
ARTICLE IN PRESS
0167-9260/$ - se

doi:10.1016/j.vl

$This work

Alpes Côte d’A

France) and th

Informatique’’
�Correspondi

Département co

fax: +33145804

E-mail addr
INTEGRATION, the VLSI journal 40 (2007) 479–489

www.elsevier.com/locate/vlsi
A fast pipelined multi-mode DES architecture operating
in IP representation$

Sylvain Guilleya,b,�, Philippe Hoogvorsta,b, Renaud Pacaleta,c

aGET/Télécom Paris, CNRS LTCI (UMR 5141), Département communication et électronique, France
b46 rue Barrault, 75634 Paris Cedex 13, France

cInstitut Eurecom BP 193, 2229 route des Crêtes, F-06904 Sophia-Antipolis Cedex, France

Received 21 December 2005; received in revised form 2 May 2006; accepted 30 June 2006
Abstract

The Data Encryption Standard (DES) is a cipher that is still used in a broad range of applications, from smartcards, where it is often

implemented as a tamper-resistant embedded co-processor, to PCs, where it is implemented in software (for instance, to compute

crypt(3) on UNIX platforms). To the authors’ knowledge, implementations of DES published so far are based on the straightforward

application of the NIST standard. This article describes an innovative architecture that features a speed increase for both hardware and

software implementations, compared to the state of the art. For example, the proposed architecture, at constant size, is about twice as

fast as the state of the art for 3DES-CBC. The first contribution of this article is an hardware architecture that minimizes the

computation time overhead caused by key and message loading. The second contribution is an optimal chaining of computations,

typically required when ‘‘operation modes’’ are used. The optimization is made possible by a novel computation paradigm, called

‘‘IP representation’’.

r 2006 Elsevier B.V. All rights reserved.

Keywords: Data Encryption Standard (DES); Triple-DES; Modes of operation; Pipeline; IP representation
1. Introduction

The Data Encryption Standard, DES, is a block product
cipher algorithm promoted by the NIST. The latest version
of the standard is known as FIPS 46-3 [1], and includes the
definition of ‘‘triple DES’’. The ‘‘DES modes of opera-
tion’’, standardized in FIPS 81 [2], is a companion
document devoted to the description of the secure use of
DES when the messages to encrypt are longer than 8 bytes.

Since its inception, DES has been used pervasively by
many applications that require data confidentiality. How-
ever, from year 2001, DES has been superseded by the
e front matter r 2006 Elsevier B.V. All rights reserved.

si.2006.06.004

has been partly funded by the Conseil Régional ‘‘Provence

zur’’, the STMicroelectronics AST Division (Rousset,

e French Ministry for Research, through ACI ‘‘Sécurité

MARS h http://www.comelec.enst.fr/recherche/mars/i.

ng author. GET/Télécom Paris, CNRS LTCI (UMR 5141),

mmunication et électronique, France. Tel.: +33145818333;

036.

ess: sylvain.guilley@enst.fr (S. Guilley).
Advanced Encryption Standard (AES) [3]. But in practice,
a lot of hardware or software applications still resort to
DES.
The DES algorithm turns a 64-bit confidential data

block, nicknamed plaintext, into another 64-bit data block,
nicknamed ciphertext, using a standardized bijection
parametrized by a 56-bit secret, nicknamed key. The
bijection DESk is crafted in such a way it is almost
impossible to retrieve the plaintext from the ciphertext
without the knowledge of the key k. The bijection can be
inverted: this operation is called decipherment and noted
DES�1k . When it is not relevant whether the algorithm
performs encipherment or decipherment, the neologism
‘‘cipherment’’ is employed instead.
Several attacks against the plain DES version were

published. They can basically be classified into two
categories: algorithmical and physical attacks.
Algorithmical attacks are also referred to as cryptana-

lysis [7,8]. Those analyzes are somehow unrealistic, since a
large amount of fplaintext; ciphertextg couples must be

www.elsevier.com/locate/vlsi
dx.doi.org/10.1016/j.vlsi.2006.06.004
http://www.comelec.enst.fr/recherche/mars/
mailto:sylvain.guilley@enst.fr

ARTICLE IN PRESS
S. Guilley et al. / INTEGRATION, the VLSI journal 40 (2007) 479–489480
intercepted. The exhaustive search of the key [9] has been
publicly feasible since 1977, as proved by the RSA
Laboratory’s ‘‘DES Challenge II’’ being won in 1997 in
39 days by a network of computers running the distributed
application DESCHALL and in 1998 in 3 days by a
dedicated machine built by the Electronic Frontier
Foundation (EFF). Other methods to speed-up the search
using pre-computated data sets have been put forward [10].

To counteract those attacks, variants of the DES were
proposed. We list below three of the most widespread ones:
(1)
 Modes of operation allow a message consisting of several
64-bit blocks to be ciphered in chain. The idea is that the
knowledge of each of the 64-bit ciphertext blocks actually
depends on the corresponding plaintext block, also of
some, if not all, of the previous ones, and of an
initialization vector (IV). The standardized modes of
operation are ECB, CBC, CFB and OFB [2]; they were
reinforced by ISO/IEC 10116 [5]. ECB and CBC are
block-ciphers, whereas CFB and OFB are stream-ciphers.
The latter two are actually defined in the K-bit version,
1pKp64. As the K ¼ 64 version is the most efficient in
terms of throughput, it is usually the sole version to be
implemented (refer for instance to openssl[11]).
Because of the ‘‘short cycle property’’, NIST explicitly
does not support Ko64 for OFB [12, p. 13].
(2)
 TDEA (informally called ‘‘triple-DES’’ or ‘‘3DES’’) is
described in the annex of the DES standard [1, p. 22].
Three 64-bit keys ki; i 2 f0; 1; 2g are used instead
of one. The encipherment consists in computing
DESk2

�DES�1k1
�DESk0

, whereas decipherment is
DES�1k0

�DESk1
�DES�1k2

, where ‘‘�’’ denotes the com-
position operator. Triple DES is customarily used with
two keys [6,4,13] (i.e. k0 ¼ k2). Notice that when the
three keys are taken equal, k0 ¼ k1 ¼ k2, triple DES
actually computes plain DES, which guarantees the
backward compatibility of 3DES engines.
(3)
 DESX [14] is a data whitening technique, proposed by
Ron Rivest. It consists in adjoining two 64-bit blocks,
in_white and out_white, to the key. The key
in_white is used to exclusive-or (i.e. XOR) the
plaintext prior to starting DES and out_white to
XOR the result after the cipherment.
Those variants can of course be combined at will. For
instance, triple-DES using two keys in CBC mode is often
used to encipher long messages.

Physical attacks are the most recent threats against DES
and its variants. The side-channel attacks, such as DPA
(differential power analysis [15]) or EMA (electromagnetic
analysis [16]), allow to retrieve the keys by the analysis of
the physical emanation of the device while it is handling the
key. Partial side-channel information, such as the Ham-
ming weight of key chunks or key-dependent correlations
between two small chunks of data, suffice to recover the
full key, provided enough measurements can be performed.
The faults injection attacks [17] consist in either perturbing
transiently the circuit or to damage it to enhance other
attacks. Algorithmical counter-measures (modes of opera-
tion, 3DES or DESX) do not protect against physical
attacks. Both side-channel and fault attacks can be
thwarted, with more or less success, by using leakage-
proof logic and adequate sensors, for instance.
In this paper, we describe an architecture able to

compute DES and its variants efficiently. More precisely,
the described architecture can compute: DES in ECB,
CBC, 64-bit CFB and 64-bit OFB, as well with simple or
triple DES using two keys. The cryptanalytic strength of
the variant as well as the security of its implementation
against physical attacks is out of the scope of this paper.
The rest of the article is organized as follows. Section 2

discusses the DES datapath optimization: a hardware
pipelined architecture is presented. Section 3 applies to
both software (SW) and hardware (HW) implementations.
It introduces the so-called ‘‘IP representation’’ computa-
tional framework, which allows to optimally chain DES
computations. In Section 4, the gain of proposed archi-
tecture over state-of-the-art architectures is discussed.
Finally, Section 5 summarizes the paper.

2. DES datapath improvement thanks to a generalized

pipelining

In the DES algorithm, the control is independent of the
data. It is thus safe to consider the design of the datapath
and the control finite state machine (FSM) as two distinct
tasks. This section is devoted to the datapath. The control
is further studied in Section 3.

2.1. Straightforward DES

The inputs of the DES algorithm are two 64-bit blocks,
the plaintext and the key. The two operands cannot be
loaded in the DES operator in one go, since data provided
by processors are typically on n ¼ 8, 16 or 32 bits. In the
rest of the article, we assume that the DES co-processor is
fed by an n ¼ 8-bit wide data bus. This figure corresponds
to the case of an embedded system built around a micro-
controller, as depicted in Fig. 1.
Most of DES implementations elude the question of the

connexion to an no64 wide bus [18–20]. Some implemen-
tations, such as [21], use n ¼ 32, but do not take advantage
of the architectures presented in this paper. Other
implementations use n ¼ 64 and focus on achieving highest
possible throughputs. For the processing core not to starve,
the data must be input and output as 64-bit blocks at every
clock cycle. For instance, 12Gbps [23] and even 21.3Gbps
[24] DES-ECB encryptors/decryptors cores have been
reported. Regarding 3DES, a 7.36Gbps ð421:3=3GbpsÞ
implementation is described in [25]. Nevertheless, those
high-throughput cores are I/O-intensive (thus limited by
the communication rate) and thus are not suitable to be
embedded in a resource-limited embedded system, such as
a smartcard.

ARTICLE IN PRESS

Fig. 1. System-on-chip environment for a VLSI version of the DES co-

processor. Typical values for the bus widths are n ¼ 8 and N ¼ 8.

S. Guilley et al. / INTEGRATION, the VLSI journal 40 (2007) 479–489 481
The knowledge of the DES algorithm internals is not
required to explain the rationale of the three n ¼ 8-bit
architectures discussed in this paper. Only the following
facts are indeed relevant for the coming analysis:
�
 DES is a Feistel cipher, which means that the message is
divided into two halves (L and R), among which only L
undergoes a logical operation dependent on the some
bits of the round key, R being left untouched. Then the
two halves are swapped, and the process is iterated
sixteen times. After the last round, L and R are not
swapped.

�
 Before any processing, the message bits are shuffled,
using a permutation called IP. At the end of the Feistel
scheme, the message is de-shuffled by the inverse
permutation FP¼

:
IP�1.
�
 Only 56 bits of the key are used. As justified in the
standard [1, p. 1], every byte of the key has a parity bit,
chosen so that the Hamming weight of every byte of the
key is odd. In a similar way to the message, the key bits
are initially shuffled, using the permutation PC1. The
key is modified at each round, by a transformation
known as ‘‘key schedule’’, consisting in one or two left
shifts, LS (resp. right shifts, RS) for encipherments
(resp. decipherments), followed by a permutation called
PC2. Every sub-key is designated by the term ‘‘CD’’ (for
cipher/decipher). The shifts are designed in such a way
that CD is back to its initial value after a full
encipherment (16 rounds). They are implemented by a
2� 2 input multiplexor (4! 1 MUX). However, when
enciphering, the initial value to be presented at PC2 is
LS(k), whereas when deciphering, bare Id ðkÞ¼

:
k is to be

used instead. Given that a ‘‘general purpose’’ DES
module is designed to both encipher and decipher, both
PC1 and LS � PC1 must be computed in parallel.

As a result, a straightforward implementation of DES
requires the following sequential resources:
(1)
Fig. 2. Straightforward architecture for a DES datapath, equipped with

demultiplexing logic to load the message and the key one byte at the time.
one 64-bit register (named LR in [1, p. 11]) to hold the
ciphertext and to store the 16 intermediate messages,
and
(2)
 one 56-bit register (named CD in [1, p. 19]) to hold the
key stripped off its parity bits and to store the 16 round
sub-keys.
Without any additional registers, the storage of the
plaintext in LR and of the key in CD requires a
demultiplexing logic, illustrated in Fig. 2. For the sake of
clarity, the control part has been omitted in Fig. 2: the
multiplexors and the key schedule logic are implicitly

commanded externally.
The schematics follow those conventions:
�
 sequential gates, flip-flops (DFFs) in our case, are
represented as boxes (),

�
 combinatorial gates are represented as boxes with round
corners (or),

�
 permutation-only gates, such as IP or buses merge ð Þ
or split ð Þ, are hollow, whereas

�
 gates made up of logic have a solid background,

�
 datapath forks are represented with solder dots ð�Þ and

�
 when some bits are useless, they are disposed of ð2Þ.

The entire DES design is made up of bit shuffling
dataflow primitives (permutations, multiplexors and
flip-flops), with the exception of the round logic. This fact
is depicted in Fig. 3, where the critical path of the datapath
is highlighted. Notice that the key schedule is not on
the critical path: this is made possible by the fact that the
4! 1 multiplexor that chooses between fLS1;2;RS1;2g
prepares the sub-key for the next round, and not for the
current one. The typical resource utilization in the
straightforward architecture of Fig. 2 is illustrated in
Table 1.
Registers LR and CD must be loaded sequentially. In a

pipelined architecture, the use of ‘‘enable’’ signals on the
DFFs can usually be avoided. It is possible to use none, if the
key is loaded first into CD, because there is a way to keep it
‘‘apparently’’ still. As LS2 ¼ LS � LS, RS2 ¼ RS �RS and

ARTICLE IN PRESS

Fig. 3. DES round and key schedule combinatorial logic. The critical path

LR! round logic ! LR is highlighted.

Table 1

Resources area ðmm2Þ in Fig. 2, synthesized at 400MHz in a 130 nm ASIC

low-leakage technology

Datapath Control

Round logic Rest: dataflow logic

S + XOR Permutation MUX DFF FSM

8482 0 7193 3437 5075

S. Guilley et al. / INTEGRATION, the VLSI journal 40 (2007) 479–489482
LS �RS ¼ RS � LS ¼ Id, it is easy to control the key in
such a way it is unchanged before and after the LR loading.
In the sequel, we assume that the transformation is
LS4 �RS4. As for LR, it never has to maintain its state
more than one clock cycle. The same remark will hold for the
refinements carried out on this straightforward architecture,
because they are ‘‘pipelined’’: data (other than the key) flows
continuously through the datapath, without having to
wait at any time. In addition, the datapath need not be
initialized: this yields more compact code (SW) or imple-
mentation area (HW).

The straightforward pipeline is thus initially busy during
64=n ¼ 8 clock cycles to load the key into CD. During
another eight clock cycles, the key is applied LS4 �RS4,
whilst the first message block is loaded into LR. Then the
DES engine can start the 16 iterations. The next eight clock
cycles are devoted to flushing the result out.

In the straightforward scheme of Fig. 2, every computa-
tion has an overhead in execution time due to data loading/
unloading in the LR or in the CD register. The evaluation
of the architecture throughput does not take into account
the key loading, because most applications use only one
key, loaded once for many consecutive cipherments (the
case of 3DES is detailed later on in Section 3.2). The
loading stage consumes 64=n ¼ 8 cycles, and monopolizes
the LR or the CD registers, so that it is impossible to
parallelize a loading with a DES cipherment (16 cycles).
Then the message must be output, which requires another
64=n ¼ 8 cycles. Notice that for read and write accesses to
be done in parallel, two random access memories (RAMs)
must be connected to the DES engine. In terms of memory
usage, it is however optimal to use one single RAM, since
every computation result can be written over the original
message. Thus, the maximum throughput is one encipher-
ment per 8þ 16þ 8 clock cycles (2.0 bit/clock.)
The straightforward architecture suffers two drawbacks,

that impede the cryptoprocessor performances:
(1)
 The DES cannot perform cipherments whilst new
blocks miþ1 are read and processed blocks DESðmiÞ

are written out.

(2)
 The LR register is preceded by multiplexors, that

increase the critical path.
The next section describes and motivates a novel
pipelining scheme, where the data can be both input and
output byte by byte, in parallel with DES cipherments.
2.2. DES datapath fast pipelining

The drawbacks put forward in the previous section
can be overcome by a more elaborate pipelining scheme
of the DES cryptoprocessor. The principle is to parallelize
the message inputs and outputs with the DES algorithm.
A comparison between the so-called iterative and pipeline

architectures of DES inner-loop is discussed in [22, p. 589].
The difference is that an iterative DES engine processes one
cipherment at the time, whereas a pipeline DES engine
can process many—up to 16—at the same time. In all
the architectures presented in this paper, DES is com-
puted iteratively. However, the outside view of the
DES engine is more like a pipeline: data are not input
and output monolithically, but rather byte by byte.
It must be clear that, throughout this paper, the term
‘‘pipeline’’ refers to the way the data are loaded and
unloaded.
A 64-bit register, called IF (because of its role of

InterFace between the 8-bit inputs and the 64-bit
blocks involved within DES), is added to the DES
cryptoprocessor.
IF is designed to have two possible sources: it can input

either individual bytes or 64-bit blocks. In the first case, the
output of IF is shift by 8 bits to make room for the
incoming byte, to be concatenated with the others already
collected. The byte that has been ‘‘shift-out’’ is not lost: it is
available at the 8-bit output of the pipeline. In the second
case, a 64-bit block, such as the result of the DES
computation, is latched into IF, in a view to being output
byte by byte. In the meantime, the whole content of IF can
be transferred to LR, so that the DES datapath is ready to
follow up on another cipherment.
In fact, the same IF register can be reused to manage the

8-bit 2 64-bit conversion for both LR and CD. Fig. 4
illustrates that the pipeline is generalized to cover both the
round logic and the key schedule.

ARTICLE IN PRESS

Fig. 4. Proposed pipelined DES 8-bit datapath for ECB cipherments.

Fig. 5. Pipeline (cf. Fig. 4) steps involved in ECB cipherments

i ¼ 0; 1; . . . ; n� 1. Upper part: registers content (c�1 ¼ ‘-’ is ‘‘don’t care’’

data). Lower part: multiplexors selection signals.

S. Guilley et al. / INTEGRATION, the VLSI journal 40 (2007) 479–489 483
A more detailed description of the pipelined process is
given below and illustrated in Fig. 5 for DES-ECB
encipherment with one key:
1–7:
 During seven clock periods, the seven first bytes of
the key k are loaded, side by side, into IF.
8:
 The blocks comprised into the last byte of the key
k½56; 63�, concatenated with the already loaded
seven others k½0; 7�k � � � kk½48; 55�, is then loaded
into CD, using selection 0 (when deciphering) or
selection 1 (when enciphering).
9–15:
 During the seven following clock periods, the
message m0 is built-up into IF.
16:
 The message m0, now complete, is transferred into
LR. In the meantime, k is kept still in CD, which is
possible, as shown in Section 2.1. Incidentally, the
result DESkðm�1Þ of the previous computation—if
any—is latched into IF.
17–24:
 The next eight cycles are devoted to the output of
an hypothetical c�1¼

:
DESkðm�1Þ, byte by byte

(c�1½8 � i; 8 � ði þ 1Þ½, i 2 ½0; 8½), from IF. In the
present case, c�1 is a ‘‘don’t care’’ result. However,
starting from clock cycle 33, relevant ci, iX0 are
delivered byte by byte from IF. Concomitantly, the
first eight rounds of DES are executed.
25–31:
 Whilst DES rounds are computed, a new 64-bit
block of data is loaded (as already seen at clock
cycles 9–15).
32:
 DES has finished the 16 rounds. The result is
latched into IF. Simultaneously, a new 64-bit block
of data is loaded into LR.
33–40:
 While DES starts the second cipherment, IF out-
puts c0. The scheduling scheme goes on, with a
periodicity of 16 clock cycles.
In practice, the pipeline is connected to a scratch-pad
RAM. The pipeline reads from (cycles 1–8, 9–16, 25–32)
and writes to (cycles 17–24, 33–40) the RAM on disjoint
time slots. Therefore, a single-port RAM (the less
expensive type of RAM) is perfectly suitable. The
throughput of the DES pipelined operator is 64-bit per
16 clock periods (4.0 bit/clock). The input and output
latencies are equal to eight cycles (as in Section 2.1, we
ignore the key initial loading).
By the same token, the pipelined architecture improves

the datapath speed. In the straightforward implementation,
the LR register has four input sources:
(1)
 the input byte concatenated with the previous register
content shifted by 8 bits to build the plaintext up;
(2)
 the same block, but passed through IP, to start the
computation;
(3)
 the end of the round data, reinjected into LR for the
next round;
(4)
 the same block, swapped and passed through FP.
As already shown in Fig. 2, a 4! 1 multiplexor, to choose
between those four sources, directly precedes LR.
In the pipelined architecture, IP is performed concomi-

tantly with the collection of the plaintext constitutive bytes.
It does not slow down the computation, because in a
hardware implementation, IP requires no logic: it is a mere
reordering of wires. Consequently, LR has only two
possible inputs in the pipelined architecture; the 4! 1
multiplexor is replaced by a 2! 1. This optimization is
crucial, since this multiplexor is on the critical path
(LR! round logic! LR, as highlighted in Fig. 3).

3. Optimal SW/HW partition to realize all DES variants

3.1. IP representation

The notations used in this section are inspired from
openssl [11] internals:
�
 des_encrypt1 is the full DES,

�
 des_encrypt2¼

:
IP � des_encrypt1 � FP is DES, with-

out IP nor FP.

Functions des_encryptf 1,2g ðm; k; encÞ take three argu-
ments: a message m, a key k and a Boolean enc, specifying
whether to encrypt ðenc ¼ 1Þ or decrypt (enc ¼ 0).

ARTICLE IN PRESS
S. Guilley et al. / INTEGRATION, the VLSI journal 40 (2007) 479–489484
For any function set f i : ½0 : 63�7!½0 : 63�, the following
property holds:

Y
i

ðFP � f i � IPÞ ¼ FP �
Y

i

f i

 !
� IP,

where
Yi¼imax

i¼imin

f i¼
:

f imax
� � � � � f imin

, ð1Þ

because FP � IP is the identity function.
This property allows the chaining of DES operations

without caring for IP and FP permutations. The ‘‘IP
representation’’ computational framework consists in using
the des_encrypt2 primitive instead of des_encrypt1, the
IP (resp. FP) being called only once at the beginning (resp.
at the end) of the computation. Eq. (1) can be applied to
the following DES variants:
�
 f i ¼ des_encrypt2ðmi; k; encÞ (ECB and ECB�1);

�
 f i ¼ des_encrypt2ðmi; enc?ki : k2�i; ðencþ iÞ%2Þ, 8i 2
f0; 1; 2g (triple-DES on one block m; m0 ¼ m and
miþ1 ¼ f iðmiÞ, the output being m3);

�

f i ¼
des_encrypt2ðmi � f i�1; k; 1Þ if enc ¼ 1;

des_encrypt2ðmi; k; 0Þ � f i�1 if enc ¼ 0

(

CBC and CBC�1, with f �1 ¼ IV);

�
 f i ¼ des_encrypt2ðf i�1; k; 1Þ �mi

(64-CFB and 64-CFB�1, with f �1 ¼ IV);

�

Fig. 6. Proposed multi-modes pipelined DES datapath operating in ‘‘IP

representation’’.

24000

26000

28000

30000

32000

34000

36000

38000

40000

A
re

a
[�

m
2]

Straight forward (Fig.2)
Fully pipelined (Fig.4)
Multi-mode (Fig.6)
f i ¼ des_encrypt2ðf i�1 �mi�1; k; 1Þ �mi

(64-OFB and 64-OFB�1, with f �1 �m�1 ¼ IV).

In software implementations, IP is not free as in hardware,
because bits cannot be arbitrarily moved within or between
words. In openssl, IP and FP are implemented using 32-
bit registers in 5� ð3 XORþ 2 SHIFTþ 1 ANDÞ ¼ 30 opera-
tions.

DES des_fen,degcrypt3 function performs triple DES
on one block of plaintext. It is the only function from
openssl that takes advantage of the optimization
provided by the computation in the IP representation (1).
All other functions, especially chained DES, are thus
inefficient.

3.2. Multi-mode pipelined DES datapath operating in ‘‘IP

representation’’

The pipeline described in Section 2.2 (see Fig. 4) is not
designed to chain cipherments. However, it can be
enhanced to cope with triple-DES and all modes of
operation. The rationale is to add two inputs to the LR
multiplexer:
22000
100 150 200 250 300 350 400 450 500 550
(1)
Chip frequency [MHz]

Fig. 7. Register contents when the pipeline is configured for 3DES
the result of the previous DES, which allows triple-DES
and also OFB (where the series fDESi

ðIVÞgiX0 is to be
computed);
encipherments with two keys k0 and k1, possibly chained i 2 ½0 : n½ times
(2)
(in which case the indicated clock cycles must be added the offset i � 48).
idem, but XORed with the new message, which allows
CBC and CFB chained modes.
The new inputs to LR are compatible, provided that they
are in the IP representation. It basically means that inputs
to DES must be previously IPed and that output of DES to
be recycled must not be FPed. Additionally, the IF register
must be able to latch the XOR between the new message and
the current result, which is required by the stream modes
(i.e. CFB and OFB) of DES. Those constraints lead to the
versatile version of the pipelined DES datapath represented
in Fig. 6. By default, the multiplexor in front of IF (resp.
LR) selects the input 0 (resp. 1). At the end of every
cipherment (i.e. every 16 clock periods), the multiplexers
choose another input, as shown in Table 3.
The realization of triple DES requires a special schedule.

The 3DES-ECB is illustrated in Fig. 7. The IF and CD
registers sample their default inputs, selection 1 for IF and
0 for CD (corresponding to the ECB and ECB�1 lines in
Table 3). The scheme for 3DES of Fig. 7 can be combined
with the modes of operation. It suffices that the data to be
output by IF and sampled into LR have non-default
origins documented in Table 3 every 3� 16 clock periods.
In the case of 3DES with two keys (k0 and k1, k2 ¼ k0), it

is noticeable that the computation never stalls. As a matter
of fact, the key for the first of the three DES is already

ARTICLE IN PRESS
S. Guilley et al. / INTEGRATION, the VLSI journal 40 (2007) 479–489 485
present in CD, since the last the key was k2 ¼ k0.
Consequently a new message mi can be loaded instead,
and the next computation can follow seamlessly.

Finally, the hardware is also able to realize some
non-standard operations, such as ‘‘cascade-encryptions’’
[27, p. 234] (used in crypt(3)) or ‘‘multiple-encryption
modes of operation’’ [27, p. 237] (e.g. triple-inner-CBC),
with the minor limitations explained in the next section.

3.3. SW/HW trade-offs

The proposed pipelined architecture of Fig. 6 is versatile,
since all modes of operation can be fit. Nevertheless, this
architecture suffers three drawbacks, discussed in the
following three sections.

3.3.1. Realization of 3DES with three different keys

In 3DES with three keys, it would be necessary to load
the first key k0 and the new message block mi at the same
time. However, the RAM delivering the data is single-port
and there is a single IF register. As there is a contention,
the two loadings must be done sequentially. As CD can
keep a key globally unchanged during 8 clock cycles, it is
loaded first. During the extra eight clock cycles required to
load mi, the pipeline stalls, because it is starving data.
Triple-DES with three keys can thus be used with modes of
operation, but it is the only exception where the cipher-
ments do not chain gracefully.

3.3.2. Realization of CBC�1

As already indicated in Table 3, CBC cannot be
deciphered directly. The reason is that to retrieve plaintext
block mi, the following XOR must be computed:
mi ¼ DES�1ðciÞ � ci�1. Unfortunately, the XOR right-
hand side ci�1 has already been consumed by the pipeline
(to compute DES�1ðci�1Þ) when it is needed again. Re-
fetching the ciphertext ci�1 in memory would require to
freeze the pipeline during 8 clock cycles, which is not
desirable.

The first workaround is to implement CBC�1 by EBC�1,
which yields m0, m0 �m1, m1 �m2, etc. instead of m0, m1,
m2, etc. The processor can afterwards compute (in
software) the XOR between the couples in the memory
ram[0:N[to retrieve the correct plaintext. An example
programme is listed below:
register char tmp0, tmp1;
for(register char i ¼ 0; io8; ++i){
tmp0 ¼ ram[i];//The 1st block is only read

Table 2
for(register size_tj ¼ 1; joN; ++j)f

Resources area and maximum frequency of the three proposed
architectures implemented in a Xilinx Virtex-4

tmp1=ram[j*8+i];//Read jth block
ram[j*8+i]=tmp0^tmp1; ==Write jth block

Architecture Number of Number of Frequency
tmp0 ¼ tmp1;
instances DFFs (MHz)
‘‘Straightforward’’ (Fig. 2) 1445 209 211

‘‘Pipelined’’ (Fig. 4) 1454 259 202

‘‘Multi-mode’’ (Fig. 6) 1957 276 144
}
}

The second workaround we propose is the smartest,
because it does not require any post-processing in software.
It consists in adapting the control to decipher the blocks ci

in reverse order. If we note c0i¼
:

cN�1�i, then
mi ¼ DES�1ðc0i�1Þ � c0i, for i 2�N : 0�, is computable by
the multi-mode architecture of Fig. 6. It is the same
configuration as CFB�1 with full feedback, but with the
key schedule set to decipher.
3.3.3. Using CBC) and CBC�1 with an IV

At last, CBC and CBC�1 modes cannot be used with an
IV. The IV should indeed be loaded, kept in some register
(say LR) while the first block m0 is built-up into IF. The
computation could then start with the first operand
IV�m0. However, this scenario also implies that LR has
an enable, which we explicitly want to avoid.
A first solution relies on the software. The task simply

consists in XORing the first block prior to calling an
encipherment or after a decipherment.
A second solution consists in adding an initialization

procedure, during which DES	1ðIVÞ is computed. Then,
every message to cipher is simply prepended DES	1ðIVÞ.
For long messages, this overhead in processing time
becomes negligible.
A third solution implies to increase the DES engine area.

The datapath is augmented with an 8-bit XOR operator that
would compute ‘‘input� output’’ (with the notations of
Fig. 6). This result would be injected into the multiplexor in
front of the IF register. It is a design choice to decide
whether it is worth implementing this minor hardware
feature that complexifies both the datapath and the control
(since the IF multiplexor has a new input).
4. Performance evaluation of the proposed architecture

4.1. Implementation in FPGA and ASIC

The three architectures discussed in this paper, namely
the ‘‘straightforward’’ (Fig. 2), ‘‘pipelined’’ (Fig. 4) and
‘‘multi-mode’’ (Fig. 6) have been captured using VHDL.
They have been synthesized in an FPGA technology (for
prototyping) and in an ASIC ‘‘low-leakage’’ 130 nm
technology (for production).
The FPGA front-end was Mentor Graphics Precision

Synthesis and the back-end Xilinx ISE. The performances
are given in Table 2 for the Virtex 4vfx12sf363-12.
In terms of speed, the ‘‘straightforward’’ architecture is

the fastest and the ‘‘multi-mode’’ is the slowest.

ARTICLE IN PRESS

Table 3

Selected signals at the beginning of each DES chained with modes of

operation

Mode IF MUX LR MUX Built upon

ECB 1 0 DES

ECB�1 1 0 DES�1

CBC 1 2 DES

CBC�1 – – –

CFB 2 2 DES

CFB�1 2 0 DES

OFB ¼ OFB�1 2 0; 3; 3; . . . DES

Table 4

Throughput in bit/clock of some modes of the three studied implementa-

tions of DES

Straightforward Pipelined Multi-mode

DES-ECB 2.000 4.000 4.000

DES-CBC 1.000 1.000 4.000

3DES-ECB 0.571 0.571 1.333

3DES-CBC 0.444 0.444 1.333

S. Guilley et al. / INTEGRATION, the VLSI journal 40 (2007) 479–489486
The ASIC tool-chain for the tape-out of the embedded 8-
bit DES blocks was Cadence pks_shell for the front-end
(synthesis) and SOC/Encounter for the back-end (place-
and-route). The synthesis results, for both the control and
the datapath, are given in Fig. 8. The control is
dimensioned to interface with a 256-byte single port
RAM. The straightforward architecture is the most
compact and the multi-mode is the largest. The design
maximum frequencies are 540MHz (straightforward DES),
500MHz (pipelined DES), 435MHz (multi-mode DES).
The pipelined DES does not reach the same frequency as
the straightforward DES because its more complex control
limits its speed. The multi-mode DES datapath is more
sophisticated, which explains why it cannot reach frequen-
cies as high as the two other architectures. The maximum
frequency of the proposed architectures are fairly high for
an embedded system. The architectures can be adapted to
an external datapath width of n ¼ 16 (resp. n ¼ 32) bits,
in which case two (resp. four) rounds can be computed
within one clock period. This new architecture will run
at a maximum speed roughly half (resp. four times less)
Table 3.

However, the cipherment throughput is the highest for
the pipelined architecture in ECB mode, and for the multi-
mode in all the other modes and triple DES. Table 4 shows
the throughput of some modes. It should be noted that
neither the straightforward nor the pipelined architectures
are designed to handle modes of operation or triple-DES.
The chaining operation must thus artificially be performed
2000

1500

1000

500

0
100 150 200 250 300 350 400 450 500 550

Chip frequency [MHz]

Chip frequency [MHz]

T
hr

ou
gh

pu
t

T
hr

ou
gh

pu
t

600

500

400

300

200

100

0
100 150 200 250 300 350 400 450 500 550

Straight forward. (Fig. 2)
Fully pipelined. (Fig. 4)
Multi-mode (Fig. 6)

Straight forward. (Fig. 2)
Fully pipelined. (Fig. 4)
Multi-mode (Fig. 6)

(a)

(b)

Fig. 8. Synthesis results for the three architectures.
in SW. An estimation of the code for such an operation is
given below:
(1)
 Read ram[i] (1 clock cycle)

(2)
 Read ram[i+8] (1 clock cycle)

(3)
 Compute ram[i] XOR ram[i+8] (1 clock cycle)

(4)
 Write ram[i+8] (1 clock cycle)
This fragment must be repeated eight times, which leads to
a total of 8� 4 ¼ 32 clock cycles. This evaluation is
optimistic, because it does not take into account the
context switch. It is also unrealistic, since the processor
should not be disturbed by the computation internal
details. The throughput figures given for straightforward
or the pipelined are thus only indicative.
The maximum throughputs are also shown graphically

in Fig. 9(a) for DES-ECB and in Fig. 9(b) for 3DES-CBC.
It is also interesting to compare the throughputs of an
ASIC design with the one of a personal computer (PC).
The maximum throughput for 3DES-CBC attained by the
multi-mode architecture is 580Mbit/s, while a 3.2GHz PC
is only able to encrypt at 200Mbit/s (result of openssl
speed des).
However, achieving high throughput would be needless

if the area overhead is getting too large. For most modes of
operation, the parallelization of the cipherments is
impossible, due to data dependencies between the con-
secutive blocks. Still, ECB	1, CBC�1 and CFB�1 can
indeed be parallelized. In those cases, the throughput can
be multiplied by the instantiation of multiple engines
operating concurrently. Therefore, in Fig. 10, the through-
put divided by the area is plot. At constant area, the multi-
mode architecture of DES remains the fastest.

ARTICLE IN PRESS

Straight forward. (Fig. 1)
Fully pipelined. (Fig. 3)
Multi-mode (Fig. 5)

0.016

0.014

0.012

0.01

0.008

0.006

0.004

0.002

0
100 150 200 250 300 350 400 450 500 550

Chip frequency [MHz]

[A
.U

]

Fig. 10. Comparative efficiency of 3DES-CBC (in Mbit=s=mm2) for the

three proposed architectures.

Fig. 11. The multi-mode DES after place-and-route in 130 nm technology.

Top: datapath/control partitioning; bottom: final layout.

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

100 150 200 250 300 350 400 450 500 550

Chip frequency [MHz]

Straight forward (Fig.2)
Fully pipelined (Fig.4)
Multi-mode (Fig.6)

Fig. 9. Throughput (in 106 bit=s) of the three solutions in (a) DES-ECB

and (b) 3DES-CBC.

S. Guilley et al. / INTEGRATION, the VLSI journal 40 (2007) 479–489 487
The DES module after automatic place-and-route by
SOC/Encounter is shown in Fig. 11. It happens that the
synthesizer was optimistic: static timing analysis performed
on the final layout at 95% placement density reports, after
post-route resynthesis and in-place optimization, a max-
imal frequency of 286MHz (versus 435MHz predicted by
the logical synthesizer). This limitation is in practice not
deterrent, since 256 bytes embedded RAMs in 130 nm
technology cannot work above 333MHz without violating
either hold or setup times.

4.2. Comparison with other fast and versatile

implementations of DES

A ‘‘Cryptographic Reuse Library’’ based on static
genericity is described in [26]. It contains synthesizable
algorithms commonly used in cryptography, each of which
can be used either as such, or wrapped into a module that
enables modes of operations, or further wrapped into an
interface module that adapts throughputs and latencies to
match that of the environment. Although the methodology
has not been applied to DES in [26], it could be extended to
support this algorithm. The features of this ‘‘Crypto-
graphic Reuse Library’’ are those we present in this paper.
However, as the mode of operation and interface wrappers
involved in the library are not aware of the algorithm
internals, the resulting block is necessarily sub-optimal.
The approach used in the ‘‘multi-mode’’ architecture
(Fig. 6) is to merge the two abovementioned wrappers
into the algorithm datapath itself. This allows the ‘‘multi-
mode’’ architecture to work without dead cycles at a
constant throughput. This prominent feature is a valuable

ARTICLE IN PRESS
S. Guilley et al. / INTEGRATION, the VLSI journal 40 (2007) 479–489488
characteristic of the multi-mode architecture: the I/Os
are equipartitioned during the processing of the DES
algorithm. However, this design solution is specific to DES,
and probably does not extend to other algorithms.

Some architectural innovations are described in [24]
regarding the round logic of DES. The frontier between the
consecutive rounds i and i þ 1 is dissolved in order to
balance the critical path between Li ! Riþ1 and
Ri ! Liþ1. The transformation yields an overall decrease
of the critical path length, at the cost of an increase of the
latency (the apparent number of rounds rises from 16 up to
21 or 37) and of a particularization of the first and last
rounds. These modifications are not a burden when a
pipelined implementation is targeted. However, they are
deterrent for the architectures presented in this paper,
because the data processing is kept iterative.

5. Conclusion

Two architectural innovations, namely the I/O and
processing pipelining and the use of ‘‘IP representation’’,
allow to improve the design of DES 8-bit implementations.
The proposed architecture supports all modes of operation
and triple DES with two keys. The VLSI hardware
implementation can take advantage of both methods,
whereas software implementations can only benefit from
the ‘‘IP representation’’. The pipelining strategy consist in
parallelizing the data inputs and outputs with the proces-
sing. It also enables shorter clock periods, due to the
elimination of the some multiplexors on the critical path.
The IP representation enables optimized chaining. These
optimizations allow to accelerate DES operations in
smartcards or in embedded systems or to speed-up DES-
cracking machines [22,24].

References

[1] NIST/ITL/CSD, FIPS PUB 46-3: Data Encryption Standard (DES),

hhttp://csrc.nist.gov/publications/fips/fips46-3/

fips46-3.pdfi, October 1999.

[2] NIST/ITL/CSD, FIPS 81, DES Modes of Operation, hhttp://

www.itl.nist.gov/fipspubs/fip81.htmi, December 1980.

[3] NIST/ITL/CSD, FIPS PUB 197: Advanced Encryption Standard

(AES), hhttp://csrc.nist.gov/publications/fips/fips197/

fips-197.pdfi, November 2001.

[4] NIST/ITL/CSD, FIPS PUB 180-2: Secure Hash Standard (SHA),

August 2002.

[5] ISO/IEC International Standard 10116, Information Technology,

Modes of Operation for an n-bit Block Cipher Algorithm, 1991.

[6] American National Standards Institute, ANSI X9.17 ‘‘Key Manage-

ment.’’ (see also [A.J. Menezes, P.C. van Oorschot, S.A. Vanstone,

Handbook of Applied Cryptography, CRC Press, Boca Raton, FL,

October 1996, 816p. [ISBN: 0-8493-8523-7 (Fifth Printing, August

2001)]], p. 173].)

[7] E. Biham, A. Shamir, Differential cryptanalysis of DES-like

cryptosystems, J. Cryptol. 4 (1) (1991) 3–72.

[8] M. Matsui, Linear cryptanalysis method for DES cipher, in: T.

Helleseth (Ed.), Proceedings Eurocrypt’93 Lecture Notes in Compu-

ter Science, vol. 765, Springer, Berlin, 1994, pp. 386–397.

[9] Electronic Frontier Foundation, Secrets of Encryption Research,

Wiretap Politics & Chip Design, 1998, ISBN: 1-56592-520-3.
[10] J.-J. Quisquater, F.-X. Standaert, Exhaustive Key Search of the DES:

updates and refinements hhttp://www.ruhr-uni-bochum.de/

itsc/tanja/SHARCS/i, 2005.

[11] Eric Young, oeay@cryptsoft.com4, DES ASM and C implemen-

tation in openssl, hhttp://www.openssl.org/source/i,

1995.

[12] NIST/ITL/CSD, modes of operation validation system (MOVS):

requirements and procedures, hhttp://csrc.nist.gov/pub-

lications/nistpubs/800-17/800-17.pdfi, 1998.

[13] R. Merkle, M. Hellman, On the security of multiple encryption,

Commun. ACM 24 (7) (1981) 465–467.

[14] J. Kilian, P. Rogaway, How to protect DES against exhaustive key

search (an analysis of DESX), J. Cryptol. 14 (1) (2001) 17–35.

[15] P. Kocher, J. Jaffe, B. Jun, Differential power analysis: leaking

secrets, in: Proceedings of CRYPTO’99, Lecture Notes in Computer

Science, vol. 1666, Springer, Berlin, 1999, pp. 388–397.

[16] K. Gandolfi, C. Mourtel, F. Olivier, Electromagnetic analysis:

concrete results, in: Proceedings of CHES’01, Lecture Notes in

Computer Science, vol. 2162, Springer, Berlin, 2001, pp. 251–261.

[17] E. Biham, A. Shamir, Differential Fault Analysis on Secret Key

Cryptosystems, vol. 1294, 1997, pp. 513–525.

[18] Helion Technology, datasheet—high performance DES and triple

DES core for ASIC, hhttp://www.heliontech.com/downloads/

des_asic_helioncore.pdfi, 2003.

[19] Sci-worx, datasheet—DES/triple DES (high performance), hhttp://

www.sci-worx.com/Data_Encryption_Standard_DES.150.0.htmli, 2001.

[20] F. Bouesse, M. Renaudin, B. Robisson, E. Beigné, P.-Y. Liardet, S.

Prevosto, J. Sonzogni, DPA on quasi delay insensitive asynchronous

circuits: concrete results, in: XIX Conference on Design of Circuits

and Integrated Systems, 2004.

[21] ATMEL, Datasheet—Triple Data Encryption Standard (TDES),

hhttp://www.atmel.com/dyn/resources/prod_documents/6150s.pdfi,

2005.

[22] R. Clayton, M. Bond, Experience using a low-cost FPGA design to

crack DES keys, in: Cryptographic Hardware and Embedded

Systems (CHES’02), Lecture Notes in Computer Science, vol. 2523,

2002, pp. 579–592.

[23] S. Trimberger, R. Pang, A. Singh, A 12Gbps DES encryptor/

decryptor core in an FPGA, in: Proceedings of CHES 2000,

Lecture Notes in Computer Science, vol. 1965, August 2000,

pp. 156–163.

[24] G. Rouvroy, F.-X. Standaert, J.-J. Quisquater, J.-D. Legat, Efficient

uses of FPGAs for implementations of DES and its experimental

linear cryptanalysis, IEEE Trans. Comput. 52 (4) (2003).

[25] P. Kitsos, S. Goudevenos, O. Koufopavlou, VLSI implementations

of the triple-DES block cipher, in: Proceedings of the 10th IEEE

International Conference on Electronics, Circuits and Systems

(ICECS’03), United Arab Emirates, December 2003.

[26] A. Schubert, R. Jährig, W. Anheier, Cryptography reuse library, in:

Forum on Design Languages (FDL’99), Lyon, France, August

1999.

[27] A.J. Menezes, P.C. van Oorschot, S.A. Vanstone, Handbook of

Applied Cryptography, CRC Press, Boca Raton, FL, October 1996,

816p. [ISBN: 0-8493-8523-7 (Fifth Printing, August 2001)].

Sylvain Guilley had been awarded the diploma of

the french École Polytechnique (X1997) and of

the french École Nationale Supérieure des Télé-

communications (ENST 2002). He passed the

competitive exams to enter the inter-ministerial

body of the telecommunications in 2000. In

2002, he received the M.S. of quantum physics

from the Université Pierre et Marie Curie (ENS /

Paris 6 University). Since 2002, he is associate

professor with the Digital Electronic System
group at Télécom Paris. His research interest is the security of security

hardware.

http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf
http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf
http://www.itl.nist.gov/fipspubs/fip81.htm
http://www.itl.nist.gov/fipspubs/fip81.htm
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://www.ruhr-uni-bochum.de/itsc/tanja/SHARCS/
http://www.ruhr-uni-bochum.de/itsc/tanja/SHARCS/
http://www.openssl.org/source/
http://csrc.nist.gov/publications/nistpubs/800-17/800-17.pdf
http://csrc.nist.gov/publications/nistpubs/800-17/800-17.pdf
http://www.heliontech.com/downloads/des_asic_helioncore.pdf
http://www.heliontech.com/downloads/des_asic_helioncore.pdf
http://www.sci-worx.com/Data_Encryption_Standard_DES.150.0.html
http://www.sci-worx.com/Data_Encryption_Standard_DES.150.0.html
http://www.atmel.com/dyn/resources/prod_documents/6150s.pdf

ARTICLE IN PRESS
S. Guilley et al. / INTEGRATION, the VLSI journal 40 (2007) 479–489 489
Philippe Hoogvorst graduated from École Nor-

male Supérieure, Paris. He got his Ph.D. in 1974

for a study on languages without assignments. He

was one of the creators of the ‘‘Laboratoire

d’Informatique Expérimentale of the École

Normale Supérieure’’. He defended a ‘‘thése

d’État’’ in 1983 on the same subject as the

Ph.D. He worked for 4 years in the consumer

electronic domain by Philips on the develop-

ment of 16-bit micro-controllers. He was then

interested in massively parallel computers. In 1994, he joined the
cryptographic team of the École Normale Supérieure, where he worked

on the factorisation of integers, ending in the factorisation of a 100

decimal digits integer, which was the biggest result which could be

achieved, given the available computing power at the ENS at that time.

He moved in 1999 the École Nationale Supérieure des Télécommu-

nications, where he has been working on video compression standards,

MPEG-4 and MPEG-7 for 4 years before coming back to a subject

linked to security: the defense of cryptographic devices against the

so-called ‘‘side-channel attacks’’. Philippe Hoogvorst is currently re-
searcher at the CNRS and detached to the http://www.ltci.enst.fr/ {LTCI/

UMR 5141}.

Renaud Pacalet received his M.S. from the École

Nationale Supérieure des Télécommunications in

1988. From 1993 to 1995 he worked on various

industrial projects as engineer at Télécom Paris.

From 1996 to 2003 he was responsible for the

‘‘integrated systems’’ group at Télécom Paris.

From 2003 on, he created and now leads the

‘‘Systems on Chip’’ laboratory of Télécom Paris

at Sophia-Antipolis. His research interests in-

clude the methods and tools for the specification
and the validation of integrated systems. He also works in the field of the

assistance for refinement and for the model abstractions of digital

integrated systems. This knowledge is applied to the hardware securization

of integrated systems: resistance against side-channel attacks, privacy and

integrity of memory buses.

http://www.ltci.enst.fr/

	A fast pipelined multi-mode DES architecture operating �in IP representation
	Introduction
	DES datapath improvement thanks to a generalized pipelining
	Straightforward DES
	DES datapath fast pipelining

	Optimal SW/HW partition to realize all DES variants
	IP representation
	Multi-mode pipelined DES datapath operating in ’’IP representation’’
	SW/HW trade-offs
	Realization of 3DES with three different keys
	Realization of CBC^-1
	Using CBC) and CBC^-1 with an IV

	Performance evaluation of the proposed architecture
	Implementation in FPGA and ASIC
	Comparison with other fast and versatile implementations of DES

	Conclusion
	References

