

Institut
Mines-Télécom

Reliability

Embedded Systems

Lirida Alves de Barros-Naviner
Master Program

Outline

Introduction

Dependability
Electronics

System Analysis

Deterministic Models
Probabilistic Models
Lifetime Models
Markov Chain

Conclusions

Outline

Introduction

Dependability
Electronics

System Analysis

Conclusions

Table of Contents

Introduction

Dependability
Electronics

System Analysis

Deterministic Models
Probabilistic Models
Lifetime Models
Markov Chain

Conclusions

Dependability

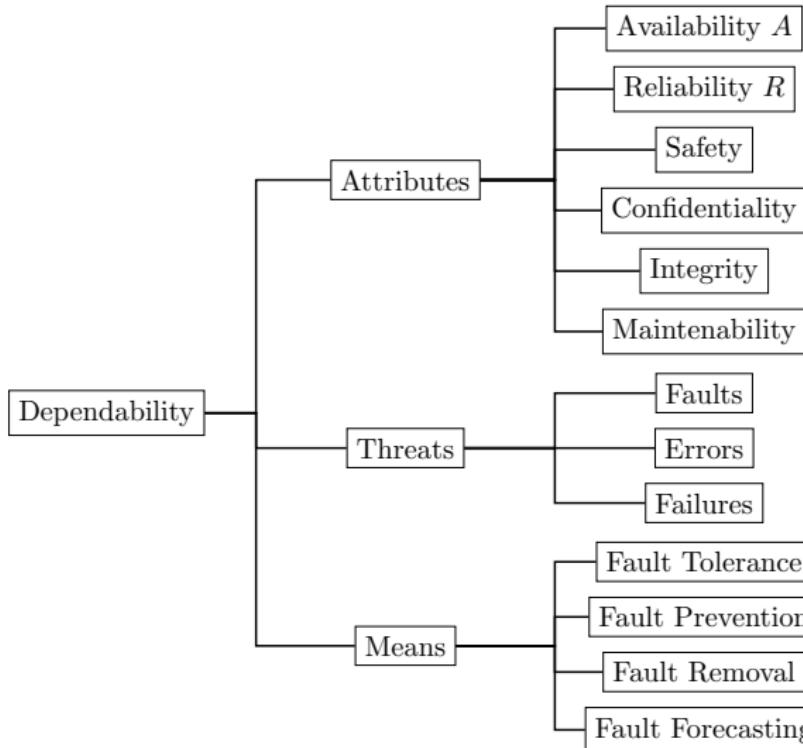
Definition

Dependability is the ability of a system to deliver service that can *justifiably* be trusted.

Definition

Dependability is the ability of a system to avoid *service failures* that are *more frequent or more severe* than is *acceptable*.

Taxonomy



Dependability Attributes

- **Availability:** readiness for correct service.
- **Reliability:** continuity of correct service.
- **Safety:** absence of catastrophic consequences on the user(s) and the environment.
- **Integrity:** absence of improper system alterations.
- **Maintainability:** ability to undergo modifications and repairs.

Dependability Threats

- **Fault:** an *unexpected (incorrect) condition* that can lead the system to achieve *abnormal states*. A fault can lead to an error.
- **Error:** an *undesired (incorrect) state* of the system. An error can lead to an incorrect response of the system.
- **Failure:** an *incorrect response* of the system. It means the service provided by the system differs from the expected one.

Means to Ensure Dependability

- **Fault prevention:** avoid things go wrong!
- **Fault tolerance:** deal with, when things go wrong!
- **Fault removal:** make it right, if things went wrong!
- **Fault forecasting:** be aware of how wrong things can go

Commun Measures

- Failure Rate
- Mean Time to Failure
- Mean Time to Repair
- Availability
- Mean Time Between Failures
- Fault Coverage

Failure Rate

Definition

The **failure rate** λ is the expected number of failures per unit time.

- For a system with n components λ can be estimated as:

$$\lambda = \sum_{i=1}^n \lambda_i$$

n independent components

$$\lambda = \sum_{i=1}^n \lambda_i$$

Mean Time to Failure

Definition

The **Mean Time to Failure (MTTF)** of a system is the expected time of the occurrence of the first system failure.

n components

$$\text{MTTF} = \frac{1}{n} \sum_{i=1}^n t_i$$

Failures In Time

$$\text{FIT} = \frac{10^9}{\text{MTTF}}$$

Mean Time to Repair

Definition

The **Mean Time to Repair (MTTR)** of a system is the average time required to repair the system.

- MTTR is often given in terms of the repair rate μ , which is the expected number of repairs per unit of time

$$\text{MTTR} = \frac{1}{\mu}$$

Availability

Definition

Instantaneous availability $A(t)$ is the probability the system operates at time t .

- **Interval availability** stands for the average of $A(t)$ over a mission period:

$$A(T) = \frac{1}{T} \int_0^T A(t) dt$$

- **Steady-state availability** applies when availability is time independent:

$$A(\infty) = \lim_{T \rightarrow \infty} A(T) = \frac{n \times MTTF}{n \times MTTF + n \times MTTR} = \frac{\mu}{\mu + \lambda}$$

- Supposes n failures during lifetime

Mean Time Between Failures

Definition

The **Mean Time Between Failures (MTBF)** is the average time between failures of the system.

$$\text{MTBF} = \text{MTTF} + \text{MTTR}$$

$$\text{MTBF} = \frac{\text{MTTF}}{A(\infty)}$$

Assuming repair makes the item perfect

Fault Coverage

Definition

The **Fault Coverage** FC is the conditional probability related to expected actions when faults occurs.

- $FC = P(\text{detected faults} \mid \text{existent faults})$
- $FC = P(\text{located faults} \mid \text{existent faults})$
- $FC = P(\text{recovered faults} \mid \text{existent faults})$
- $FC = P(\text{contained faults} \mid \text{existent faults})$

Table of Contents

Introduction

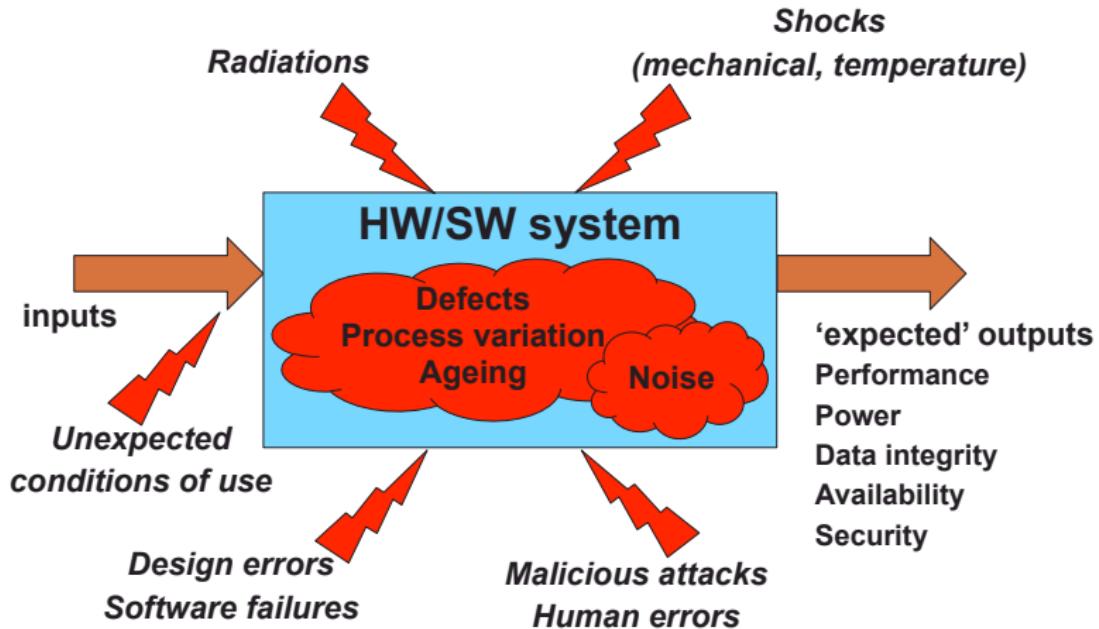
Dependability
Electronics

System Analysis

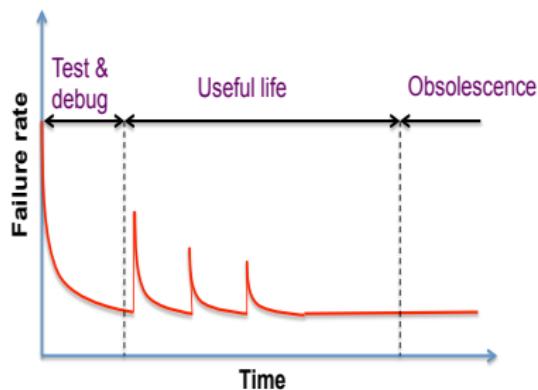
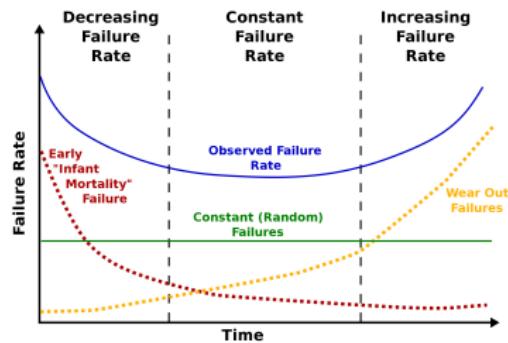
Deterministic Models
Probabilistic Models
Lifetime Models
Markov Chain

Conclusions

What About Embedded Systems?



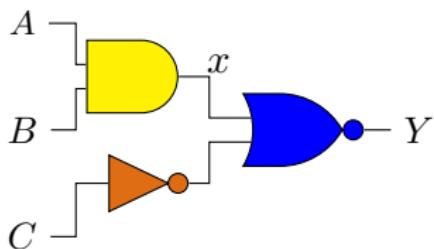
SW and HW Faults



Default/Fault Propagation

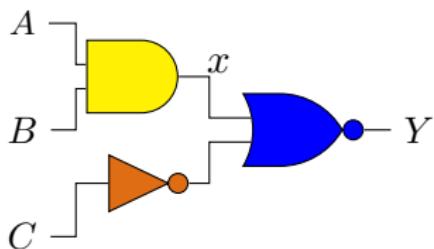


Fault Models: Bit-flip and Stuck-at



A	B	C	x	Y
0	0	0	0	0
0	0	1	0	1
0	1	0	0	0
0	1	1	0	1
1	0	0	0	0
1	0	1	0	1
1	1	0	1	0
1	1	1	1	0

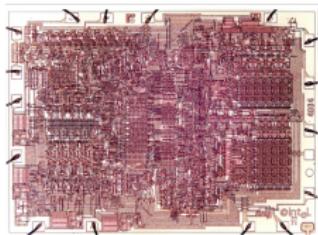
Fault Models: Bit-flip and Stuck-at



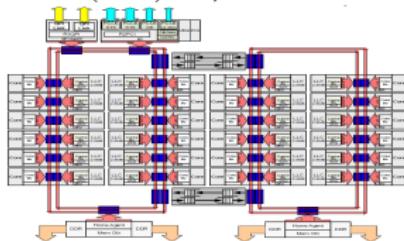
A	B	C	x	Y
0	0	0	1	0
0	0	1	1	0
0	1	0	1	0
0	1	1	1	0
1	0	0	1	0
1	0	1	1	0
1	1	0	1	0
1	1	1	1	0

Advances in CMOS

- Moore's law (popular form): $2 \times N_{tr}/mm^2$ every 18 months



Intel 4004 (1971): $10\mu m$ and 2.3×10^3 tr



Intel 22-core Xeon Broadwell-E5-2699Rv4 (2016):
 $14nm$ and 7.2×10^9 tr

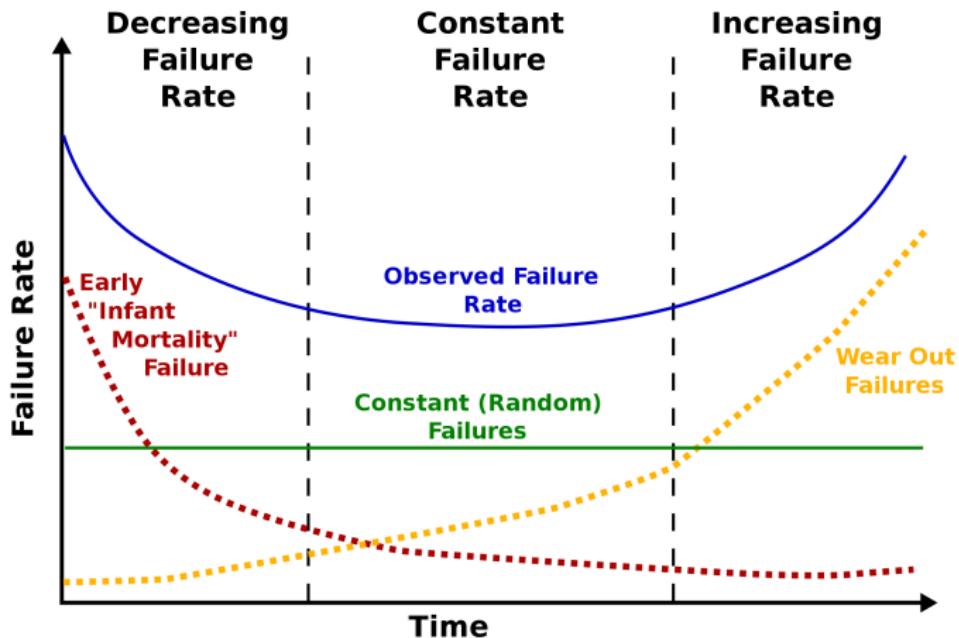
■ Scaling issues

- Design complexity, test challenge, low power voltage
- Variability – Modelling
- Sensitivity to unscaled environmental disturbances

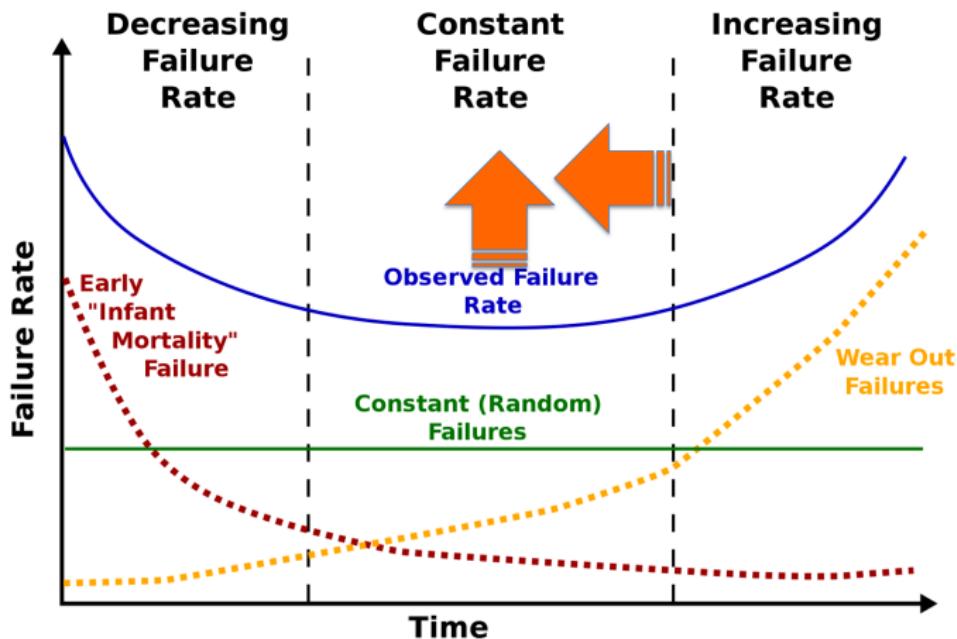
■ Scaling effects

- Yield decrease
- Reliability decrease

Scaling and Reliability



Scaling and Reliability



Outline

Introduction

System Analysis

Deterministic Models

Probabilistic Models

Lifetime Models

Markov Chain

Conclusions

Table of Contents

Introduction

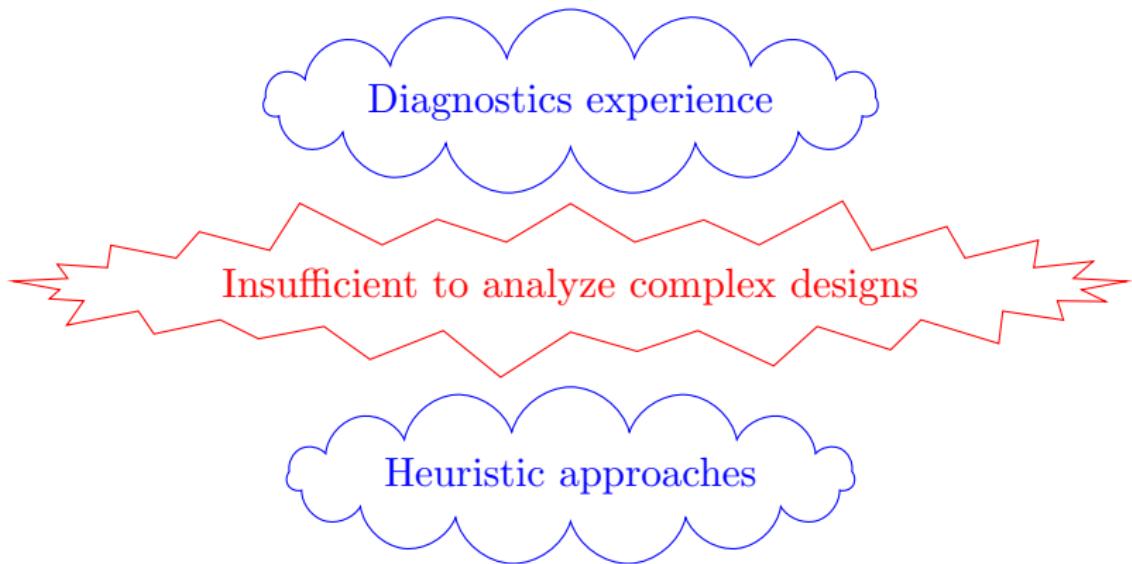
Dependability
Electronics

System Analysis

Deterministic Models
Probabilistic Models
Lifetime Models
Markov Chain

Conclusions

Traditional Approaches



Prior to Beginning

- We focus on system modeling
- We consider the system consists of several components:
 c_1, c_2, \dots, c_n
- We look for a function that enables reliability analysis

Deterministic Model

Definition

The **state of a component** c_i is defined as

$$x_i = \begin{cases} 0 & \text{if the component } c_i \text{ is not fonctionning} \\ 1 & \text{if the component } c_i \text{ is functionning} \end{cases}$$

Definition

The **state set** is defined as the vector composed by the components states

$$\mathbf{x} = (x_1 x_2 \cdots x_n)$$

Deterministic Model (cont.)

Definition

The **system state** is defined as

$$\xi(\mathbf{x}) = \begin{cases} 0 & \text{if the system is not functioning with state set } \mathbf{x} \\ 1 & \text{if the system is functioning with state set } \mathbf{x} \end{cases}$$

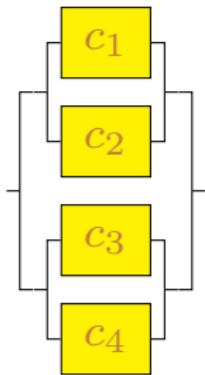
Reliability Block Diagram

- Static representation (no reference to time)
- Each component represented by a block
- Based on logic (Boolean algebra)
- Independence of components failures
- Behavior facing faults represented by the connections between blocks

Series System

$$\begin{aligned}\xi(\mathbf{x}) &= \begin{cases} 0 & \text{if there exists an } i \text{ such that } x_i = 0 \\ 1 & \text{if } x_i = 1 \text{ for all } i \in [1; n] \end{cases} \\ &= \prod_{i=1}^n x_i\end{aligned}$$

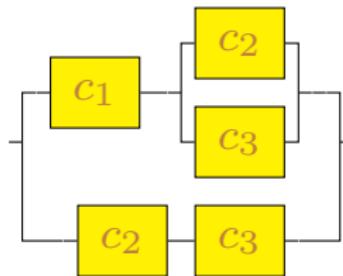
Parallel System



$$\begin{aligned}\xi(\mathbf{x}) &= \begin{cases} 0 & \text{if } x_i = 0 \text{ for all } i \in [1; n] \\ 1 & \text{if there exists an } i \text{ such that } x_i = 1 \end{cases} \\ &= 1 - \prod_{i=1}^n (1 - x_i)\end{aligned}$$

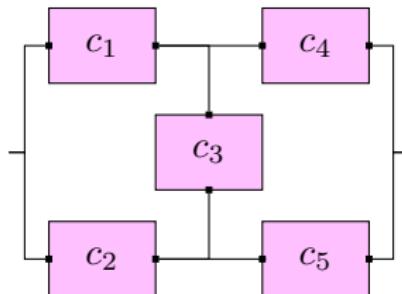
Combined Series-Parallel System

Example: 2 out of 3 structure



$$\xi(\mathbf{x}) = \begin{cases} 0 & \text{if } \sum_{i=1}^n x_i < k \\ 1 & \text{if } \sum_{i=1}^n x_i \geq k \end{cases}$$

Non Series-Parallel System



Coherent System

Definition

A system of n components is **coherent** if its function $\xi(\mathbf{x})$ is nondecreasing in \mathbf{x} and there are no irrelevant components.

Definition

A function $\xi(\mathbf{x})$ is **nondecreasing** in \mathbf{x} if

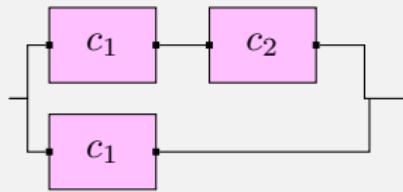
$$\xi(x_1 \cdots x_{i-1} \mathbf{0} x_{i+1} \cdots x_n) \leq \xi(x_1 \cdots x_{i-1} \mathbf{1} x_{i+1} \cdots x_n).$$

Definition

A component c_i is **irrelevant** if its state x_i has no impact on the function $\xi(\mathbf{x})$.

Coherent System (cont.)

A non coherent structure:



Structural Importance

Definition

The **structural importance** of a component c_i in a coherent system of n components is

$$I_\xi(i) = \frac{1}{2^{n-1}} \sum [\xi(1_i, \mathbf{x}) - \xi(0_i, \mathbf{x})]$$

Path Vector

Definition

A **path vector** for a coherent system is a vector \mathbf{x} such as $\xi(\mathbf{x}) = 1$.

Definition

A **minimal path** for a coherent system is a path vector \mathbf{x} such as $\xi(\mathbf{y}) = 0$ for all $\mathbf{y} < \mathbf{x}$.

Definition

Given two vectors \mathbf{x} and \mathbf{y} , $\mathbf{x} < \mathbf{y}$ if and only if $x_i \leq y_i$ for $i = 1, 2, \dots, n$ and $x_i < y_i$ for some i .

Definition

A **minimal path set** P_j for a coherent system is a set with all components associated to a given minimal path vector.

Cut Vector

Definition

A **cut vector** for a coherent system is a vector \mathbf{x} such as $\xi(\mathbf{x}) = 0$.

Definition

A **minimal cut vector** for a coherent system is a cut vector \mathbf{x} such as $\xi(\mathbf{y}) = 1$ for all $\mathbf{y} > \mathbf{x}$.

Definition

A **minimal cut set** C_j for a coherent system is a set with all components associated to a given minimal cut vector.

Minimal Sets and System State

Minimal Path Set

$$\xi(\mathbf{x}) = \max_j \prod_{i \in P_j} x_i = 1 - \prod_{j=1}^l \left[1 - \prod_{i \in P_j} x_i \right]$$

Minimal Cut Set

$$\xi(\mathbf{x}) = \min_j \left[1 - \prod_{i \in C_j} (1 - x_i) \right] = \prod_{j=1}^k \left[1 - \prod_{i \in C_j} (1 - x_i) \right]$$

Table of Contents

Introduction

Dependability
Electronics

System Analysis

Deterministic Models
Probabilistic Models
Lifetime Models
Markov Chain

Conclusions

Probabilistic Model

Definition

The **random state of a component** c_i is defined as

$$X_i = \begin{cases} 0 & \text{if the component } i \text{ has failed} \\ 1 & \text{if the component } i \text{ is functionning} \end{cases}$$

Definition

The **random state of the set of components** in a system is defined as

$$\mathbf{X} = (X_1 X_2 \cdots X_n)$$

Component and System Reliability

Definition

The **reliability of a component** c_i is defined as the *probability* that component c_i is functioning [at prescribed time]

$$R_i = P\{X_i = 1\} = q_i$$

Definition

The **reliability of a coherent system** is defined by

$$R = P\{\xi(\mathbf{X}) = 1\}$$

Alternative Reliability Calculation

Alternative expressions

$$R = P\{\mathbf{X} \text{ is a path vector}\}$$

$$R = 1 - P\{\mathbf{X} \text{ is a cut vector}\}$$

$$R = R(1_i, \mathbf{q}) \cdot q_i + R(0_i, \mathbf{q}) (1 - q_i)$$

Reliability Importance

Definition

The **reliability importance of a component** c_i in a coherent system of n components is given by

$$I_{R_i} = \frac{\partial R(\mathbf{q})}{\partial q_i} = R(1_i, \mathbf{q}) - R(0_i, \mathbf{q})$$

for $i = 1, 2, \dots, n$

Reliability Bounds

Theorem

The reliability of a coherent system of n independent components respects

$$\prod_{i=1}^n q_i \leq R(\mathbf{q}) \leq 1 - \prod_{i=1}^n (1 - q_i)$$

Bounds: Path and Cut Vectors

Theorem

The reliability of a coherent system of independent components, minimal path sets P_1, P_2, \dots, P_l and minimal cut sets C_1, C_2, \dots, C_k respects

$$\prod_{j=1}^k \left[1 - \prod_{i \in C_j} (1 - q_i) \right] \leq R(\mathbf{q}) \leq 1 - \prod_{j=1}^l \left[1 - \prod_{i \in P_j} q_i \right]$$

Table of Contents

Introduction

Dependability
Electronics

System Analysis

Deterministic Models
Probabilistic Models
Lifetime Models
Markov Chain

Conclusions

Lifetime Models

Definition

Reliability is the ability of an item to perform its *required functions* under *stated conditions* and for a *specified period of time* (IEEE definition).

- A *item* or a *component* may mean a simple (i.e logic gate) or a complex system.
- The definition suggests *behaviour item evolution*.

Lifetime Representations

- We denote T a continuos nonnegative random variable that represents the **lifetime** of a item.
 - Note that *time* may stand to hours but also to number of flips, number of km, etc.
- We consider functions that define the distribution of T , representing the **failure time** of a item.

Probability Density Function

Definition

The **probability density function** (PDF) is defined as

$$f(t) = \lim_{\Delta t \rightarrow 0} \frac{P\{t \leq T \leq t + \Delta t\}}{\Delta t}$$

$$f(t) = 0 \text{ for } t < 0 \quad f(t) \geq 0 \text{ for } t \geq 0 \quad \int_0^1 f(t)dt = 1$$

- The PDF indicates the likelihood of failure for any t

Cumulative Distribution Function

- The cumulative distribution function gives the probability that a failure occurs at a time smaller or equal to t is

$$F(t) = \int_{-\infty}^t f(t)dt$$

where $f(t)$ is the probability density function (PDF) of the random variable time to failure.

$$P\{t_1 \leq T \leq t_2\} = \int_{t_1}^{t_2} f(t)dt = F(t_2) - F(t_1)$$

Reliability (or Survivor) Function

Definition

The **reliability function** $R(t)$ is defined as

$$R(t) = R(\mathbf{q}, t) = \dots = P\{T \geq t\} \quad \forall t \geq 0$$

$R(t)$ must be nonincreasing and respect $R(0) = 1$, $\lim_{t \rightarrow \infty} R(t) = 0$

Hazard Function

Definition

The **hazard function** $h(t)$ is defined as the amount of risk associated to an item at time t .

$$h(t) = \frac{f(t)}{R(t)}$$

$$\begin{aligned} h(t) &= \lim_{\Delta t \rightarrow 0} P\{t \leq T \leq t + \Delta t | T \geq t\} \\ &= \lim_{\Delta t \rightarrow 0} \frac{P\{t \leq T \leq t + \Delta t\}}{P\{T \geq t\}} \\ &= \lim_{\Delta t \rightarrow 0} \frac{R(t) - R(t + \Delta t)}{R(t)\Delta t} \\ &= \frac{f(t)}{R(t)} \end{aligned}$$

- $h(t)$ represents the instantaneous **failure rate**.
- $h(t)$ must respect $\int_0^{\infty} h(t)dt = \infty$, $h(t) \geq 0 \quad \forall t \geq 0$

System Lifetime Representation

- Component i
 - Individual representations: $f_i(t)$, $R_i(t)$, $h_i(t)$
 - Individual measures: μ_i , σ_i^2 , $t_{k,i}$
- Combine measures according to the structure function

Example

Reliability of a series structure

$$\begin{aligned} R(t) &= R(R_1(t), R_2(t), \dots, R_n(t)) \\ &= R_1(t) \cdot R_2(t) \cdot \dots \cdot R_n(t) \end{aligned}$$

Lifetime & Depend. Measures

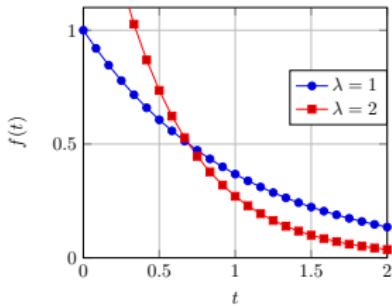
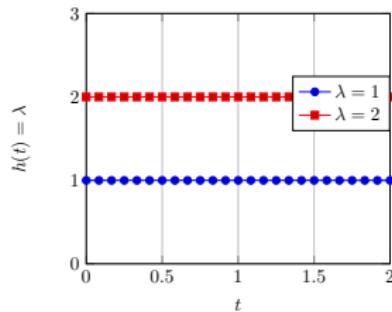
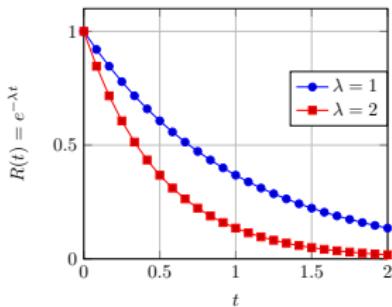
$$\mathbb{E}\{T\} = \int_0^{\infty} tf(t)dt = \int_0^{\infty} R(t)dt$$

- For nonrepairable systems, the mean corresponds to the mean time to failure $MTTF$. It represents the expected value of time before failure.
- For completely repairable items, the mean represents the mean time between failures $MTBF$.

Lifetime Distributions

	Exponential	Weibull	Gamma
$R(t)$	$e^{-\lambda t}$	$e^{-(\lambda t)^\kappa}$	$1 - I(\kappa, \lambda t)$
$f(t)$	$\lambda e^{-\lambda t}$	$\kappa \lambda^\kappa t^{\kappa-1} e^{-(\lambda t)^\kappa}$	$\frac{\lambda}{\Gamma(\kappa)} (\lambda t)^{\kappa-1} e^{-\lambda t}$
$h(t)$	λ	$\kappa \lambda^\kappa t^{\kappa-1}$	$\frac{f(t)}{R(t)}$

Exponential Distribution



Applies for useful life zone in bathtub curve

Table of Contents

Introduction

Dependability
Electronics

System Analysis

Deterministic Models
Probabilistic Models
Lifetime Models
Markov Chain

Conclusions

Markov Chain

Continuous Time Markov Chains (CTMC)

- Memoryless system
- Discrete space
- Exponential distribution
(events at constant rates)

State	Time
Discrete	Discrete
Discrete	Continuous
Continuous	Discrete
Continuous	Continuous

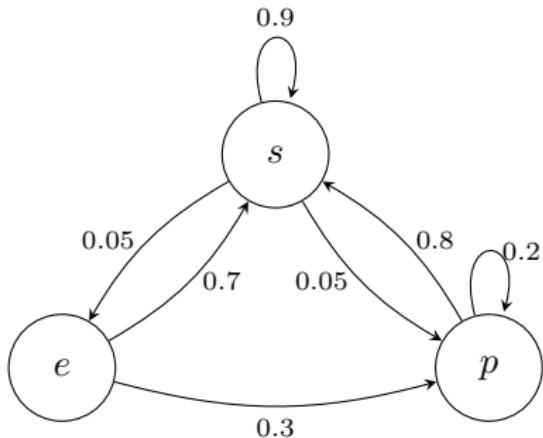
Markov Chain

A lazy, gourmand, and lovely hamster

- When Doudou sleeps, there are 9 chances out of 10 that it will be lying in bed the next minute. When it wakes up, it climbs to its happiness, so there is 1 chance out of 2 that it will be playing and 1 chance out 2 it will be eating.
- Its meals last for one minute and then it starts to play (3 chances out of 10) or it goes to sleep (7 chances out of 10).
- Doudou gets tired quickly. Frequently it goes back to sleep (8 chances out of 10) but, as it loves its spinning wheel, sometimes it continues to play.

- Knowing that Doudou is sleeping now, what will it likely be doing in three minutes?

Markov Chain & Simulation Matrix



$$S = \begin{bmatrix} 0.9 & 0.05 & 0.05 \\ 0.7 & 0 & 0.3 \\ 0.8 & 0 & 0.2 \end{bmatrix}$$

- There are three states: sleep (s), eat (e) and play (p)
- Each element $s_{i,j} \in S$ gives the probability of next state being j given that actual state is i

Simulation Matrix & Behavior

- $P(t) = [P_s(t) \ P_e(t) \ P_p(t)]$ gives the probability of each state for a given time t
- Hypothesis: initial state is s , then
 - $P(0) = [1 \ 0 \ 0]$
- Probability of next states are:
 - $P(1) = P(0).S = [0.9 \ 0.05 \ 0.05]$
 - $P(2) = P(1).S = [0.885 \ 0.045 \ 0.07]$
 - $P(3) = P(2).S = [0.884 \ 0.04425 \ 0.07175]$
- Probability at time n :
$$P(n) = P(n-1).S = P(0)S^n$$

Markov Chain & Transition Matrix

$$P_i(t + dt) = P_i(t) \left[1 - \sum_{j \neq i} s_{i,j}(t) dt \right] + \sum_{j \neq i} P_j(t) s_{j,i} dt$$

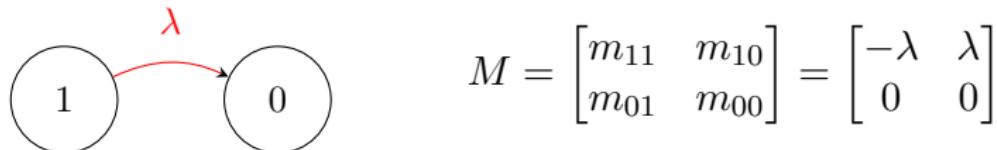
$$\frac{P_i(t + dt) - P_i(t)}{dt} = -P_i(t) \sum_{j \neq i} s_{i,j}(t) dt + \sum_{j \neq i} P_j(t) s_{j,i} dt$$

$$\frac{dP(t)}{dt} = M(t)P(t)$$

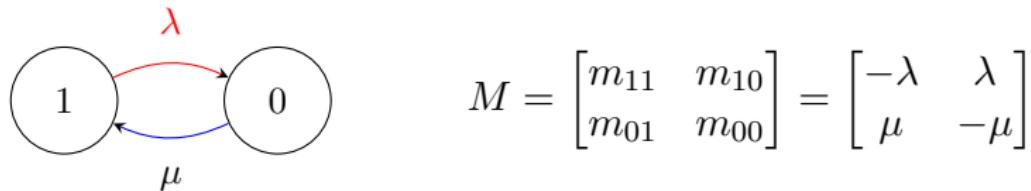
- M is the transition matrix. Each $m_{i,j} \in M$ gives the rate with system passes from state i to state j
 - $m_{i,j, i \neq j} = s_{j,i}$ and $m_{i,i} = \sum_{j \neq i} s_{j,i}$

Markov Chain & Transition Matrix (cont.)

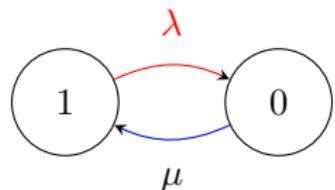
- One component without repair



- One component with repair



State Transition Equations (STE)



$$M = \begin{bmatrix} m_{11} & m_{10} \\ m_{01} & m_{00} \end{bmatrix} = \begin{bmatrix} -\lambda & \lambda \\ \mu & -\mu \end{bmatrix}$$

$$P_1 = \frac{\mu}{\lambda + \mu} \text{ and } P_0 = \frac{\lambda}{\lambda + \mu}$$

$$\begin{aligned} -\lambda P_1 + \mu P_0 &= 0 \\ \lambda P_1 - \mu P_0 &= 0 \\ P_1 + P_0 &= 1 \end{aligned}$$

Reliability and STE

$$R(t) = \sum_{i \in \mathcal{T}} P_i(t)$$

$$R(t) = 1 - \sum_{i \in \mathcal{F}} P_i(t)$$

Assuming repair makes the item perfect, \mathcal{T} is the set of functioning states, \mathcal{F} is the set of failing states

Outline

Introduction

System Analysis

Conclusions

Conclusions

- This course focuses on reliability, which is a dependability's attribute
 - Dependability is an essential quality metric for many systems
- This lesson dealt with different methods for dependability analysis
- The reliability of digital electronics components has specific characteristics
 - Fault models, quality metrics, etc.
- We will explore techniques for reliability improvement and reliability assessment