
Langage assembleur
Exemple de l’assembleur ARM

Tarik Graba
Année scolaire 2020/2021



Plan

Généralités

Spécificités de l’architecture ARM

Jeu d’instructions
Manipulation des données
Transfert des données
Branchements
Exécution conditionnelle

Encodage

Directives d’assemblage

2 P1-2020/2021 SE 203 ARM ASM



Assembleur
Langage

Un processeur interprète des instructions “numériques” (généralement codées en
binaire),

• C’est ce qui est appelé langage machine.
L’assembleur est un langage de programmation bas niveau,

• lisible par l’Homme (représentation textuelle),
• équivalent au langage machine (1↔ 1).

Il est spécifique à chaque processeur et lié à son architecture.

3 P1-2020/2021 SE 203 ARM ASM



Assembleur
Outils

Pour faciliter la programmation, en plus des instructions, les outils permettent de :
• Définir des symboles, des étiquettes, tables
• Des macros–fonctions

On appelle cela des directives d’assemblage.
Ces directives varient en fonction des outils utilisés (chaine de compilation).
Nous utiliserons dans ce cours celles de Gnu AS.

4 P1-2020/2021 SE 203 ARM ASM



Plan

Généralités

Spécificités de l’architecture ARM

Jeu d’instructions
Manipulation des données
Transfert des données
Branchements
Exécution conditionnelle

Encodage

Directives d’assemblage

5 P1-2020/2021 SE 203 ARM ASM



Caractéristiques de l’ARM
Taille des données

Architecture LOAD/STORE
• Dans l’esprit RISC (Reduced Instruction Set Computer)

Processeur 32 bits :
• Les registres généraux font 32 bits

• Les données manipulées sont des word (32 bits), half-word (16 bits) ou byte (8 bits).

Il existe aussi des variantes 64 bits des processeurs ARM (architecture ARMv8-A) que nous n’abordons
pas dans ce cours

6 P1-2020/2021 SE 203 ARM ASM



Modèle du programmeur

Processeur

Registres
Mémoire

Adresses

Données

Espace mémoire unifié extérieur au processeur.
• L’espace mémoire est commun aux instructions et aux données.
• Les périphériques font aussi partie de l’espace mémoire.
• adressable par octet

Des registres internes au processeur.

Instructions pour le transfert entre les registres et la mémoire.

Opérations sur le contenu des registres.

7 P1-2020/2021 SE 203 ARM ASM



Caractéristiques de l’ARM
Différentes tailles pour les instructions

Historiquement les instructions faisaient toutes 32 bits.

Pour rendre le code plus compact et permettre des réductions de la taille du code et donc des
coûts, des jeux d’instructions compacts ont été ajoutés :

Les instructions font :
• 32 bits (mode ARM)
• 16 bits (mode THUMB)
• mixte 32/16 bits (mode THUMB 2)

Ces variantes compactes favorisent les instructions utilisées souvent. Les instructions moins
courantes sont remplacées par une séquence d’instructions.

8 P1-2020/2021 SE 203 ARM ASM



Modèle du programmeur
Les registres généraux

Un programmeur a accès à :
16 registres généraux
dont 3 avec des rôles particuliers :

• r15 (pc) : Compteur programme
• r14 (lr) : Link register (adresse de retour)
• r13 (sp) : Stack pointer (pointeur de pile)

r0
r1
r2
r3
r4
r5
r6
r7
r8
r9
r10
r11
r12
r13 (sp)
r14 (lr)
r15 (pc)

9 P1-2020/2021 SE 203 ARM ASM



Modèle du programmeur
En fonction de l’état du processeur

Les “shadow registers” de l’ARM7TDMI (ARMv4T) :
User/Syst.

r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

r15 (pc)

Superv.

r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r13svc

r14svc

r15 (pc)

FIQ

r0

r1

r2

r3

r4

r5

r6

r7
r8fiq

r9fiq

r10fiq

r11fiq

r12fiq

r13fiq

r14fiq

r15 (pc)

IRQ

r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12
r13irq

r14irq

r15 (pc)

Abort

r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r13abt

r14abt

r15 (pc)

Undef

r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r13und

r14und

r15 (pc)

10 P1-2020/2021 SE 203 ARM ASM



Modèle du programmeur
En fonction de l’état du processeur

Les deux pointeurs de pile des Cortex-M

(ARMv6-M) :

Main Stack Pointer (MSP)

Process Stack Pointer (PSP)

core

r0
r1
r2
r3
r4
r5
r6
r7
r8
r9
r10
r11
r12

r13 (sp)

r14 (lr)

r15 (pc)

MSP PSP

main process

11 P1-2020/2021 SE 203 ARM ASM



Modèle du programmeur
Le registre d’état xPSR

CPSR : Current Program Status Register de l’ARM7TDMI

N Z C V …… I F T mode

31 30 29 28 7 6 5 4 0

Flags :
• N : négatif
• Z : zéro
• C : retenue
• V : dépassement

Interruptions :
• F : désactiver les FIQ

• I : désactiver les IRQ

T : Thumb
Mode de fonctionnement

12 P1-2020/2021 SE 203 ARM ASM



Modèle du programmeur
Le registre d’état xPSR

PSR : Program Status Registers du Cortex-M0

APSR

IPSR

EPSR

N Z C V Reserved

Reserved Except.

Reserved T Reserved

31 30 29 28 24 5 0

APSR : Application Program Status Register
IPSR : Interrupt Program Status Register
EPSR : Execution Program Status Register

13 P1-2020/2021 SE 203 ARM ASM



Modèle du programmeur
Le registre d’état xPSR

Les registres de statu est un registre particulier accessible par des instructions spéciales.

14 P1-2020/2021 SE 203 ARM ASM



Plan

Généralités

Spécificités de l’architecture ARM

Jeu d’instructions
Manipulation des données
Transfert des données
Branchements
Exécution conditionnelle

Encodage

Directives d’assemblage

15 P1-2020/2021 SE 203 ARM ASM



Spécificités de l’ARM

Instructions ARM/Thumb

À l’origine les syntaxes des instructions thumb et arm étaient différentes.

Une syntaxe unifiée (unified) est supportée par les versions récentes des outils de
développement.

Du fait de la taille des instructions thumb (16-bits) certaines restrictions d’usage existent.

Dans ce cours nous présentons la syntaxe unifiée. Pour les restrictions du mode thumb se
référer à la documentation.

16 P1-2020/2021 SE 203 ARM ASM



Jeu d’instructions

On peut classer les instructions en trois grandes catégories :
1. Traitement et manipulation des données :

• Arithmétiques et logiques
• Tests et comparaisons

2. Transfert de données depuis et vers la mémoire
3. Contrôle de flot

• Branchements

17 P1-2020/2021 SE 203 ARM ASM



Plan

Généralités

Spécificités de l’architecture ARM

Jeu d’instructions
Manipulation des données
Transfert des données
Branchements
Exécution conditionnelle

Encodage

Directives d’assemblage

18 P1-2020/2021 SE 203 ARM ASM



Opérations arithmétiques et logiques

Opération sur 3 registres

OPE r_dest, r_s1, r_s2

Exemples

AND r0,r1,r2 pour (r0 = r1&r2)
ADD r5,r1,r5 pour (r5 = r1 + r5)

19 P1-2020/2021 SE 203 ARM ASM



Opérations arithmétiques et logiques

Les instructions

ADD r0,r1,r2 → r0=r1+r2 Addition

ADC r0,r1,r2 → r0=r1+r2+C Addition avec retenue

SUB r0,r1,r2 → r0=r1-r2 Soustraction

SBC r0,r1,r2 → r0=r1-r2-C+1 Soustraction avec retenue

RSB r0,r1,r2 → r0=r2-r1 Soustraction inversée

RSC r0,r1,r2 → r0=r2-r1-C+1 Soustraction inversée avec retenue

AND r0,r1,r2 → r0=r1&r2 Et binaire

ORR r0,r1,r2 → r0=r1|r2 Ou binaire

EOR r0,r1,r2 → r0=r1^r2 Ou exclusif binaire

BIC r0,r1,r2 → r0=r1&~r2 Met à 0 les bits de r1 indiqués par r2

20 P1-2020/2021 SE 203 ARM ASM



Opérations de déplacement de données entre registres

Opération sur 2 registres

OPE r_dest, r_s1

Exemples

MOV r0,r1 pour (r0 = r1)
MOV pc,lr pour (pc = lr)
MVN r0,r1 pour (r0 = ∼r1)

21 P1-2020/2021 SE 203 ARM ASM



Opérations de déplacement de données entre registres

Les instructions
MOV r0,r1 → r0=r1 Déplacement
MVN r0,r1 → r0=~r1 Déplacement et négation

22 P1-2020/2021 SE 203 ARM ASM



Opérations de décalage

Opération sur 3 registres

OPE r_dest, r_s, r_m

Exemples

LSL r0,r1,r2 pour (r0 = r1 � r2[7:0])
ASR r3,r4,r5 pour (r3 = r4 � r5[7:0])

Seul l’octet de poids faible de r_m est utilisé.

23 P1-2020/2021 SE 203 ARM ASM



Opérations de décalage

Les instructions
LSL → Décalage logique vers la gauche
LSR → Décalage logique vers la droite
ASL → Décalage arithmétique vers la gauche
ASR → Décalage arithmétique vers la droite
ROR → Décalage circulaire vers la droite

24 P1-2020/2021 SE 203 ARM ASM



Remarque !

Modification des indicateurs du PSR

Par défaut, les opérations arithmétiques et logiques ne modifient pas les indicateurs (flags)
(N,Z,C,V) du PSR.
Il faut ajouter le suffixe “S” au mnémonique de l’instruction si nécessaire.

Exemples

ADDS r0,r1,r2

ANDS r0,r1,r2

MOVS r0,r1

25 P1-2020/2021 SE 203 ARM ASM



Opérations de comparaison

Opération sur 2 registres

OPE r_s1, r_s2

Exemples

CMP r0,r1 pour (psr ← r0 − r1)
TEQ r0,r1 pour (psr ← r0 ⊕ r1)

26 P1-2020/2021 SE 203 ARM ASM



Opérations de comparaison

Les instructions

CMP r0,r1 → psr⇐ r0-r1 Comparer
CMN r0,r1 → psr⇐ r0+r1 Comparer à l’inverse
TST r0,r1 → psr⇐ r0&r1 Tester les bits indiqués par r1
TEQ r0,r1 → psr⇐ r0^r1 Tester l’égalité bit à bit

Ces instructions ne modifient que les bits (N,Z,C,V) du PSR, le résultat n’est pas gardé.

27 P1-2020/2021 SE 203 ARM ASM



Opérandes immédiats

Un immédiat est une valeur constante qui sera encodée dans l’instruction elle même.

Un seul des opérandes source peut être un immédiat.
On doit les précéder du symbole ‘#’.
Il peut être décimal, hexadécimal (0x) ou octal (0).

Exemples

MOV r0,#0x20

CMP r0,#32

ADD r0,r1,#1

28 P1-2020/2021 SE 203 ARM ASM



Opérandes immédiats
Comment est-ce encodé?

En mode ARM les instructions sont codées sur 32 bits. Pour la majorité des instructions il reste
12 bits qui peuvent être utilisés pour coder l’immédiat.

31 28 27 21 20 19 16 15 12 11 … 0

cond code op S Rn Rs Imm

Ces 12 bits sont utilisés de la façon suivante :

8 bits (0→ 0xFF )
4 bits pour un décalage circulaire (valeurs paires de 0 à 30)

29 P1-2020/2021 SE 203 ARM ASM



Opérandes immédiats

Exemples
ADD r0,r1,#100 (0x64� 0)
ADD r0,r1,#0xFF00 (0xFF � 8)
ADD r0,r1,#0x3FC (0xFF � 2)
ADD r0,r1,#0xF000000F (0xFF � 28)
ADD r0,r1,#0x102 Interdit !!

Nous verrons par la suite que ce n’est pas vraiment un problème.

30 P1-2020/2021 SE 203 ARM ASM



Opérandes immédiats
En mode thumb-16bits

Ça dépend de l’instruction. Par exemple :

ADDS Rd,Rn,#imm3 (source et destination différentes)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 1 0 imm3 Rn Rd

ADDS Rdn,#imm8 (même source et destination)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 0 Rdn imm8

31 P1-2020/2021 SE 203 ARM ASM



Combiner une opération avec un décalage
ALU + Barrel shifter

Les processeur ARM ont la particularité d’avoir un barrel shifter devant une des entrées de l’ALU.

décalageRegistres

AL
U

�

32 P1-2020/2021 SE 203 ARM ASM



Combiner une opération avec un décalage

Le barrel shifter peut être utilisé en même temps que l’ALU
Toute opération peut être accompagnée du décalage du second opérande.

Exemples
ADD r0,r1,r2,LSL #4 (r0 = r1 + r2 × 16)
ADD r0,r1,r2,LSL r3 (r0 = r1 + r2 × 2r3)

33 P1-2020/2021 SE 203 ARM ASM



Combiner une opération avec un décalage
Remarques

Certaines instructions sont équivalentes :

LSL rd,rs,#i ⇔ MOV rd,rs,LSL #i

Rotate Right with Extend

RRX rd,rs ⇔ MOV rd,rs,RRX

Rotation à droite d’une position en prenant le bit de retenue C.

Les opérations équivalentes seront encodées de la même façon.

34 P1-2020/2021 SE 203 ARM ASM



Les multiplications

Les opérandes ne peuvent être que des registres.
En fonction des versions de l’architecture :

• Toutes les instructions ne sont pas disponibles sur toutes les architectures.
• La retenue “C” et le dépassement “V” n’ont pas toujours le même comportement.

35 P1-2020/2021 SE 203 ARM ASM



La multiplication

Les instructions

MUL r0,r1,r2 → r0=r*r2 multiplication
MLA r0,r1,r2,r3 → r0=r1+r2*r3 mult. et accumulation
MLS r0,r1,r2,r3 → r0=r1-r2*r3 mult. soustraction
UMULL r0,r1,r2,r3→ {r1,r0}=r2*r3 mult. 64bits non signée
SMULL r0,r1,r2,r3→ {r1,r0}=r2*r3 mult. 64bits signée
UMLAL r0,r1,r2,r3→ {r1,r0}+=r2*r3 MAC 64bits non signée
SMLAL r0,r1,r2,r3→ {r1,r0}+=r2*r3 MAC 64bits signée

36 P1-2020/2021 SE 203 ARM ASM



Plan

Généralités

Spécificités de l’architecture ARM

Jeu d’instructions
Manipulation des données
Transfert des données
Branchements
Exécution conditionnelle

Encodage

Directives d’assemblage

37 P1-2020/2021 SE 203 ARM ASM



Instructions pour transférer les données

Deux instructions de transfert de données entre la mémoire et les registres.
LDR : charger un registre avec une donnée en mémoire
STR : enregistrer la valeur du registre en mémoire

L’adresse doit être dans un registre.

Exemples
LDR r0,[r1] (r0 = RAM[r1])
STR r0,[r1] (RAM[r1] = r0)

38 P1-2020/2021 SE 203 ARM ASM



Instructions pour transférer les données
Taille des données et alignement

LDR/STR : mots de 32 bits (words)
LDRH/STRH : mots de 16 bits (half words)
LDRB/STRB : mots de 8 bits (byte)

Généralement, les adresses doivent être alignées :

LDR/STR : adresse multiple de 4
LDRH/STRH : adresse multiple de 2
LDRB/STRB : adresse quelconque

39 P1-2020/2021 SE 203 ARM ASM



Modes d’adressage

Adressage indirect
LDR r0,[r1] (r0 = RAM[r1])

Adressage indirect avec déplacement (offset)
LDR r0,[r1,#8] (r0 = RAM[r1 + 8])
LDR r0,[r1,r2] (r0 = RAM[r1 + r2])

Adressage indirect avec déplacement et pré-incrémentation
LDR r0,[r1,#8]! (r1 = r1 + 8 puis r0 = RAM[r1])

Adressage indirect avec déplacement et post-incrémentation
LDR r0,[r1],#8 (r0 = RAM[r1] puis r1 = r1 + 8)

40 P1-2020/2021 SE 203 ARM ASM



Transferts multiples

En plus des instructions LDR et STR le jeu d’instruction ARM propose les instructions LDM et
STM pour les transferts multiples.

Exemples
LDMIA r0,{r1,r2,r3} (r1 = RAM[r0])

(r2 = RAM[r0 + 4])
(r3 = RAM[r0 + 8])

STMIA r0,{r1-r3} (RAM[r0] = r1)
(RAM[r0 + 4] = r2)
(RAM[r0 + 8] = r3)

41 P1-2020/2021 SE 203 ARM ASM



Transferts multiples

Variantes
Il existe 4 suffixes possibles pour les instructions de transferts multiples :

IA pour la post-incrémentation (Increment After)
IB pour la pré-incrémentation (Increment Before)
DA pour la post-décrémentation (Decrement After)
DB pour la pré-décrémentation (Decrement Before)

Pour que la valeur du registre d’adresse soit modifiée il faut ajouter (!)

LDMIA r0!,{r1-r3}

42 P1-2020/2021 SE 203 ARM ASM



Transferts multiples
Alias pour les piles (stacks)

Pour gérer la pile et éviter les confusions, il existe des équivalents des instructions LDM et
STM avec des suffixes spécifiques en fonction des stratégies utilisées pour la pile.

FD : Full Descending
FA : Full Ascending
ED : Empty Descending
EA : Empty Ascending

43 P1-2020/2021 SE 203 ARM ASM



Transferts multiples
Alias pour les piles (stacks)

Des alias pour la pile standard :

Empiler
PUSH {r1-r5} ou STMFD sp!,{r1-r5}

ou STMDB sp!,{r1-r5}

Dépiler
POP {r1-r5} ou LDMFD sp!,{r1-r5}

ou LDMIA sp!,{r1-r5}

Nous en reparlerons dans le cours sur les conventions d’appel.

44 P1-2020/2021 SE 203 ARM ASM



Plan

Généralités

Spécificités de l’architecture ARM

Jeu d’instructions
Manipulation des données
Transfert des données
Branchements
Exécution conditionnelle

Encodage

Directives d’assemblage

45 P1-2020/2021 SE 203 ARM ASM



Branchements

Il existe deux instructions de branchement :

B adresse Aller à l’adresse
BX registre Aller à l’adresse pointée par le registre

et éventuellement changer de mode (ARM/THUMB in-
terworking)

46 P1-2020/2021 SE 203 ARM ASM



Branchements
Appel de sous-programme

Les instructions de branchement modifient le compteur programme "pc" (r15)

BL(X) Sauvegarde l’adresse de retour dans "lr" (r14)

L’adresse de retour est celle de l’instruction suivant le BL.

Pour revenir d’un branchement BL il suffit de remettre lr dans pc

BX lr

MOV pc,lr (deprecated)

47 P1-2020/2021 SE 203 ARM ASM



Branchements

pour les instructions B et BL l’adresse est stockée comme un immédiat qui représente un
décalage (offset) par rapport à la position actuelle :

• l’offset est forcément limité
• le branchement ne peut aller très loin

L’instruction BX permet de changer de mode (ARM/Thumb) en fonction du bit de poids
faible de l’adresse normalement non utilisé (voir interworking)

48 P1-2020/2021 SE 203 ARM ASM



Plan

Généralités

Spécificités de l’architecture ARM

Jeu d’instructions
Manipulation des données
Transfert des données
Branchements
Exécution conditionnelle

Encodage

Directives d’assemblage

49 P1-2020/2021 SE 203 ARM ASM



Exécution conditionnelle des instructions

L’exécution des instructions peut être rendue conditionnelle en rajoutant les suffixes suivant :

EQ Equal Z == 1

NE Not equal Z == 0

CS/HS Carry set/unsigned higher or same C == 1

CC/LO Carry clear/unsigned lower C == 0

MI Minus/negative N == 1

PL Plus/positive or zero N == 0

VS Overflow V == 1

VC No overflow V == 0

HI Unsigned higher C == 1 and Z == 0

LS Unsigned lower or same C == 0 or Z == 1

GE Signed greater than or equal N == V

LT Signed less than N != V

GT Signed greater than Z == 0 and N == V

LE Signed less than or equal Z == 1 or N != V

50 P1-2020/2021 SE 203 ARM ASM



Exécution conditionnelle des instructions

Exemples
CMP r0,r1 comparer r0 à r1
SUBGE r0,r0,r1 si r0 ≥ r1 alors r0 = r0 − r1
SUBLT r0,r1,r0 si r0 < r1 alors r0 = r1 − r0
SUBS r0,r1,r2 r0 = r1 − r2
BEQ address aller à adresse si le résultat est nul

51 P1-2020/2021 SE 203 ARM ASM



Plan

Généralités

Spécificités de l’architecture ARM

Jeu d’instructions
Manipulation des données
Transfert des données
Branchements
Exécution conditionnelle

Encodage

Directives d’assemblage

52 P1-2020/2021 SE 203 ARM ASM



Encodage des instructions
En mode ARM

Data processing and
FSR transfer

Multiply long

Single data swap

Branch and exchange

Halfword data transfer,
register offset

Halfword data transfer,
immediate offset

Single data transfer

Undefined

Block data transfer

Branch

Coprocessor data
transfer

Coprocessor data
operation

Coprocessor register
transfer

Software interrupt

Multiply

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Cond

Cond

Cond

Cond

Cond

Cond

Cond

Cond

Cond

Cond

Cond

Cond

Cond

Cond

0

0

0

0

0

0

0

0

1

1

1

1

1

1

0

0

0

0

0

0

1

1

0

0

1

1

1

1

1

0

0

0

0

0

1

1

0

1

0

1

1

1

Opcode

0

1

1

P

P

P

P

0

0

1

1

1

0

0

U

U

U

U

B

0

0

1

B

A

0

1

W

W

W

S

0

0

L

L

L

S

P U S W L

Cond 0 0 0 0 0 0 A S

L Offset

Rn

Rd

RdHi

Rn

1 1 1 1

Rn

Rn

Rn

Rn

U N W L Rn

CP Opc

CP Opc

Ignored by processor

L

Rd

Rn

RdLo

Rd

1 1 1 1

Rd

Rd

Rd

Operand 2

Offset

Register list

Rs

CRn

CRn

CRd

CRd

Rd

CP#

CP#

CP#

Rn

1 0 0 1

1 0 0 1

0 0 0 0 1 0 0 1

1 1 1 1 0 0 0 1

0 0 0 0 1 S H 1

Offset 1 S H 1

Rm

Rm

Rm

Rn

Rm

Offset

Offset

CP

CP

0

1

CRm

CRm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

53 P1-2020/2021 SE 203 ARM ASM



Encodage des instructions
En mode thumb

Format

Format

Move shifted register

Move, compare, add, and subtract
immediate

ALU operation

High register operations and branch
exchange

PC-relative load

Load and store with relative offset

Load and store sign-extended byte and
halfword

Load and store with immediate offset

Load and store halfword

SP-relative load and store

Load address

Add offset to stack pointer

Push and pop registers

Multiple load and store

Add and subtract

Conditional branch

Software interrupt

Unconditional branch

Long branch with link

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Rd

RdRb

Rb

Op

0 0 1

H1H2

0 1 0 0 0 0

0 1 0 0 1

Ro1 L B 0

Offset8

Op

Word8

Rd

Rn/
offset3

RdRsOp000 111

RdOp

RdRs

RdHdRs/Hs0 1 0 0 0 1

0 1 0

RdRbRo1 H S 10 1 0

Offset5B L0 1 1

Rb RdOffset50 L1 0 0

Rd Word81 L1 0 0

Rd Word80 SP1 0 1

SWord70 0 0 S1 1 01 0

Rlist1 0 R1 1 L1 0

RlistRb0 0 L1 1

Softset8Cond0 11 1

Value81 1 1 11 0 11

Offset1101 1 01

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

03

04

06

02

05

07

08

09

10

11

12

13

14

15

16

17

18

19 OffsetH1 1 11

Offset5 RdRsOp00001

54 P1-2020/2021 SE 203 ARM ASM



Plan

Généralités

Spécificités de l’architecture ARM

Jeu d’instructions
Manipulation des données
Transfert des données
Branchements
Exécution conditionnelle

Encodage

Directives d’assemblage

55 P1-2020/2021 SE 203 ARM ASM



Directives d’assemblage

Les directives d’assemblage sont des indications supplémentaires qui permettent
d’ajouter informations supplémentaires qui aident le programmeur.

• Elles ne correspondent pas à des instructions.
• Elles permettent de manipuler simplement des adresses ou des données.
• Elles sont interprétées par l’outil et dépendent de l’outil utilisé.

En plus des directives, les outils supportent des pseudo-instructions ou macros.
• Elles permettent de simplifier l’écriture du code.
• Elles sont transformées en instructions, éventuellement différentes en fonction du contexte.
• La correspondance n’est pas forcément 1↔ 1

56 P1-2020/2021 SE 203 ARM ASM



Syntaxe de l’assembleur GNU pour ARM

Nous utiliserons Gnu Arm As
• arm-none-eabi-as est installé dans les salles de TP

La documentation officielle :
• http://sourceware.org/binutils/docs/as

Convention pour l’extension des fichiers :
• .s : contient assembleur et directives.
• .S : peut contenir des macros préprocesseur C.

57 P1-2020/2021 SE 203 ARM ASM

http://sourceware.org/binutils/docs/as


Syntaxe de l’assembleur GNU pour ARM

La forme générale des instructions est alors :

[<Étiquette>:] [<instruction ou directive>] [@ <commentaire>]

as supporte aussi les commentaires C (/* ... */).

58 P1-2020/2021 SE 203 ARM ASM



Syntaxe de l’assembleur GNU pour ARM

Les lignes ne contenant que des commentaires ou étiquettes ne sont pas comptées.
Les étiquettes (labels) seront remplacées par l’adresse de l’instruction qui suit.
Un “symbole” local ayant le nom de l’étiquette est défini.

59 P1-2020/2021 SE 203 ARM ASM



Syntaxe de l’assembleur GNU pour ARM

Exemple

Start:

mov r0,#0 @ mise zero de r0

mov r2,#10 @ charger la valeur 10 dans r2

Loop:

add r0,r0,r2,LSL #1 @ r0=r0+2*r2

subs r2,r2,#1 @ r2--

bne Loop

b Start

60 P1-2020/2021 SE 203 ARM ASM



Quelques directives d’assemblage utiles
syntaxe, cible, mode

.syntax unified

Pour préciser qu’on utilise la syntaxe unifiée

.cpu cpu_model

Pour préciser le modèle du processeur (arm7tdmi, cortex-m4, cortex-m0 …)

.arch cpu_arch

Pour préciser l’architecture du processeur (armv5t, armv7-m, armv6-m …)

.thumb/.arm

Pour préciser qu’on veut générer du code ARM ou THUMB/THUMB2

61 P1-2020/2021 SE 203 ARM ASM



Quelques directives d’assemblage utiles
Des macros

.EQU SYMBOLE, VALEUR ou

.SET SYMBOLE, VALEUR

La macro est remplacée par la valeur.

Exemple :

.EQU COMPTER,10

…

MOV r0, #COMPTEUR

des macros plus complexes sont aussi possibles.

62 P1-2020/2021 SE 203 ARM ASM



Quelques directives d’assemblage utiles
Des pseudo-instructions

LDR r0,=IMMEDIAT

Cette directive permet de mettre une valeur quelconque dans un registre. Cette directive
est replacée en fonction de la valeur par :

• MOV r0,#IMMEDIAT

• LDR r0, [pc,#offset]

...

.word IMMEDIAT

Où offset est le décalage entre l’adresse de l’instruction et l’adresse où est positionnée la
valeur (à la fin du code).

63 P1-2020/2021 SE 203 ARM ASM



Quelques directives d’assemblage utiles
Des pseudo-instructions

Récupérer l’adresse d’une étiquette :
ADR r0,ETIQUETTE

Cette directive est remplacée par :
ADD r0,pc,#offset

Où offset est le décalage entre la position de l’instruction et la position de l’étiquette.
LRD r0,=ETIQUETTE

Cette directive réservera un espace pour stocker une adresse de 32 bits et sera
remplacée par un chargement.

Exemple :

ADR r0, str

str:

.asciz "hello world"

64 P1-2020/2021 SE 203 ARM ASM



Quelques directives d’assemblage utiles
Gérer les symboles

Définition de symboles globaux
Pour déclarer un symbole qui sera utilisé ailleurs :

.global NOM_DU_SYMBOLE

Le symbole est exporté et sera visible au moment de l’édition de liens comme une fonction
en C par exemple.

65 P1-2020/2021 SE 203 ARM ASM



Quelques directives d’assemblage utiles
Gérer les sections

.section nom, "flags",%type

Permet de préciser la section dans l’objet final

Exemples de flags :

"a" : allouer de l’espace,

"x" : contient du code exécutable,

"w" : est modifiable.

Exemples de types :

%progbits : contient des données

%nobits : ne contient rien, il faut juste allouer
l’espace nécessaire

Par défaut, si la directive n’est pas utilisée, le code assemblé se retrouve dans la section .text

Équivalent de .section .text, "ax",%progbits

66 P1-2020/2021 SE 203 ARM ASM



Quelques directives d’assemblage utiles
Des données verbatim

Directives de remplissage (dans le code) :
mettre une valeur arbitraire sur 32 bits/16 bits/8 bits à la position actuelle :
.word/.half/.byte VALEUR

mettre une chaîne de caractères :
.ascii "La chaine de caracteres"

.asciz "Une autre chaine" se finit par '\0'

remplir une zone :
.fill nombre, taille_en_octets, valeur

Exemple : .fill 100,4,0xdeadbeaf

67 P1-2020/2021 SE 203 ARM ASM



Quelques directives d’assemblage utiles
Des contraintes

Directives d’alignement :
Si les données insérées ne sont pas multiples de la taille d’une instruction il faut réaligner
en remplissant éventuellement les vides par un motif.

.align log2(nbr_octets), motif

.balign nbr_octets, motif

68 P1-2020/2021 SE 203 ARM ASM



Exercice
Pour préparer le TD

Écrivez un programme qui permet de remplir une zone mémoire de taille 0x100 octets (256)
commençant à l’adresse 0x100, avec le motif 0xdeadbeef.

À la fin du programme, on doit empêcher le programme de continuer.

Ajouter du code pour déplacer ces données vers une zone mémoire commençant à l’adresse
0x300.

69 P1-2020/2021 SE 203 ARM ASM


	Généralités
	Spécificités de l'architecture ARM
	Jeu d'instructions
	Manipulation des données
	Transfert des données
	Branchements
	Exécution conditionnelle

	Encodage
	Directives d'assemblage

