TELECOM
ParisTech

— o3 1l

Institut
Mines-Télécom

Structure des systemes
programmables

Bonjour systemes embarqueés

_ Licence de droits d'usage

20 septembre 2018 © 2017 Alexis Polti SE203

Contexte académique } sans modification

Ed

Par le téléchargement ou la consultation de ce document, I'utilisateur accepte la licence d’utilisation qui y est
attachée, telle que détaillée dans les dispositions suivantes, et s’engage a la respecter intégralement.

La licence confére a l'utilisateur un droit d'usage sur le document consulté ou télécharge, totalement ou en partie, dans
les conditions définies ci-aprés, et a I'exclusion de toute utilisation commerciale.

Le droit d’'usage défini par la licence autorise un usage dans un cadre académique, par un utilisateur donnant des cours
dans un établissement d’enseignement secondaire ou supérieur et a I'exclusion expresse des formations commerciales
et notamment de formation continue. Ce droit comprend :

* e droit de reproduire tout ou partie du document sur support informatique ou papier,
* le droit de diffuser tout ou partie du document a destination des éléves ou étudiants.

Aucune modification du document dans son contenu, sa forme ou sa présentation n’est autorisé.
Les mentions relatives a la source du document et/ou a son auteur doivent étre conservées dans leur intégralite.

Le droit d’'usage défini par la licence est personnel, non exclusif et non transmissible.
Tout autre usage que ceux prévus par la licence est soumis a autorisation préalable et expresse de l'auteur :
alexis.polti@telecom-paristech.fr

TELE

COM

sTech

tl;dr

@ Ce qu'on va apprendre :

@ |e vocabulaire et les structures de base
des systemes embarques,

@ que tout est soit processeur soit memoire,

@ que code et variables ont généralement
deux adresses : LMA et VMA,

@ ce qui se passe avant et aprés main(),
@ ce que fait un bootloader,
2 |es différentes fagons de débugger.

‘ TELECOM

. ParisTech
20 septembre 2018 © 2017 Alexis Polti SE203 .

I Pian

» Les systemes a processeur
» architecture, mapping memoire
> modes d'execution et exceptions
° types de systemes : bare metal vs. hosted
° vie des executables
 pbootloaders
* debug

20 septembre 2018 © 2017 Alexis Polti SE203

TELECOM
ParisTech

_ Architecture globale

processeur

|

uContréleur

interface mémoire
, . , entréees
memoire reelle .
sorties
*

20 septembre 2018 © 2017 Alexis Polti SE203 .

'

TELECOM
ParisTech

processeur

I Architecture globale -

entrées

meémoire réelle)
sorties

> Mémoire 3
° « mémoire » = « présentant une interface similaire a
celle d'une memoire »

» dispositif defini par la seémantique des acces :
» acces = triplet (type [load / store], adresse, valeur)

° physiquement
» memoire reelle
» bancs de registres
» péripheriques
» fonctions virtuelles (bit-banding, ...)

‘ TELECOM

. ParisTech
20 septembre 2018 © 2017 Alexis Polti SE203 .

processeur

I Architecture globale -

.. , entrées
memoire réelle)
sorties

» Plan d'adressage mémoire 3
@ souvent : plusieurs « memoires »

@ partage de I'espace mémoire du processeur

» allocation d'une ou plusieurs plages d'adresses
2 acces : par des lectures / écritures de mots (load / store)
» — définition : « périphérique mappé en memoire »

@ décodage d'adresse

» usuellement sur bits de poids fort d'adresse
» fait par :

« periphérique

« éventuellement en partie par bus / NoC
» facilité par le contréleur de bus (chip select)

2 possibilité de configuration au vol (ex : PCI)

TELECOM

; ParisTech
20 septembre 2018 © 2017 Alexis Polti SE203 .

processeur

I Architecture globale -

entrées

memoire réelle)
sorties

» Plan d'adressage méemoire .

» nécessité d'un plan memoire (memory map)
» pour le contréleur de bus
» pour le NoC

» pour le systeme (bootloader, OS)
» pour le programmeur

° peut dépendre du mode du processeur

» user / kernel
> protege, reel, ...

‘ TELECOM

. ParisTech
20 septembre 2018 © 2017 Alexis Polti SE203 .

processeur

I Architecture globale -

entrées

@ Exemple : ARM Cortex M0+ memoire réelle | orties

OXFFFFFFFF ¢
OXEOOFFFFF
ROM Table Reserved
OXEOOFF000
Reserved S
0xE0042000 R
0xE0100000
0xE0041000 Reserved Private Peripheral Bus - Internal
0xE0000000
Reserved ;
O0XE0040000 ; OXDFFFFFFF
OXEO003FFFF
Reserved
0xE000F000 ,
External Device 1GB
Debug control
0xE000EDOO
NVIC
OxE000E000 i 0xA0000000
Reserved / OXx9FFFFFFF
0xE0003000
BPU (not modeled in ISSM)
0xE0002000 /
DW (not modeled in ISSM) External 1GB
0xE0001000
Reserved
0xE0000000
0x60000000
OXSFFFFFFF
Peripheral 0.5GB
0x40000000
Ox3FFFFFFF
Ox3FFFFFFF Ext |
511MB xterna
0x20100000 SRAM 0.5GB
1MB DTCM
0x20000000 L ———————————— .. 0x20000000
OX1FFFFFFF : OX1FFFFFFF
External
0x10010000 Cod 0.5GB
0x1000FFFF) ode
ITCM (Upper Alias)
0x10000000
OXOFFFFFFF 0x00000000
External
0x00100000 L
0x00000000 |IMB__ITCM (Lower Alias) TELECOM

E".‘JI 1 ,—T{'Ch

20 septembre 2018 © 2017 Alexis Polti SE203

processeur

_ Architecture globale v

interface mémoire

entrées

@ Exem ple . SH4 mémoire réelle sor%es

External
memory space
HOooO ooo0 17777 Areal | H'0000 0000
Area 1
Area 2
Area 3
PO area Area 4 LU0 area
Cacheable Area 5 Cacheable
Area 6
Area [
H'8000 0000 ’ H'8000 0000
FP1 area [
Cacheable
H'AD00 0000 P2 area
Non-cacheable | Add
. [ress error
H'CO00 0000 P3 area
Cacheable
H'EODD 0000 H'EDOO 0000
P4 area Store gueue area YEA00 0000
H'FEEE FEEE Non-cacheable Address error H'EEEE EFEE

‘ Privileged mode User mode

TELECOM

ParisTech
page 10 20 septembre 2018 © 2017 Alexis Polti SE203 =T
| paen 2 e

processeur

I Architecture globale -

entrées

memoire réelle)
sorties

» Memoires physiques 3
° vive
» cache, centrale
» SRAM, (S/DDR-S/DDR2-S /DDR3-S/ ...) DRAM, ...
> rapides
> morte

» stockage de masse, bios, configuration
» Flash, (E)EPROM, (M/P/OTP)ROM, ...
» |lecture lente, ecriture tres lente

» Internes ou externes
» |a distinction vive-morte, RAM/ROM, RW/RO est floue...

page 11 20 septembre 2018 © 2017 Alexis Polti SE203

TELECOM
ParisTech

_ Pause : les MMU Py

» Memory Management Unit adresses virtuelles

@ gestion de la mémoire
2 traduction

. MMU
2 protection (MPU)
2 contréle de cache
. .. adresses physiques
MEM

2 Quizz : quel est le lien entre MMU / MPU et swap ?

‘ TELECOM

. ParisTech
page 12 20 septembre 2018 © 2017 Alexis Polti SE203 .

processeur

I Harvard / von Neumann -

entrées
sorties

*» Zoom $
» plusieurs architectures possibles
» pour chaque architecture, deux définitions

memoire réelle

processeur

i

interface mémoire

entrées
sorties

!

; ParisTech
page 13 20 septembre 2018 © 2017 Alexis Polti SE203 .

memoire reelle

TELECOM

_ Harvard / von Neumann

» Architecture Von Neumann

» matériel : un seul chemin de
données

» |ogiciel : un seul espace mémoire

» permet de traiter le code comme des
données

» est-ce bien ?

» goulot d'etranglement : deux cycles
pour chaque instruction accedant a
des données en memoire

processeur

v

interface mémoire

mémoire réelle

entrées
sorties

v

processeur

!

cache
| + D

!

memoire
|+ D

!

page 14 20 septembre 2018 © 2017 Alexis Polti SE203

TELECOM

ParisTech

i

_ Harvard / von Neumann

» Architecture Harvard
» matériel : deux chemins de

données distincts T
» un pour les instructions |
 un pour les donnees T

processeur

v

interface mémoire

meémoire reelle

entrées
sorties

processeur

v

cache
D

* logiciel : deux espaces | emoire
memoire distincts |

> Problemes en C :

!

meémoire
D

!

» sur les controleurs ou la flash contient le code et la RAM les
données, ou stocker les données constantes ?

» comment recopier / modifier des instructions ?

page 15 20 septembre 2018 © 2017 Alexis Polti SE203

TELECOM

ParisTech

i

processeur

3
_ Harvard / von Neumann

. , entrées
meémoire reelle

sorties

» Architecture Harvard unifiee v
° appelée ausg Harvard modifiee -
» prend le meilleur des deux mondes T I
s problémes : cache | |cache
» cohérence de cache lors de la manipulation I D
d'instructions T I
» performances reduites en cas de cache miss arbitre
repéetes I
» architecture (de loin) la plus repandue ! memoire

1+D

!

TELECOM

. ParisTech
age 16 20 septembre 2018 © 2017 Alexis Polti SE203 =T
. owmmexsponses o

Ou en est-on ?

2 Les systemes a processeur
@ architecture, mapping memoire
- @ modes d'exécution et exceptions

@ types de systemes : bare metal vs.
hosted

@ vie des exécutables
@ bootloaders
@ debug

‘ TELECOM

. ParisTech
page 17 20 septembre 2018 © 2017 Alexis Polti SE203 =T
| pgetr 2 e

_ Modes et exceptions

» Modes de fonctionnement

s || existe souvent au moins 2 modes :

2 superviseur
» utilisateur

» chaque mode correspond a des ressources propres

» permet la mise en place de protection pour les OS

» |es ressources propres sont géneralement
« des registres : PC, pointeur de pile, ...
« des instructions spéciales

» Le passage d’'un mode a un autre s’effectue par des
iInstructions spéciales (TRAP, SVC sur ARM, ...)

TELECOM

; ParisTech
page 18 20 septembre 2018 © 2017 Alexis Polti SE203 .

_ Modes et exceptions

» Exceptions :

* permettent de signaler un evenement particulier au
processeur pour qu'il arréte son traitement courant et
effectue temporairement un traitement specifique.

® peuvent étre genérees :

» par des instructions spéeciales
« appelées usuellement TRAP, exception logicielle, interruption logicielle
« permet d'implémenter des appels systeme

» a la demande d'un périphérique externe
« appelé usuellement interruption matérielle (IRQ)

» par un dysfonctionnement du systeme (échec d’'un acces
memoire, instruction non reconnue, division par zéro, ...)
« appelé usuellement exception matérielle

TELECOM

. ParisTech
age 19 20 septembre 2018 © 2017 Alexis Polti SE203 =T
. owmmexsponses o

_ Modes et exceptions

> Typologie des exceptions

» synchrone : si elle a toujours lieu au méme moment
pour un meme set de donnees et la méme allocation
memoire. Exemples :

» divisions par 0, page fault, undefined instruction
» TRAP

» asynchrone : si elle n'a pas de relation temporelle avec
le programme courant. Exemples :
» Interruptions externes

» data memory error
> reset

TELECOM

; ParisTech
page 20 20 septembre 2018 © 2017 Alexis Polti SE203 .

_ Modes et exceptions

» Handlers, vecteurs, table des vecteurs
@ définitions :
2 a chaque exception correspond un code a executer appelé handler

» |a premiere instruction de ce handler est située a une adresse
appelée vecteur d'interruption

@ |les vecteurs sont souvent regroupés au sein d'une table

» appelée table des vecteurs d'interruption
» hard codée / en ROM / en RAM
2 il peut y avoir plusieurs tables (modes, ...)

@ pour limiter la taille de la table, certaines interruptions
partagent le méme vecteur. On parle alors d'interruptions
chainees.

TELECOM

; ParisTech
age 21 20 septembre 2018 © 2017 Alexis Polti SE203 =T
. owmmexsponses o

_ Modes et exceptions

*» Traitement des exceptions

exception . _
. | contréleur 2
2) d'interruption T/’
exceptlon - prioritisation
- generation du numero vecteur 0
d'exception a traiter
vecteur 1

- N |
programme /” 4‘\ vecteur 2
principal = vecteur 3

/ 1\

H@L{ processeur J

ra ™

/-"

(5 handler
d'interruption

W F

TELECOM

ParisTech

page 22 20 septembre 2018

© 2017 Alexis Polti SE203

exception

= | contréleur B
\23 d'interruption —%3/
- exception - prioritisation

Modes et exceptions
d'exception a traiter T
programme (4) L

: 1 - principal = b,

*» Traitement des exceptions ol

 selon le type d'exception :

» retour a l'instruction interrompue (si probléme)
» retour a l'instruction d'apres (si pas de probleme)

teur 2
vecteur 3
@ . handler
d'interruption

» en cas de double faute, beaucoup de processeurs se
mettent en mode erreur

> arrét
> ['examen des registres permet de savoir ce qui s'est passé

» certaines architectures autorisent les IRQ préemptibles
» certaines architectures autorisent les NMlI

TELECOM

. ParisTech
age 23 20 septembre 2018 © 2017 Alexis Polti SE203 =T
. owmmexsponses o

Ou en est-on ?

2 Les systemes a processeur
@ architecture, mapping memoire
@ modes et exceptions

~ e types de systémes : bare metal vs.
hosted

@ vie des exécutables
@ bootloaders
@ debug

‘ TELECOM

. ParisTech
age 24 20 septembre 2018 © 2017 Alexis Polti SE203 =T
. owmmexsponses o

_ Types de systemes embarqueés

» Types
® approche minimale : carte nue (bare-metal)
» approche maximale : hébergé (avec OS / hosted)
» beaucoup d'approches mixtes entre les deux

‘ TELECOM

. ParisTech
page 25 20 septembre 2018 © 2017 Alexis Polti SE203 =T
| ez 2 e

_ Types de systemes embarqueés
2 0OS

e offre un ensemble de services (fonctions) aux executables

@ en géneéral, au moins ces services usuels :

2 abstraction des périphériques

» primitives de synchronisation

» gestion du temps

» gestion des taches (threads, processus, ...)
2 gestion de la mémoire

2 gestion des fichiers

@ responsable de l'initialisation complete du matériel

@ charge les executables en mémoire et controle leur
execution

‘ TELECOM

. ParisTech
page 26 20 septembre 2018 © 2017 Alexis Polti SE203 .

_ Types de systemes embarqueés
» 0OS

» peut se presenter comme une bibliotheque normale,
linkée avec l'application
> |les services de I'OS sont alors des appels de fonction normaux

® peut étre un code independant

» |les services de I'OS sont alors usuellement appelés par des
Instructions spéciales (syscalls) :

« TRAP (exceptions logicielles)
¢« SVC sur ARM

u - mow

» dans tous les cas, I'OS installe ses propres handlers
d'interruption

‘ TELECOM

. ParisTech
page 27 20 septembre 2018 © 2017 Alexis Polti SE203 .

_ Types de systemes embarqueés

2 0OS : exemples
@ généralistes
» Linux, xBSD, Solaris

» Windows
» 0OS/2, Plan9, ...

» dédiés aux systemes embarques
» Windows Embedded, VxWorks, QNX, uCLinux, ...
» Android, iOS, Bada, ...
» FreeRTOS, ChibiOS/RT, eCos, RTEMS, ...
» TinyOS, Contiki, ...
> Forth (!)

* Plus de 1200 OS repertoriés sur Wikipedia

‘ TELECOM

. ParisTech
page 28 20 septembre 2018 © 2017 Alexis Polti SE203 .

_ Types de systemes embarqueés

» Bare-metal (free-standing)
@ pas d'OS
» alone in the dark : stresssssss !
» pas (ou tres rarement) de bibliotheques partagées

» souvent un seul exéecutable auto-contenu en charge de
la gestion de tout le systeme

» différentes fonctionnalitées sont a gérer :
» Initialisation
» fonctionnement
» mise a jour
» debug

‘ TELECOM

. ParisTech
page 29 20 septembre 2018 © 2017 Alexis Polti SE203 .

Ou en est-on ?

2 Les systemes a processeur
@ architecture, mapping memoire
@ modes d'exécution, exceptions

@ types de systemes : bare metal vs.
hosted

- e vie des exécutables
@ bootloaders
@ debug

‘ TELECOM

. ParisTech
page 30 20 septembre 2018 © 2017 Alexis Polti SE203 =T
| pagenn | e

_ Vie des exécutables

2 Architecture d'un programme
@ stockage : en ROM, flash, mémoire de masse

@ execution : selon l'optimisation souhaitée,

2 soit depuis la RAM (optimisation vitesse)
2 soit directement depuis la ROM (économie de RAM)

@ tout ne peut pas étre stocké en ROM :

2 exemple : variables
2 — séparation données modifiables / non modifiables

s économiser la place en ROM / mémoire de masse :

2 on ne stocke que le nécessaire (pas la pile, ni BSS)
2 sous forme plus ou moins compacte : formats d'exécutables

TELECOM

; ParisTech
page 31 20 septembre 2018 © 2017 Alexis Polti SE203 .

_ Vie des exécutables
» Code

» généeralement non modifiable

° si executé a partir de la RAM :
» nécessite souvent une recopie préalable

° si exécute directement a partir de la ROM :
» XIP (eXecute In Place)

¢ problemes :
@ vecteurs d'interruption,
@ pbreakpoints,
@ support des bibliotheques,
@ clashs d'adresses, ...

» on peut le séparer en difféerentes sections, certaines
XIP, d'autres en RAM...

‘ TELECOM

. ParisTech
page 32 20 septembre 2018 © 2017 Alexis Polti SE203 .

_ Vie des exécutables

» Données

» modifiables :

2 |lors de I'exécution : situées en RAM (par définition)

2 quizz : mais alors quand le contréleur de RAM n'est pas encore
initialis€, on ne peut pas utiliser de variables ?

@ non modifiables (constantes) :

2 |ors de I'exécution : situées en ROM
» ... ou eventuellement en RAM (avec protection d'acces)
» quizz : si elles sont non modifiables, pourquoi les mettre en RAM ?

® problemes des variables initialisées :

» avant execution : stockees en ROM
» necessitent une recopie ROM — RAM

TELECOM

; ParisTech
page 33 20 septembre 2018 © 2017 Alexis Polti SE203 .

_ Vie des exécutables

2 Bilan : difféerentes parties d'un exécutable

TEXT (a priori ng?ldriodifiable) =i (ROL% ou rece(?pliQéOel\r/lI RAM

BSS variati)rl]iisaﬂggejgigazliésges ou pas stocke créé en RAM

DATA variables modifiables initialisées en ROM recopié en RAM
RODATA constantes en ROM ou rec?:pli-\:é?al\rﬁl RAM

Attention : sera complété / modifié / nuancé par la suite !..

TELECOM

ParisTech
page 34 20 septembre 2018 © 2017 Alexis Polti SE203 =
_ : e

_ Vie des exécutables

» Emplacements d'exécution

@ détermineés a la compilation / edition de lien

@ trois possibilites :
» code fixe
» code relogeable
» position-independant code (pic)

@ parfois nécessaire de déplacer certaines parties des exécutables
(ROM — RAM) avant le lancement du main : qui, quand ?

@ Cas usuels extremes

s exemple 1 : systeme nu (bare-metal), sans MMU, exécutable
stocké en ROM, exécuté depuis la RAM ou la ROM

a2 exemple 2 : systeme avec OS et MMU, exécutable stocké sur
disque, execute depuis la RAM

TELECOM

; ParisTech
age 35 20 septembre 2018 © 2017 Alexis Polti SE203 =T
. owmmexsponses o

_ Vie des executables : exemple bare-metal

@ Lancement de l'exécutable
@ stocké en ROM

données
initialisées

RO data

code

reset
vector

page 36 20 septembre 2018 © 2017 Alexis Polti SE203

RAM

ROM

TELECOM

ParisTech

_ Vie des executables : exemple bare-metal

@ Lancement de l'exécutable
@ stocké en ROM

@ égventuellement, recopie du code en RAM Al

» par exécutable externe (bootloader, ...)
2 ou par le code lui-méme (crt0.s, ...)

code
R .= relogé
.
.
’

’

'

[}
I
[|
1
1

1 données |
' initialisées

' "~ ROM

N ‘
2N RO data
.
A
* ~
Se - code
reset
vector ‘ TELECOM

ParisTech
page 37 20 septembre 2018 © 2017 Alexis Polti SE203 .

_ Vie des executables : exemple bare-metal

2 Lancement de I'exécutable
@ stocké en ROM
@ égventuellement, recopie du code en RAM Al
» par exécutable externe (bootloader, ...) données
» ou par le code lui-méme (crt0.s, ...) il
. , code
@ recopie des données en RAM par crt0.s relogé
(inséré par la chaine de compilation)
'l
[]
[]
[]
|
|
1 données
' initialisées \
Y ROM
‘\ RO data
‘
A)
~§
Sem code
reset /
vector TELECOM

! ParisTech
age 38 20 septembre 2018 © 2017 Alexis Polti SE203 =T
. owmmexsponses o

_ Vie des executables : exemple bare-metal

@ Lancement de l'exécutable
@ stocké en ROM

@ égventuellement, recopie du code en RAM
» par exécutable externe (bootloader, ...)
2 ou par le code lui-méme (crt0.s, ...)

@ recopie des données en RAM par crt0.s
(inséré par la chaine de compilation)

@ |les données non modifiables sont
laissées en ROM

-y
- -

Sam

reset

données
initialisées
relogées

code
relogé

données
initialisées

RO data

vector

code

page 39 20 septembre 2018 © 2017 Alexis Polti SE203

RAM

ROM

— pasde

recopie

TELECOM

ParisTech

i

_ Vie des executables : exemple bare-metal

2 Lancement de I'exécutable pile,
] n'existent pas dans autres sections
@ stocké en ROM le fichier original
@ éventuellement, recopie du code en RAM e .
» par exécutable externe (bootloader, ...) données
» ou par le code lui-méme (crt0.s, ...) il
. i code
@ recopie des données en RAM par crt0.s relogé
(inséré par la chaine de compilation)
'l
@ |les données non modifiables sont b
laissées en ROM :
: données
T . ' initialisées
@ creation du BSS, de la pile, ... parcrt0.s ~ ROM
N RO data <4 pasde
Y. recopie
~§
Se- code
reset /
‘ vector TELECOM

. ParisTech
age 40 20 septembre 2018 © 2017 Alexis Polti SE203 =T
. owmmexsponses o

_ Vie des exéecutables : exemple bare-metal

@ Lancement de l'exécutable
@ stocké en ROM

n'existent pas dans
le fichier original

@ égventuellement, recopie du code en RAM

» par exécutable externe (bootloader, ...)
2 ou par le code lui-méme (crt0.s, ...)

@ recopie des données en RAM par crt0.s
(inséré par la chaine de compilation)

@ |les données non modifiables sont
laissées en ROM

-y
- -

@ création du BSS, de la pile, ... parcrt0.s

"

@ saut au main() Sl

reset
vector

pile,
autres sections

BSS

données
initialisées
relogées

code
relogé

données
initialisées

RO data

code

page 41 20 septembre 2018 © 2017 Alexis Polti SE203

RAM

ROM

— pasde

recopie

TELECOM

ParisTech

i

pile,
-autres sections

_ Vie des exécutables

BSS

2 Un objet, deux adresses

données
initialisées
relogées

code
relogé

données
initialisées

RO data

code

@ données relogées [~ >
» une adresse en ROM avant recopie
» une adresse en RAM apres recopie :
\
@ code logé en flash et exécuté en RAM % -
» une adresse en ROM avant recopie s

» une adresse en RAM apres recopie

2 adresse avant recopie : LMA
@ adresse apres recopie : VMA

@ Attention :

@ aucun rapport avec les adresses virtuelles de la MMU...
» le code et les variables peuvent donc avoir deux adresses !

page 42 20 septembre 2018 © 2017 Alexis Polti SE203

ROM
pas de recopie

TELECOM

ParisTech

_ Vie des executables : exemple hosted

@ Lancement de I'exécutable
@ stocke sur disque

/' RAM

m——

disque

‘ - TELECOM

ParisTech
page 43 20 septembre 2018 © 2017 Alexis Polti SE203 .

_ Vie des executables : exemple hosted

@ Lancement de I'exécutable
@ stocke sur disque

@ |e loader de I'OS lit un exécutable
depuis le disque et le mappe en RAM
directement aux bonnes adresses © RAW

données
initialisées

données
RO

code

disque

‘ < TELECOM

ParisTech
age 44 20 septembre 2018 © 2017 Alexis Polti SE203 =T
. owmmexsponses o

_ Vie des exéecutables : exemple hosted

@ Lancement de I'exécutable
@ stocke sur disque

pile,
autres sections

@ le loader de I'OS lit un exécutable
depuis le disque et le mappe en RAM

directement aux bonnes adresses 5SS b M
e création de la pile, du BSS, ... nitalisées
» généralement par le loader | domnees
» trés rarement par le crt0.s |
code

disque

‘ < TELECOM

. ParisTech
age 45 20 septembre 2018 © 2017 Alexis Polti SE203 =T
. owmmexsponses o

_ Vie des exéecutables : exemple hosted

@ Lancement de I'exécutable e
e stocké sur disque FHies sestons
@ le loader de I'OS lit un exécutable
depuis le disque et le mappe en RAM
directement aux bonnes adresses 5SS © RaM
e création de la pile, du BSS, ... nitalisées
» généralement par le loader | domnees
» trés rarement par le crt0.s |
code
@ sautaumain()

disque

‘ < TELECOM

. ParisTech
page 46 20 septembre 2018 © 2017 Alexis Polti SE203 .

_ Vie des exéecutables : exemple hosted

@ Un objet, une adresse e
» la MMU permet de mapper le fichier en alres secfions
memoire
@ aucune recopie néecessaire
@ dans ce cas, LMA = VMA
5SS " RAM
@ generalement, la MMU met aussi en 1 donnses
place des protections lors du mapping nitialisces
données
RO
@ cas particulier : activation de la MMU |
coae
» avant activation : code exécute

depuis sa LMA

» apres activation : code exécuté —
depuis sa VMA

‘ — TELECOM

. ParisTech
page 47 20 septembre 2018 © 2017 Alexis Polti SE203 .

disque

Pause question piege

a Attention

@ dans les deux exemples precedents, on a
sous-entendu un fait qui n'est pas forcément
verifié : lequel ?

(indice : on I'a vu en début du cours...)

‘ TELECOM

ParisTech
age 48 20 septembre 2018 © 2017 Alexis Polti SE203 =T
. owmmexsponses o

Ou en est-on ?

2 Les systemes a processeur
@ architecture, mapping memoire
@ modes d'exécution et exceptions

@ types de systemes : bare metal vs.
hosted

@ vie des exécutables
- @ bootloaders
@ debug

‘ TELECOM

. ParisTech
page 49 20 septembre 2018 © 2017 Alexis Polti SE203 =T
| sl 2 e

_ Boot et bootloaders

s Séparation des fonctionnalités
@ |nitialisation — bootloader
» fonctionnement — exécutable

» debug — moniteur ou debugger

> moniteur : reprise de contréle en cas d'exception
» debugger : fonctions avanceées

‘ TELECOM

. ParisTech
page 50 20 septembre 2018 © 2017 Alexis Polti SE203 .

_ Boot et bootloaders

@ Bootloaders
@ premier programme a s'executer
@ |nitialise le matériel

@ prepare un environnement d'execution
correct

@ lance l'exécutable principal programme
@ eventuellement sur condition
@ peut permettre la mise a jour du kernel
programme principal
bootloader bootloader

TELECOM

‘ ParisTech
page 51 20 septembre 2018 © 2017 Alexis Polti SE203 =T
| paest 2 e

_ Boot et bootloaders

2 Initialisation typique d'un systeme
@ configuration du processeur :

» desactivation des interruptions
 initialisation des registres de contrdle du processeur
@ |nitialisation de la RAM

» configuration du contréleur RAM
» mise en place éventuelle d'environnement d'exécution spécifique au
langage utilisé (C, Forth, ...) : pile(s), BSS, ...
@ mise en place des handlers d'interruptions critiques (Sparc)
@ initialisation des periphériques critiques
» PLL, horloges
2 enumeration des bus critiques (PCI, AGP, HT, ...)
» |OMMU, contréleurs de bus
» contrbleurs de stockage de masse
@ activation des caches

@ configuration MMU, passage en mode « virtuel »
@ activation des interruptions critiques

TELECOM

; ParisTech
page 52 20 septembre 2018 © 2017 Alexis Polti SE203 .

_ Boot et bootloaders

2 Exemple de fonctionnement : boot normal
@ lancement du bootloader
@ initialisation du systeme RAM
@ attente d'une condition

> caractere sur port série,
» bouton poussaoir,

-+

@ transfert de I'exécution au programme principal

ROM programme

.
= bootloader

reset vector

‘ TELECOM

. ParisTech
age 53 20 septembre 2018 © 2017 Alexis Polti SE203 =T
. owmmexsponses o

_ Boot et bootloaders
2 Exemple de fonctionnement : mise a jour
@ lancement du bootloader
@ initialisation du systeme RAM
: o nouveau
@ attente d'une condition programme
> caractere sur port série,
» bouton poussaoir,
@ récupération du nouveau programme
> port série,
nouveau
> NFS, TFTP, ... SRS
- bootloader

reset vector

‘ TELECOM

. ParisTech
page 54 20 septembre 2018 © 2017 Alexis Polti SE203 .

_ Boot et bootloaders

2 Exemple de fonctionnement : mise a jour
@ lancement du bootloader
@ initialisation du systeme RAM
' o nouveau
@ attente d'une condition programme

> caractere sur port série,
» bouton poussaoir,

-+

@ récupération du nouveau programme
> port série,
> NFS, TFTP, ...

@ recopie du nouveau programme en RAM
vers I'ancien en ROM / flash

nouveau
programme

- bootloader

reset vector

‘ TELECOM

. ParisTech
page 55 20 septembre 2018 © 2017 Alexis Polti SE203 .

_ Boot et bootloaders

2 Exemple de fonctionnement : boot en RAM
@ lancement du bootloader
@ initialisation du systeme RAM
. nouveau
@ attente d'une condition programme

> caractere sur port série,
» bouton poussaoir,
v ..
@ récupération du nouveau programme
> port série,
> NFS, TFTP, ...

 transfert de I'exécution au programme
en RAM

nouveau
programme

- bootloader

reset vector

‘ TELECOM

. ParisTech
page 56 20 septembre 2018 © 2017 Alexis Polti SE203 .

_ Boot et bootloaders données

» Fonctions additionnelles f
» passage d'arguments / structures de donnees
° services a l'execution (syscalls)

» fonctions de debug bootioader |
» diagnostic
» examen et manipulation de la méeémoire
> reprise de contrble sur exception : moniteur

programme |

‘ TELECOM

. ParisTech
page 57 20 septembre 2018 © 2017 Alexis Polti SE203 .

_ Boot et bootloaders données

2 Boot complexes)
@ Un démarrage complexe peut étre effectué en plusieurs
etapeS programme |
@ exemple : PC avec GRUB en mode « legacy »
“ BIOS : bootloader e
« exécution commence en OxFFFF0000 (BIOS) T
« POST

« chargement du MBR (finit par 0xAA55) et exécution en 0x7C00

» MBR (GRUB stage 1) :
« 512 octets (440 utiles)

« va chercher un exécutable un peu plus complet (GRUB stage 1.5) a un endroit spécifique du
disque, le charge et I'exécute

» GRUB stage 1.5:

« sait lire les systémes de fichiers
« charge GRUB stage 2 depuis le systéme de fichier prévu et le lance

» GRUB stage 2 :
« va chercher ses fichiers configuration
« affiche éventuellement une interface utilisateur

« va chercher un noyau ou un autre bootloader (généralement propriétaire), le charge en
‘ mémoire et I'exécute.

TELECOM

. ParisTech
page 58 20 septembre 2018 © 2017 Alexis Polti SE203 .

_ Boot et bootloaders données

» Exemples de bootloaders /
s BIOS des PC

» complexe, fournit des services basique (INT) programme |
2 ne sait que lire un MBR et I'exécuter

bootloader
eset vector

» U-Boot
» dedié a I'embarqué
» configurable et multi-plateforme
2 support RS232 et réseau (Ethernet)
» permet le reflashage et I'exécution au vol

@ OpenFirmware (IEEE-1275)

2 interpréteur de bytecode basé sur Forth
2 utilisé par Sun, Apple, IBM et la plupart des chipsets non x86

‘ » EFIl / UEFI

. ParisTech
page 59 20 septembre 2018 © 2017 Alexis Polti SE203 .

TELECOM

Ou en est-on ?

2 Les systemes a processeur
@ architecture, mapping memoire
@ modes d'exécution et exceptions

@ types de systemes : bare metal vs.
hosted

@ vie des exécutables
@ pbootloaders

@ debug

‘ TELECOM

. ParisTech
page 60 20 septembre 2018 © 2017 Alexis Polti SE203 =T
| sl 2 e

I Dcbug

*» Pourquoi déebugger ?
» Regle : un processeur ne "plante” pas !

» Un processeur :

» exeécute l'instruction située a l'adresse contenue dans le PC

» ou est bloqué en mode erreur, géeneralement apres une double
faute (ARM, SPARC, ...)

» En cas de probleme, c'est que le programme que vous
lui avez donne a executer ne correspond pas a ce que
VOUS avez en téte.

TELECOM

; ParisTech
age 61 20 septembre 2018 © 2017 Alexis Polti SE203 =T
. owmmexsponses o

1" commandement de I'UE

s A partir de maintenant, un processeur ne plante plus.

@ | 'emploi d'un débugger au niveau assembleur pour
comprendre ce qui s'est passé doit étre un réflexe :
» execution pas a pas (en assembleur)
» examen des registres a chaque step
» examen de la mémoire a chaque step

‘ TELECOM

. ParisTech
page 62 20 septembre 2018 © 2017 Alexis Polti SE203 .

I Débug

» Debugger

» débug local :

» |le debugger s'exécute nativement sur le systeme

» utilisation des ressources du systeme pour interagir avec
I'utilisateur

» debug des applications : ok
» debug de I'OS : difficile

» debug distant
> |le debugger s'exécute sur une machine hoéte

» communication avec le systeme a débugger (cible)

¢ avec coopération : RS232, Ethernet (stubs, gdbserver, moniteur)
¢ sans coopération : JTAG, SWD, BDM, 1Wire, AUD/HUDI, ...

TELECOM

; ParisTech
page 63 20 septembre 2018 © 2017 Alexis Polti SE203 .

I Débug I

. —a
s JTAG | |
» protocole basé sur des 'L /\ | B
registres a decalage — internal regs -
s interface JTAG : TAP | W |
R — —1
s controleur TAP
» machine a 16 etats Bypass reg L
» 4 ou 5 signaux Dl = }' TDO
> TDI L [IDENT | l
» TDO =
» TMS
» TCK ™SS " TAP
» [TRST] TCK ¥ »| controller g

TELECOM

ParisTech

page 64 20 septembre 2018

© 2017 Alexis Polti SE203

i

I Débug

» SWD
» JTAG « a la sauce ARM » + améliorations

» 2 broches (+ GND) :

» SWCLK (mappée sur TCK) : horloge
» SWDIO (mappée sur TMS) : données, bidirectionnelle

* hautes performances : 4MB/s (@ 50MHz)

° permet :

» ['"acces au contréleur TAP du JTAG

» de devenir maitre sur le bus AMBA :

¢ acces aux peériphériques, a la mémoire et registres de déebug sans
stopper le processeur

» filable : correction d'erreur, suppression des glitchs

TELECOM

; ParisTech
age 65 20 septembre 2018 © 2017 Alexis Polti SE203 =T
. owmmexsponses o

I Débug

» Breakpoints
° |ogiciels :
» remplacement d'une instruction assembleur par une TRAP
» handler special pour cette TRAP — donne la main a gdb

» remise en place de l'instruction originelle
» quizz : peut-on mettre des breakpoints en flash ?

> materiel :
» comparateur sur PC / data / addr / signaux de contréle

» match : arrét du processeur et communication en JTAG des
informations qui ont déclenché l'arrét

2 [nconveénient : ressource limitée !

TELECOM

; ParisTech
page 66 20 septembre 2018 © 2017 Alexis Polti SE203 .

I Dcbug

@ Carte nue, sans coopération

systeme cible

@ communication tres bas niveau
memoire
@ avantages :
@ non intrusif
» possibilité de breakpoints hard / watchpoints
@ inconvenients :
» moyens de communication spécialises
» besoin de sondes spécialisées : JTAG, SIS
programme
SWD, a débugger

JTAG

gdb -

machine hoéte

TELECOM

ParisTech

page 67 20 septembre 2018

© 2017 Alexis Polti SE203

I Dcbug

@ Carte nue, avec coopération
@ avantages :

(stubs)

2 trés peu onéreux (liens standards)

2 facile a mettre en ccuvre
@ jnconveénients :

@ intrusif ;: stubs
@ code en RAM

@ |es stubs peuvent étre implémentés dans

un moniteur

systeme cible

RS232
Ethernet

gdb

code
programme
a débugger

machine hoéte

page 68 20 septembre 2018

© 2017 Alexis Polti SE203

TELECOM

ParisTech

I Dcbug

@ OS : débug distant
@ avantages :

2 trés peu onéreux (liens standards)

2 facile a mettre en ccuvre
peu intrusif
@ jnconvénients :

» nécessite un OS (Linux)

» moniteur spécialisé : gdbserver

gdb

systeme cible

programme

a débugger

- gdbserver

RS232 _

Ethernet OS (linux)

-
CPU

machine hoéte

page 69 20 septembre 2018

TELECOM

ParisTech

© 2017 Alexis Polti SE203

I Dcbug

@ OS : débug natif
@ avantages :

2 ne codlte rien
» facile a mettre en ccuvre

systeme cible

peu intrusif rogramme
@ jnconveénients : a débugger
@ gourmand... o
» nécessite un OS (Linux) et une IHM
OS (linux)
CPU

‘ TELECOM

page 70 20 septembre 2018

ParisTech

© 2017 Alexis Polti SE203

- stubs
D e b u g o code
Ethomet programme

a débugger

s Stubs
@ contiennent :

> handlers spécialisés
» routines de communication avec gdb

» « linkeés » avec le programme a débugger
» fournis pour la plupart des processeurs

» nécessitent souvent des modifications (mineures)

‘ TELECOM

. ParisTech
page 71 20 septembre 2018 © 2017 Alexis Polti SE203 .

systéme cible

» Stubs -Fi e

s nécessitent les fonctions suivantes :

/* Fonctions a fournir aux stubs */

int getDebugChar();

void putDebugChar(int);

void exceptionHandler (int exception number, void *exception address);
void flush i cache(); // sur SPARC seulement

o fournissent les fonctions suivantes :

/* Fonctions fournies par les stubs */
void set debug traps();
void breakpoint();

‘ TELECOM

ParisTech
page 72 20 septembre 2018 © 2017 Alexis Polti SE203 =T
| ez 2 e

systéme cible

I Dcbug

» Stubs : exemple d'utilisation

machine hote

#include <stdlib.h>
#include <stdio.h>

int main() {
// setup stubs
set debug traps();
breakpoint();

// do real work
printf("Hello world!\n");

return EXIT SUCCESS;

CFLAGS += -g

hello : stubs.o hello.o

‘ TELECOM

ParisTech
page 73 20 septembre 2018 © 2017 Alexis Polti SE203 .

a débugger

P stuos
g RS232. code
Ethemet programme

* Perdu dans GDB ?

» GDB quick reference card

> a recupérer sur le site de GDB uniguement !
@ https://sourceware.org/gdb/download/onlinedocs/refcard.pdf.gz

> Documentation officielle de GDB
@ https://sourceware.org/gdb/download/onlinedocs/gdb/index.html

> Documentation officielle du mode TUI de GDB
@ https://sourceware.org/gdb/download/onlinedocs/gdb/TUl.html

> Manuel de survie GDB
@ https://sen.enst.fr/'SE203/guide-de-survie-gdb

page 74 20 septembre 2018 © 2017 Alexis Polti SE203

TELECOM
ParisTech

https://sourceware.org/gdb/download/onlinedocs/refcard.pdf.gz
https://sourceware.org/gdb/download/onlinedocs/gdb/index.html
https://sourceware.org/gdb/download/onlinedocs/gdb/TUI.html
https://sen.enst.fr/SE203/guide-de-survie-gdb

_ Licence de droits d'usage

page 75 20 septembre 2018 © 2017 Alexis Polti SE203

Contexte académique } sans modification

Ed

Par le téléchargement ou la consultation de ce document, I'utilisateur accepte la licence d’utilisation qui y est
attachée, telle que détaillée dans les dispositions suivantes, et s’engage a la respecter intégralement.

La licence confére a l'utilisateur un droit d'usage sur le document consulté ou télécharge, totalement ou en partie, dans
les conditions définies ci-aprés, et a I'exclusion de toute utilisation commerciale.

Le droit d’'usage défini par la licence autorise un usage dans un cadre académique, par un utilisateur donnant des cours
dans un établissement d’enseignement secondaire ou supérieur et a I'exclusion expresse des formations commerciales
et notamment de formation continue. Ce droit comprend :

* e droit de reproduire tout ou partie du document sur support informatique ou papier,
* le droit de diffuser tout ou partie du document a destination des éléves ou étudiants.

Aucune modification du document dans son contenu, sa forme ou sa présentation n’est autorisé.
Les mentions relatives a la source du document et/ou a son auteur doivent étre conservées dans leur intégralite.

Le droit d’'usage défini par la licence est personnel, non exclusif et non transmissible.
Tout autre usage que ceux prévus par la licence est soumis a autorisation préalable et expresse de l'auteur :
alexis.polti@telecom-paristech.fr

TELE

COM

sTech

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43
	Diapo 44
	Diapo 45
	Diapo 46
	Diapo 47
	Diapo 48
	Diapo 49
	Diapo 50
	Diapo 51
	Diapo 52
	Diapo 53
	Diapo 54
	Diapo 55
	Diapo 56
	Diapo 57
	Diapo 58
	Diapo 59
	Diapo 60
	Diapo 61
	Diapo 62
	Diapo 63
	Diapo 64
	Diapo 65
	Diapo 66
	Diapo 67
	Diapo 68
	Diapo 69
	Diapo 70
	Diapo 71
	Diapo 72
	Diapo 73
	Diapo 74
	Diapo 75

