permettent de protéger une
section critique. On ne peut relâcher que le dernier mutex
acquis.

⇒ accès à un écran LCD partagé

Les variables conditionnelles (RT) permettent de
synchroniser des tâches sur une condition à vérifier, à
utiliser avec les mutex.

⇒ attente d’une étape dans un programme

7/23 Télécom Paris SE302 – Samuel Tardieu Septembre 2019



Outils de synchronisation (1/2)

ChibiOS offre un large choix d’outils de synchronisation :

Les sémaphores (compteurs, et binaires dans RT)
permettent de produire des ressources ou d’attendre leur
production.

⇒ déblocage d’un thread par une ISR
Les verrous (mutex, RT) permettent de protéger une
section critique. On ne peut relâcher que le dernier mutex
acquis.

⇒ accès à un écran LCD partagé

Les variables conditionnelles (RT) permettent de
synchroniser des tâches sur une condition à vérifier, à
utiliser avec les mutex.

⇒ attente d’une étape dans un programme

7/23 Télécom Paris SE302 – Samuel Tardieu Septembre 2019



Outils de synchronisation (1/2)

ChibiOS offre un large choix d’outils de synchronisation :

Les sémaphores (compteurs, et binaires dans RT)
permettent de produire des ressources ou d’attendre leur
production.

⇒ déblocage d’un thread par une ISR
Les verrous (mutex, RT) permettent de protéger une
section critique. On ne peut relâcher que le dernier mutex
acquis.

⇒ accès à un écran LCD partagé
Les variables conditionnelles (RT) permettent de
synchroniser des tâches sur une condition à vérifier, à
utiliser avec les mutex.

⇒ attente d’une étape dans un programme

7/23 Télécom Paris SE302 – Samuel Tardieu Septembre 2019



Outils de synchronisation (1/2)

ChibiOS offre un large choix d’outils de synchronisation :

Les sémaphores (compteurs, et binaires dans RT)
permettent de produire des ressources ou d’attendre leur
production.

⇒ déblocage d’un thread par une ISR
Les verrous (mutex, RT) permettent de protéger une
section critique. On ne peut relâcher que le dernier mutex
acquis.

⇒ accès à un écran LCD partagé
Les variables conditionnelles (RT) permettent de
synchroniser des tâches sur une condition à vérifier, à
utiliser avec les mutex.

⇒ attente d’une étape dans un programme

7/23 Télécom Paris SE302 – Samuel Tardieu Septembre 2019



Outils de synchronisation (2/2)

Les événements permettent d’associer librement des
producteurs d’événements à des consommateurs.

⇒ appui sur un bouton poussoir

Les boîtes à lettres (RT) permettent de poster des
informations (idéalement immutables) destinées à d’autres
threads de manière asynchrone.

⇒ caractères lus depuis RS232 envoyés par l’ISR

Les messages (RT) permettent d’échanger des
informations (qui peuvent être mutables) de manière
synchrone entre threads.

⇒ passage sans copie d’un buffer réseau

8/23 Télécom Paris SE302 – Samuel Tardieu Septembre 2019



Outils de synchronisation (2/2)

Les événements permettent d’associer librement des
producteurs d’événements à des consommateurs.

⇒ appui sur un bouton poussoir
Les boîtes à lettres (RT) permettent de poster des
informations (idéalement immutables) destinées à d’autres
threads de manière asynchrone.

⇒ caractères lus depuis RS232 envoyés par l’ISR

Les messages (RT) permettent d’échanger des
informations (qui peuvent être mutables) de manière
synchrone entre threads.

⇒ passage sans copie d’un buffer réseau

8/23 Télécom Paris SE302 – Samuel Tardieu Septembre 2019



Outils de synchronisation (2/2)

Les événements permettent d’associer librement des
producteurs d’événements à des consommateurs.

⇒ appui sur un bouton poussoir
Les boîtes à lettres (RT) permettent de poster des
informations (idéalement immutables) destinées à d’autres
threads de manière asynchrone.

⇒ caractères lus depuis RS232 envoyés par l’ISR
Les messages (RT) permettent d’échanger des
informations (qui peuvent être mutables) de manière
synchrone entre threads.

⇒ passage sans copie d’un buffer réseau

8/23 Télécom Paris SE302 – Samuel Tardieu Septembre 2019



Outils de synchronisation (2/2)

Les événements permettent d’associer librement des
producteurs d’événements à des consommateurs.

⇒ appui sur un bouton poussoir
Les boîtes à lettres (RT) permettent de poster des
informations (idéalement immutables) destinées à d’autres
threads de manière asynchrone.

⇒ caractères lus depuis RS232 envoyés par l’ISR
Les messages (RT) permettent d’échanger des
informations (qui peuvent être mutables) de manière
synchrone entre threads.

⇒ passage sans copie d’un buffer réseau

8/23 Télécom Paris SE302 – Samuel Tardieu Septembre 2019



Gestion de la mémoire

Par défaut, dans ChibiOS, tout est géré en statique. Il existe
toutefois, lorsque cela est indispensable :

des primitives pour gérer un ou plusieurs tas séparés,
utilisant l’algorithme first fit ;
des primitives pour gérer des allocateurs de taille fixe
(pools), à préférer aux tas ;
des primitives pour créer dynamiquement des threads.

Il est fortement conseillé de se restreindre à des allocations
purement statiques : lorsque l’édition de liens se termine avec
succès, on sait qu’aucun problème d’allocation mémoire ne
pourra plus survenir.

9/23 Télécom Paris SE302 – Samuel Tardieu Septembre 2019



Threads, mémoire et pile

Lors de la création d’un thread, il faut fournir une zone utilisable
comme pile pour stocker les données temporaires et la pile
d’appel :

Si cette zone est trop petite, il y a un risque de
débordement de pile, entraînant en général une corruption
silencieuse de la mémoire.
Si elle est trop grande, il y a gaspillage de ressources.

Cette taille est compliquée à évaluer, et il faut utiliser tous les
outils mis à disposition pour vérifier qu’elle est suffisante. Il faut
également limiter l’allocation d’objets volumineux sur la pile
(utilisation de static et de synchronisation).

10/23 Télécom Paris SE302 – Samuel Tardieu Septembre 2019



Flux et canaux de communication

ChibiOS fournit, en C, une interface en mode « orienté objet »
permettant d’utiliser (en RT) :

des flux abstraits ;
des canaux d’entrées/sorties abstraits construits sur les
flux ;
des files d’entrées/sorties construites sur les canaux.

Voir la documentation pour plus d’informations.

11/23 Télécom Paris SE302 – Samuel Tardieu Septembre 2019



Pilotes de périphériques

Les pilotes de périphériques (device drivers) de ChibiOS sont
divisés en deux catégories :

1. Les pilotes de périphériques physiques, conçus en deux
parties :
le haut niveau qui assure une API commune ;
le bas niveau qui est spécifique à l’architecture.

⇒ un pilote SPI sur STM32
⇒ un pilote SPI en bit-banging

2. Les pilotes de périphériques complexes, qui utilisent
d’autres pilotes pour accéder au matériel.

⇒ un pilote de SD-card qui utilise un pilote SPI

12/23 Télécom Paris SE302 – Samuel Tardieu Septembre 2019



Pilotes de périphériques

Les pilotes de périphériques (device drivers) de ChibiOS sont
divisés en deux catégories :

1. Les pilotes de périphériques physiques, conçus en deux
parties :
le haut niveau qui assure une API commune ;
le bas niveau qui est spécifique à l’architecture.

⇒ un pilote SPI sur STM32

⇒ un pilote SPI en bit-banging

2. Les pilotes de périphériques complexes, qui utilisent
d’autres pilotes pour accéder au matériel.

⇒ un pilote de SD-card qui utilise un pilote SPI

12/23 Télécom Paris SE302 – Samuel Tardieu Septembre 2019



Pilotes de périphériques

Les pilotes de périphériques (device drivers) de ChibiOS sont
divisés en deux catégories :

1. Les pilotes de périphériques physiques, conçus en deux
parties :
le haut niveau qui assure une API commune ;
le bas niveau qui est spécifique à l’architecture.

⇒ un pilote SPI sur STM32
⇒ un pilote SPI en bit-banging

2. Les pilotes de périphériques complexes, qui utilisent
d’autres pilotes pour accéder au matériel.

⇒ un pilote de SD-card qui utilise un pilote SPI

12/23 Télécom Paris SE302 – Samuel Tardieu Septembre 2019



Pilotes de périphériques

Les pilotes de périphériques (device drivers) de ChibiOS sont
divisés en deux catégories :

1. Les pilotes de périphériques physiques, conçus en deux
parties :
le haut niveau qui assure une API commune ;
le bas niveau qui est spécifique à l’architecture.

⇒ un pilote SPI sur STM32
⇒ un pilote SPI en bit-banging

2. Les pilotes de périphériques complexes, qui utilisent
d’autres pilotes pour accéder au matériel.

⇒ un pilote de SD-card qui utilise un pilote SPI

12/23 Télécom Paris SE302 – Samuel Tardieu Septembre 2019



Classes d’interruptions

ChibiOS supporte trois types d’interruptions :

Interruptions classiques : elles peuvent être temporairement
masquées par le noyau pour des périodes très courtes.

Interruptions rapides : celles-ci ne peuvent pas être retardées
par le noyau qu’elles peuvent préempter. Par contre,
elles ne peuvent pas utiliser ses services, car le noyau
ChibiOS pouvant être interrompu à n’importe quel
moment, les structures internes peuvent ne pas être
dans un état stable. Elles peuvent utiliser des zones de
mémoire partagées avec l’application.

Interruptions non masquables : elles sont très rapides, mais
n’ont aucune possibilité d’accès aux services du
système.

13/23 Télécom Paris SE302 – Samuel Tardieu Septembre 2019



États du système

Un système ChibiOS, après l’initialisation, est dans un des état
suivants :

Thread : toutes les API normales sont utilisables, les
threads s’exécutent.

S-Locked : les interruptions classiques sont masquées (mais
pas les rapides), seules les primitives de classe S
et de classe I peuvent être invoquées.

I-Locked : toutes les interruptions masquables sont
masquées, seules les primitives de classe I
peuvent être invoquées.

Pour la liste complète, voir
http://chibios.sourceforge.net/html/concepts.html

14/23 Télécom Paris SE302 – Samuel Tardieu Septembre 2019

http://chibios.sourceforge.net/html/concepts.html


Primitives du noyau

Les primitives sont construites selon la notation
ch<group><action><suffix>, comme par exemple
chSemSignalI(). Les suffixes sont :
sans suffixe : utilisables depuis l’état thread (normal).

S : utilisables depuis l’état S-locked.
I : utilisables depuis les états I-locked et S-locked.

Depuis l’état S-locked, il faut forcer un
rescheduling avant de sortir de la zone critique.

X : utilisables depuis les trois états ci-dessus.
FromIsr : (en nombre réduit) utilisables depuis certaines

routines de gestion d’interruptions classiques.
Certaines fonctions sans suffixe exposent leurs contraintes
dans la documentation.

15/23 Télécom Paris SE302 – Samuel Tardieu Septembre 2019



Niveaux de priorités

Il est indispensable, pour chaque tâche, de réfléchir au niveau
de priorité souhaité. Les niveaux prédéfinis sont, du moins
prioritaire au plus prioritaire :
IDLEPRIO : réservé à l’idle thread ;
LOWPRIO : plus bas niveau utilisable pour le code utilisateur ;

NORMALPRIO : au centre de la hiérarchie, destiné à être utilisé en
relatif (NORMALPRIO - 1, NORMALPRIO + 4) ;

HIGHPRIO : plus haut niveau utilisable pour le code utilisateur ;
ABSPRIO : maximum absolu de l’espace des priorités

réservées au système.

16/23 Télécom Paris SE302 – Samuel Tardieu Septembre 2019



Initialisation statique

ChibiOS fournit des macros suffixées par _DECL permettant de
déclaré des objets dans un état initialisé.

// Case 1: semaphore "sem" needs to be initialized at run time.
static semaphore_t sem;
int main() {

chSysInit(); // Initialize ChibiOS run time
...
chSemObjectInit(&sem, 5); // Initialize semaphore sem
...

}

// Case 2: semaphore "sem" is declared and initialized
// at compilation time in the "data" section through the
// SEMAPHORE_DECL macro.
static SEMAPHORE_DECL(sem, 5);

17/23 Télécom Paris SE302 – Samuel Tardieu Septembre 2019



Utilitaires divers

ChibiOS vient avec des utilitaires qui peuvent être utilisées
dans une application :

Des evénéments périodiques peuvent être générés et
utilisés par plusieurs threads.
Un interpréteur de commande (command shell)
extensible peut être connecté à un flux d’entrée-sortie.
Un formatteur similaire à sprintf permet de formatter des
données diverses sur un flux de sortie.

18/23 Télécom Paris SE302 – Samuel Tardieu Septembre 2019



Plan

Services du système d’exploitation

Anatomie d’une application

19/23 Télécom Paris SE302 – Samuel Tardieu Septembre 2019



Organisation des répertoires

Les répertoires importants sont :
boards/ contient un répertoire par carte (board)

décrivant les caractéristiques propres à la
carte

os/ contient le noyau de ChibiOS et les pilotes de
périphériques

<votre projet>/ contiendra votre projet (directement ou dans
un sous-répertoire), faisant indirectement
référence aux autres répertoires

Tous les répertoires que vous créérez peuvent l’être à
l’extérieur des sources de ChibiOS, facilitant ainsi la migration
vers une nouvelle version de l’OS.

20/23 Télécom Paris SE302 – Samuel Tardieu Septembre 2019



Description d’une carte

Les fichiers décrivant une carte sont :

board.mk fragment de Makefile décrivant comment accéder
aux fichiers source et aux fichiers d’entête

board.h valeur initiale de configuration des périphériques
(GPIO) et prototypes des méthodes spécifiques à
cette carte

board.c fonctions d’initialisations spécifiques de la carte
autres fichiers implémentant les accès aux périphériques

de la carte

21/23 Télécom Paris SE302 – Samuel Tardieu Septembre 2019



Configuration d’une application

La configuration d’une application ChibiOS se fait à l’aide de
quatre fichiers (on part en général d’un modèle) :

chconf.h sélectionne et paramètre les services du noyau
ChibiOS utilisés par l’application ;

halconf.h sélectionne et paramètre les périphériques utilisés
par l’application ;

mcuconf.h contrôle la configuration du micro-contrôleur
(horloges, etc.).

Makefile indique les répertoires source et les fichiers
utilisés, ainsi que les fragments à inclure (par
exemple le board.mk) décrit ci-avant.

22/23 Télécom Paris SE302 – Samuel Tardieu Septembre 2019



Outils de debug
Un certain nombre de paramètres permettent de configurer les
vérifications effectuées par l’exécutif de ChibiOS. Citons par
exemple :
CH_DBG_SYSTEM_STATE_CHECK : vérifie la classe (normal, S, I,

FromIsr) des fonctions et du contexte d’appel
CH_DBG_ENABLE_CHECKS : vérifie la validité des paramètres

donnés à l’API de ChibiOS
CH_DBG_ENABLE_ASSERTS : insère des points de vérification de

cohérence du système
CH_DBG_ENABLE_STACK_CHECK : vérifie l’absence de

débordement de pile

Ces paramètres sont généralement utilisés lors du
développement (obligatoires en SE302 et en projet) et
désactivés lors de la mise en production.

23/23 Télécom Paris SE302 – Samuel Tardieu Septembre 2019


	Services du système d'exploitation
	Anatomie d'une application

