
Structure des systèmes
programmables
Bonjour systèmes embarqués

Alexis Polti

20 septembre 2018 © 2017 Alexis Polti SE203page 2

Licence de droits d'usage

Par le téléchargement ou la consultation de ce document, l’utilisateur accepte la licence d’utilisation qui y est
attachée, telle que détaillée dans les dispositions suivantes, et s’engage à la respecter intégralement.

La licence confère à l'utilisateur un droit d'usage sur le document consulté ou téléchargé, totalement ou en partie, dans
les conditions définies ci-après, et à l’exclusion de toute utilisation commerciale.

Le droit d’usage défini par la licence autorise un usage dans un cadre académique, par un utilisateur donnant des cours
dans un établissement d’enseignement secondaire ou supérieur et à l’exclusion expresse des formations commerciales
et notamment de formation continue. Ce droit comprend :

● le droit de reproduire tout ou partie du document sur support informatique ou papier,
● le droit de diffuser tout ou partie du document à destination des élèves ou étudiants.

Aucune modification du document dans son contenu, sa forme ou sa présentation n’est autorisé.

Les mentions relatives à la source du document et/ou à son auteur doivent être conservées dans leur intégralité.

Le droit d’usage défini par la licence est personnel, non exclusif et non transmissible.

Tout autre usage que ceux prévus par la licence est soumis à autorisation préalable et expresse de l’auteur :

alexis.polti@telecom-paristech.fr

Contexte académique } sans modification

20 septembre 2018 © 2017 Alexis Polti SE203page 3

tl;dr

Ce qu'on va apprendre :
le vocabulaire et les structures de base
des systèmes embarqués,
que tout est soit processeur soit mémoire,
que code et variables ont généralement
deux adresses : LMA et VMA,

ce qui se passe avant et après main(),

ce que fait un bootloader,
les différentes façons de débugger.

20 septembre 2018 © 2017 Alexis Polti SE203page 4

Plan

Les systèmes à processeur
architecture, mapping mémoire
modes d'exécution et exceptions
types de systèmes : bare metal vs. hosted
vie des exécutables
bootloaders
debug

20 septembre 2018 © 2017 Alexis Polti SE203page 5

Architecture globale

processeur

entrées
sorties

interface mémoire

mémoire réelle

µContrôleur

20 septembre 2018 © 2017 Alexis Polti SE203page 6

Architecture globale

Mémoire
« mémoire » = « présentant une interface similaire à
celle d'une mémoire »

dispositif défini par la sémantique des accès :
accès = triplet (type [load / store], adresse, valeur)

physiquement
mémoire réelle
bancs de registres
périphériques
fonctions virtuelles (bit-banding, ...)

processeur

entrées
sorties

interface mémoire

mémoire réelle

20 septembre 2018 © 2017 Alexis Polti SE203page 7

Architecture globale

Plan d'adressage mémoire
souvent : plusieurs « mémoires »

partage de l'espace mémoire du processeur
allocation d'une ou plusieurs plages d'adresses
accès : par des lectures / écritures de mots (load / store)
→ définition : « périphérique mappé en mémoire »

décodage d'adresse
usuellement sur bits de poids fort d'adresse
fait par :

périphérique
éventuellement en partie par bus / NoC

facilité par le contrôleur de bus (chip select)
possibilité de configuration au vol (ex : PCI)

processeur

entrées
sorties

interface mémoire

mémoire réelle

20 septembre 2018 © 2017 Alexis Polti SE203page 8

Architecture globale

Plan d'adressage mémoire
nécessité d'un plan mémoire (memory map)

pour le contrôleur de bus
pour le NoC
pour le système (bootloader, OS)
pour le programmeur

peut dépendre du mode du processeur
user / kernel
protégé, réel, ...

processeur

entrées
sorties

interface mémoire

mémoire réelle

20 septembre 2018 © 2017 Alexis Polti SE203page 9

Architecture globale
Exemple : ARM Cortex M0+

DTCM

External

External

Reserved
0xE0000000

DW (not modeled in ISSM)

BPU (not modeled in ISSM)

Reserved

Reserved

Reserved

0xE0001000

NVIC

Reserved

0x00000000

Reserved

Code

0x1FFFFFFF

SRAM

0x20000000

0x3FFFFFFF
0x40000000

0.5GB

0.5GB

1GB

0xDFFFFFFF

Reserved

0xE0000000

0xE0100000

0xFFFFFFFF

0xE0002000

0xE0003000

0xE000E000

0xE000F000

0xE0041000

ITCM (Lower Alias)

External

0x00000000

0x00100000
1MB

0x1FFFFFFF

0xE0040000

0xE0042000

Private Peripheral Bus - Internal

0xE003FFFF

0xE00FFFFF
ROM Table

0xE00FF000

0x20000000

0x20100000

0x3FFFFFFF
511MB

1MB

External Device

Peripheral 0.5GB

1GB

0x9FFFFFFF
0xA0000000

0x5FFFFFFF
0x60000000

Debug control
0xE000ED00

ITCM (Upper Alias)

External

0x10000000

0x1000FFFF
0x10010000

0x0FFFFFFF

processeur

entrées
sorties

interface mémoire

mémoire réelle

20 septembre 2018 © 2017 Alexis Polti SE203page 10

Architecture globale

Exemple : SH4

processeur

entrées
sorties

interface mémoire

mémoire réelle

20 septembre 2018 © 2017 Alexis Polti SE203page 11

Architecture globale

Mémoires physiques
vive

cache, centrale
SRAM, (S / DDR-S / DDR2-S / DDR3-S / ...) DRAM, …
rapides

morte
stockage de masse, bios, configuration
Flash, (E)EPROM, (M/P/OTP)ROM, …
lecture lente, écriture très lente

internes ou externes
la distinction vive-morte, RAM/ROM, RW/RO est floue...

processeur

entrées
sorties

interface mémoire

mémoire réelle

20 septembre 2018 © 2017 Alexis Polti SE203page 12

Pause : les MMU

Memory Management Unit
gestion de la mémoire :

traduction
protection (MPU)
contrôle de cache
…

Quizz : quel est le lien entre MMU / MPU et swap ?

CPU

MMU

MEM

adresses physiques

adresses virtuelles

20 septembre 2018 © 2017 Alexis Polti SE203page 13

Harvard / von Neumann

Zoom
plusieurs architectures possibles
pour chaque architecture, deux définitions

processeur

entrées
sorties

interface mémoire

mémoire réelle

processeur

entrées
sorties

interface mémoire

mémoire réelle

20 septembre 2018 © 2017 Alexis Polti SE203page 14

Harvard / von Neumann

Architecture Von Neumann
matériel : un seul chemin de
données
logiciel : un seul espace mémoire

permet de traiter le code comme des
données

est-ce bien ?

goulot d'étranglement : deux cycles
pour chaque instruction accédant à
des données en mémoire

processeur

mémoire
I + D

cache
I + D

processeur

entrées
sorties

interface mémoire

mémoire réelle

20 septembre 2018 © 2017 Alexis Polti SE203page 15

Harvard / von Neumann

Architecture Harvard
matériel : deux chemins de
données distincts

un pour les instructions
un pour les données

logiciel : deux espaces
mémoire distincts

Problèmes en C :
sur les contrôleurs où la flash contient le code et la RAM les
données, où stocker les données constantes ?
comment recopier / modifier des instructions ?

processeur

mémoire
I

cache
I

cache
D

mémoire
D

processeur

entrées
sorties

interface mémoire

mémoire réelle

20 septembre 2018 © 2017 Alexis Polti SE203page 16

Harvard / von Neumann

Architecture Harvard unifiée
appelée aussi Harvard modifiée
prend le meilleur des deux mondes

problèmes :
cohérence de cache lors de la manipulation
d'instructions
performances réduites en cas de cache miss
répétés

architecture (de loin) la plus répandue !

processeur

mémoire
I+D

cache
I

cache
D

arbitre

processeur

entrées
sorties

interface mémoire

mémoire réelle

20 septembre 2018 © 2017 Alexis Polti SE203page 17

Où en est-on ?

Les systèmes à processeur
architecture, mapping mémoire
modes d'exécution et exceptions
types de systèmes : bare metal vs.
hosted
vie des exécutables
bootloaders
debug

20 septembre 2018 © 2017 Alexis Polti SE203page 18

Modes et exceptions

Modes de fonctionnement
il existe souvent au moins 2 modes :

superviseur
utilisateur

chaque mode correspond à des ressources propres
permet la mise en place de protection pour les OS
les ressources propres sont généralement

des registres : PC, pointeur de pile, …
des instructions spéciales

Le passage d’un mode à un autre s’effectue par des
instructions spéciales (TRAP, SVC sur ARM, …)

20 septembre 2018 © 2017 Alexis Polti SE203page 19

Modes et exceptions

Exceptions :
permettent de signaler un événement particulier au
processeur pour qu'il arrête son traitement courant et
effectue temporairement un traitement spécifique.

peuvent être générées :
par des instructions spéciales

appelées usuellement TRAP, exception logicielle, interruption logicielle
permet d'implémenter des appels système

à la demande d'un périphérique externe
appelé usuellement interruption matérielle (IRQ)

par un dysfonctionnement du système (échec d’un accès
mémoire, instruction non reconnue, division par zéro, …)

appelé usuellement exception matérielle

20 septembre 2018 © 2017 Alexis Polti SE203page 20

Modes et exceptions

Typologie des exceptions
synchrone : si elle a toujours lieu au même moment
pour un même set de données et la même allocation
mémoire. Exemples :

divisions par 0, page fault, undefined instruction
TRAP

asynchrone : si elle n'a pas de relation temporelle avec
le programme courant. Exemples :

interruptions externes
data memory error
reset

20 septembre 2018 © 2017 Alexis Polti SE203page 21

Modes et exceptions

Handlers, vecteurs, table des vecteurs
définitions :

à chaque exception correspond un code à exécuter appelé handler
la première instruction de ce handler est située à une adresse
appelée vecteur d'interruption

les vecteurs sont souvent regroupés au sein d'une table
appelée table des vecteurs d'interruption
hard codée / en ROM / en RAM
il peut y avoir plusieurs tables (modes, …)

pour limiter la taille de la table, certaines interruptions
partagent le même vecteur. On parle alors d'interruptions
chaînées.

20 septembre 2018 © 2017 Alexis Polti SE203page 22

Modes et exceptions

Traitement des exceptions

20 septembre 2018 © 2017 Alexis Polti SE203page 23

Modes et exceptions

Traitement des exceptions
selon le type d'exception :

retour à l'instruction interrompue (si problème)
retour à l'instruction d'après (si pas de problème)

en cas de double faute, beaucoup de processeurs se
mettent en mode erreur

arrêt
l'examen des registres permet de savoir ce qui s'est passé

certaines architectures autorisent les IRQ préemptibles
certaines architectures autorisent les NMI

20 septembre 2018 © 2017 Alexis Polti SE203page 24

Où en est-on ?

Les systèmes à processeur
architecture, mapping mémoire
modes et exceptions
types de systèmes : bare metal vs.
hosted
vie des exécutables
bootloaders
debug

20 septembre 2018 © 2017 Alexis Polti SE203page 25

Types de systèmes embarqués

Types
approche minimale : carte nue (bare-metal)
approche maximale : hébergé (avec OS / hosted)
beaucoup d'approches mixtes entre les deux

20 septembre 2018 © 2017 Alexis Polti SE203page 26

Types de systèmes embarqués

OS
offre un ensemble de services (fonctions) aux exécutables
en général, au moins ces services usuels :

abstraction des périphériques
primitives de synchronisation
gestion du temps
gestion des tâches (threads, processus, …)
gestion de la mémoire
gestion des fichiers

responsable de l'initialisation complète du matériel

charge les exécutables en mémoire et contrôle leur
exécution

20 septembre 2018 © 2017 Alexis Polti SE203page 27

Types de systèmes embarqués

OS
peut se présenter comme une bibliothèque normale,
linkée avec l'application

les services de l'OS sont alors des appels de fonction normaux

peut être un code indépendant
les services de l'OS sont alors usuellement appelés par des
instructions spéciales (syscalls) :

TRAP (exceptions logicielles)
SVC sur ARM
…

dans tous les cas, l'OS installe ses propres handlers
d'interruption

20 septembre 2018 © 2017 Alexis Polti SE203page 28

Types de systèmes embarqués

OS : exemples
généralistes

Linux, xBSD, Solaris
Windows
OS/2, Plan9, …

dédiés aux systèmes embarqués
Windows Embedded, VxWorks, QNX, µCLinux, …
Android, iOS, Bada, …
FreeRTOS, ChibiOS/RT, eCos, RTEMS, …
TinyOS, Contiki, ...
Forth (!)

Plus de 1200 OS répertoriés sur Wikipedia

20 septembre 2018 © 2017 Alexis Polti SE203page 29

Types de systèmes embarqués

Bare-metal (free-standing)
pas d'OS

alone in the dark : stresssssss !
pas (ou très rarement) de bibliothèques partagées

souvent un seul exécutable auto-contenu en charge de
la gestion de tout le système

différentes fonctionnalités sont à gérer :
initialisation
fonctionnement
mise à jour
debug

20 septembre 2018 © 2017 Alexis Polti SE203page 30

Où en est-on ?

Les systèmes à processeur
architecture, mapping mémoire
modes d'exécution, exceptions
types de systèmes : bare metal vs.
hosted
vie des exécutables
bootloaders
debug

20 septembre 2018 © 2017 Alexis Polti SE203page 31

Vie des exécutables

Architecture d'un programme
stockage : en ROM, flash, mémoire de masse

exécution : selon l'optimisation souhaitée,
soit depuis la RAM (optimisation vitesse)
soit directement depuis la ROM (économie de RAM)

tout ne peut pas être stocké en ROM :
exemple : variables
→ séparation données modifiables / non modifiables

économiser la place en ROM / mémoire de masse :
on ne stocke que le nécessaire (pas la pile, ni BSS)
sous forme plus ou moins compacte : formats d'exécutables

20 septembre 2018 © 2017 Alexis Polti SE203page 32

Vie des exécutables

Code
généralement non modifiable
si exécuté à partir de la RAM :

nécessite souvent une recopie préalable
si exécuté directement à partir de la ROM :

XIP (eXecute In Place)
problèmes :

vecteurs d'interruption,
breakpoints,
support des bibliothèques,
clashs d'adresses, …

on peut le séparer en différentes sections, certaines
XIP, d'autres en RAM...

20 septembre 2018 © 2017 Alexis Polti SE203page 33

Vie des exécutables

Données
modifiables :

lors de l'exécution : situées en RAM (par définition)
quizz : mais alors quand le contrôleur de RAM n'est pas encore
initialisé, on ne peut pas utiliser de variables ?

non modifiables (constantes) :
lors de l'exécution : situées en ROM
… ou éventuellement en RAM (avec protection d'accès)
quizz : si elles sont non modifiables, pourquoi les mettre en RAM ?

problèmes des variables initialisées :
avant exécution : stockées en ROM
nécessitent une recopie ROM → RAM

20 septembre 2018 © 2017 Alexis Polti SE203page 34

Vie des exécutables

Bilan : différentes parties d'un exécutable

Attention : sera complété / modifié / nuancé par la suite !..

Nom Description Stockage À l'exécution

TEXT
code

(à priori non modifiable) en ROM
en ROM

ou recopié en RAM

BSS
variables non initialisées ou

initialisées à zéro pas stocké créé en RAM

DATA variables modifiables initialisées en ROM recopié en RAM

RODATA constantes en ROM en ROM
ou recopié en RAM

20 septembre 2018 © 2017 Alexis Polti SE203page 35

Vie des exécutables

Emplacements d'exécution
déterminés à la compilation / édition de lien
trois possibilités :

code fixe
code relogeable
position-independant code (pic)

parfois nécessaire de déplacer certaines parties des exécutables
(ROM → RAM) avant le lancement du main : qui, quand ?

Cas usuels extrêmes
exemple 1 : système nu (bare-metal), sans MMU, exécutable
stocké en ROM, exécuté depuis la RAM ou la ROM
exemple 2 : système avec OS et MMU, exécutable stocké sur
disque, exécuté depuis la RAM

20 septembre 2018 © 2017 Alexis Polti SE203page 36

Vie des exécutables : exemple bare-metal

code

reset
vector

ROM

RO data

données
initialisées

RAM

Lancement de l'exécutable
stocké en ROM

20 septembre 2018 © 2017 Alexis Polti SE203page 37

Vie des exécutables : exemple bare-metal

code

reset
vector

ROM

RO data

données
initialisées

code
relogé

RAM

Lancement de l'exécutable
stocké en ROM

éventuellement, recopie du code en RAM

par exécutable externe (bootloader, …)
ou par le code lui-même (crt0.s, …)

20 septembre 2018 © 2017 Alexis Polti SE203page 38

Vie des exécutables : exemple bare-metal

code

reset
vector

ROM

RO data

données
initialisées

code
relogé

données
initialisées
relogées

RAM

Lancement de l'exécutable
stocké en ROM

éventuellement, recopie du code en RAM

par exécutable externe (bootloader, …)
ou par le code lui-même (crt0.s, …)

recopie des données en RAM par crt0.s
(inséré par la chaîne de compilation)

20 septembre 2018 © 2017 Alexis Polti SE203page 39

Vie des exécutables : exemple bare-metal

code

reset
vector

ROM

RO data

données
initialisées

code
relogé

données
initialisées
relogées

pas de
recopie

RAM

Lancement de l'exécutable
stocké en ROM

éventuellement, recopie du code en RAM

par exécutable externe (bootloader, …)
ou par le code lui-même (crt0.s, …)

recopie des données en RAM par crt0.s
(inséré par la chaîne de compilation)

les données non modifiables sont
laissées en ROM

20 septembre 2018 © 2017 Alexis Polti SE203page 40

Vie des exécutables : exemple bare-metal

code

reset
vector

ROM

pile,
autres sections

RO data

données
initialisées

code
relogé

données
initialisées
relogées

BSS

n'existent pas dans
le fichier original

pas de
recopie

RAM

Lancement de l'exécutable
stocké en ROM

éventuellement, recopie du code en RAM

par exécutable externe (bootloader, …)
ou par le code lui-même (crt0.s, …)

recopie des données en RAM par crt0.s
(inséré par la chaîne de compilation)

les données non modifiables sont
laissées en ROM

création du BSS, de la pile, … par crt0.s

20 septembre 2018 © 2017 Alexis Polti SE203page 41

Vie des exécutables : exemple bare-metal

code

reset
vector

ROM

pile,
autres sections

RO data

données
initialisées

code
relogé

données
initialisées
relogées

BSS

n'existent pas dans
le fichier original

pas de
recopie

RAM

Lancement de l'exécutable
stocké en ROM

éventuellement, recopie du code en RAM

par exécutable externe (bootloader, …)
ou par le code lui-même (crt0.s, …)

recopie des données en RAM par crt0.s
(inséré par la chaîne de compilation)

les données non modifiables sont
laissées en ROM

création du BSS, de la pile, … par crt0.s

saut au main()

20 septembre 2018 © 2017 Alexis Polti SE203page 42

Vie des exécutables

Un objet, deux adresses
données relogées

une adresse en ROM avant recopie
une adresse en RAM après recopie

code logé en flash et exécuté en RAM
une adresse en ROM avant recopie
une adresse en RAM après recopie

adresse avant recopie : LMA
adresse après recopie : VMA

Attention :
aucun rapport avec les adresses virtuelles de la MMU...
le code et les variables peuvent donc avoir deux adresses !

20 septembre 2018 © 2017 Alexis Polti SE203page 43

Vie des exécutables : exemple hosted

Lancement de l'exécutable
stocké sur disque

RAM

disque

20 septembre 2018 © 2017 Alexis Polti SE203page 44

Vie des exécutables : exemple hosted

Lancement de l'exécutable
stocké sur disque

le loader de l'OS lit un exécutable
depuis le disque et le mappe en RAM
directement aux bonnes adresses RAM

code

données
initialisées

données
RO

disque

20 septembre 2018 © 2017 Alexis Polti SE203page 45

Vie des exécutables : exemple hosted

Lancement de l'exécutable
stocké sur disque

le loader de l'OS lit un exécutable
depuis le disque et le mappe en RAM
directement aux bonnes adresses

création de la pile, du BSS, …
généralement par le loader
très rarement par le crt0.s

RAM

pile,
autres sections

code

données
initialisées

BSS

données
RO

disque

20 septembre 2018 © 2017 Alexis Polti SE203page 46

Vie des exécutables : exemple hosted

Lancement de l'exécutable
stocké sur disque

le loader de l'OS lit un exécutable
depuis le disque et le mappe en RAM
directement aux bonnes adresses

création de la pile, du BSS, …
généralement par le loader
très rarement par le crt0.s

saut au main()

RAM

pile,
autres sections

code

données
initialisées

BSS

données
RO

disque

20 septembre 2018 © 2017 Alexis Polti SE203page 47

Vie des exécutables : exemple hosted

Un objet, une adresse
la MMU permet de mapper le fichier en
mémoire
aucune recopie nécessaire
dans ce cas, LMA = VMA

généralement, la MMU met aussi en
place des protections lors du mapping

cas particulier : activation de la MMU
avant activation : code exécuté
depuis sa LMA
après activation : code exécuté
depuis sa VMA

RAM

pile,
autres sections

code

données
initialisées

BSS

données
RO

disque

20 septembre 2018 © 2017 Alexis Polti SE203page 48

Pause question piège

Attention
dans les deux exemples précédents, on a
sous-entendu un fait qui n'est pas forcément
vérifié : lequel ?

(indice : on l'a vu en début du cours...)

20 septembre 2018 © 2017 Alexis Polti SE203page 49

Où en est-on ?

Les systèmes à processeur
architecture, mapping mémoire
modes d'exécution et exceptions
types de systèmes : bare metal vs.
hosted
vie des exécutables
bootloaders
debug

20 septembre 2018 © 2017 Alexis Polti SE203page 50

Boot et bootloaders

Séparation des fonctionnalités
initialisation → bootloader
fonctionnement → exécutable
debug → moniteur ou debugger

moniteur : reprise de contrôle en cas d'exception
debugger : fonctions avancées

20 septembre 2018 © 2017 Alexis Polti SE203page 51

Boot et bootloaders

Bootloaders
premier programme à s'exécuter
initialise le matériel
prépare un environnement d'exécution
correct
lance l'exécutable principal
éventuellement sur condition
peut permettre la mise à jour du
programme principal

bootloader

programme

kernel

prog 1

prog 2

bootloader

20 septembre 2018 © 2017 Alexis Polti SE203page 52

Boot et bootloaders

Initialisation typique d'un système
configuration du processeur :

désactivation des interruptions
initialisation des registres de contrôle du processeur

initialisation de la RAM

configuration du contrôleur RAM
mise en place éventuelle d'environnement d'exécution spécifique au
langage utilisé (C, Forth, ...) : pile(s), BSS, ...

mise en place des handlers d'interruptions critiques (Sparc)
initialisation des périphériques critiques

PLL, horloges
énumération des bus critiques (PCI, AGP, HT, ...)
IOMMU, contrôleurs de bus
contrôleurs de stockage de masse

activation des caches

configuration MMU, passage en mode « virtuel »

activation des interruptions critiques

20 septembre 2018 © 2017 Alexis Polti SE203page 53

Boot et bootloaders

Exemple de fonctionnement : boot normal
lancement du bootloader
initialisation du système
attente d'une condition

caractère sur port série,
bouton poussoir,
…

transfert de l'exécution au programme principal

bootloader

programme

reset vector

ROM

RAM

20 septembre 2018 © 2017 Alexis Polti SE203page 54

bootloader

nouveau
programme

reset vector

ROM

RAM

nouveau
programme

Boot et bootloaders

Exemple de fonctionnement : mise à jour
lancement du bootloader
initialisation du système
attente d'une condition

caractère sur port série,
bouton poussoir,
…

récupération du nouveau programme
port série,
NFS, TFTP, …

20 septembre 2018 © 2017 Alexis Polti SE203page 55

bootloader

nouveau
programme

reset vector

ROM

RAM

nouveau
programme

Boot et bootloaders

Exemple de fonctionnement : mise à jour
lancement du bootloader
initialisation du système
attente d'une condition

caractère sur port série,
bouton poussoir,
…

récupération du nouveau programme
port série,
NFS, TFTP, …

recopie du nouveau programme en RAM
vers l'ancien en ROM / flash

20 septembre 2018 © 2017 Alexis Polti SE203page 56

bootloader

nouveau
programme

reset vector

ROM

RAM

nouveau
programme

Boot et bootloaders

Exemple de fonctionnement : boot en RAM
lancement du bootloader
initialisation du système
attente d'une condition

caractère sur port série,
bouton poussoir,
…

récupération du nouveau programme
port série,
NFS, TFTP, …

transfert de l'exécution au programme
en RAM

20 septembre 2018 © 2017 Alexis Polti SE203page 57

Boot et bootloaders

Fonctions additionnelles
passage d'arguments / structures de données
services à l'exécution (syscalls)
fonctions de debug

diagnostic
examen et manipulation de la mémoire
reprise de contrôle sur exception : moniteur

20 septembre 2018 © 2017 Alexis Polti SE203page 58

Boot et bootloaders

Boot complexes
Un démarrage complexe peut être effectué en plusieurs
étapes
exemple : PC avec GRUB en mode « legacy »

BIOS :
exécution commence en 0xFFFF0000 (BIOS)
POST
chargement du MBR (finit par 0xAA55) et exécution en 0x7C00

MBR (GRUB stage 1) :
512 octets (440 utiles)
va chercher un exécutable un peu plus complet (GRUB stage 1.5) à un endroit spécifique du
disque, le charge et l'exécute

GRUB stage 1.5 :
sait lire les systèmes de fichiers
charge GRUB stage 2 depuis le système de fichier prévu et le lance

GRUB stage 2 :
va chercher ses fichiers configuration
affiche éventuellement une interface utilisateur
va chercher un noyau ou un autre bootloader (généralement propriétaire), le charge en
mémoire et l'exécute.

20 septembre 2018 © 2017 Alexis Polti SE203page 59

Boot et bootloaders

Exemples de bootloaders
BIOS des PC

complexe, fournit des services basique (INT)
ne sait que lire un MBR et l'exécuter

U-Boot
dédié à l'embarqué
configurable et multi-plateforme
support RS232 et réseau (Ethernet)
permet le reflashage et l'exécution au vol

OpenFirmware (IEEE-1275)
interpréteur de bytecode basé sur Forth
utilisé par Sun, Apple, IBM et la plupart des chipsets non x86

EFI / UEFI

20 septembre 2018 © 2017 Alexis Polti SE203page 60

Où en est-on ?

Les systèmes à processeur
architecture, mapping mémoire
modes d'exécution et exceptions
types de systèmes : bare metal vs.
hosted
vie des exécutables
bootloaders
debug

20 septembre 2018 © 2017 Alexis Polti SE203page 61

Debug

Pourquoi débugger ?

Règle : un processeur ne "plante" pas !

Un processeur :
exécute l'instruction située à l'adresse contenue dans le PC
ou est bloqué en mode erreur, généralement après une double
faute (ARM, SPARC, …)

En cas de problème, c'est que le programme que vous
lui avez donné à exécuter ne correspond pas à ce que
vous avez en tête.

20 septembre 2018 © 2017 Alexis Polti SE203page 62

1er commandement de l'UE

À partir de maintenant, un processeur ne plante plus.

L'emploi d'un débugger au niveau assembleur pour
comprendre ce qui s'est passé doit être un réflexe :

exécution pas à pas (en assembleur)
examen des registres à chaque step
examen de la mémoire à chaque step

20 septembre 2018 © 2017 Alexis Polti SE203page 63

Débug

Debugger
débug local :

le debugger s'exécute nativement sur le système
utilisation des ressources du système pour interagir avec
l'utilisateur
débug des applications : ok
débug de l'OS : difficile

débug distant
le debugger s'exécute sur une machine hôte
communication avec le système à débugger (cible)

avec coopération : RS232, Ethernet (stubs, gdbserver, moniteur)
sans coopération : JTAG, SWD, BDM, 1Wire, AUD/HUDI, ...

20 septembre 2018 © 2017 Alexis Polti SE203page 64

Débug

JTAG
protocole basé sur des
registres à décalage
interface JTAG : TAP
contrôleur TAP

machine à 16 états
4 ou 5 signaux
TDI
TDO
TMS
TCK
[TRST]

Bypass reg

TAP
controller

internal regs

circuit numérique

IDENT

IR

TCK

TMS

TDI TDO

20 septembre 2018 © 2017 Alexis Polti SE203page 65

Débug

SWD
JTAG « à la sauce ARM » + améliorations
2 broches (+ GND) :
SWCLK (mappée sur TCK) : horloge
SWDIO (mappée sur TMS) : données, bidirectionnelle

hautes performances : 4MB/s (@ 50MHz)
permet :

l'accès au contrôleur TAP du JTAG
de devenir maître sur le bus AMBA :

accès aux périphériques, à la mémoire et registres de débug sans
stopper le processeur

fiable : correction d'erreur, suppression des glitchs

20 septembre 2018 © 2017 Alexis Polti SE203page 66

Débug

Breakpoints
logiciels :

remplacement d'une instruction assembleur par une TRAP
handler spécial pour cette TRAP → donne la main à gdb
remise en place de l'instruction originelle
quizz : peut-on mettre des breakpoints en flash ?

matériel :
comparateur sur PC / data / addr / signaux de contrôle
match : arrêt du processeur et communication en JTAG des
informations qui ont déclenché l'arrêt
inconvénient : ressource limitée !

20 septembre 2018 © 2017 Alexis Polti SE203page 67

Debug

Carte nue, sans coopération

communication très bas niveau

avantages :

non intrusif
possibilité de breakpoints hard / watchpoints

inconvénients :

moyens de communication spécialisés
besoin de sondes spécialisées : JTAG,
SWD, …

gdb

machine hôte

système cible

CPU

code
programme
à débugger

mémoire

JTAG

20 septembre 2018 © 2017 Alexis Polti SE203page 68

Debug

Carte nue, avec coopération (stubs)

avantages :

très peu onéreux (liens standards)
facile à mettre en œuvre

inconvénients :

intrusif : stubs
code en RAM

les stubs peuvent être implémentés dans
un moniteur

gdb

machine hôte

système cible

CPU

code
programme
à débugger

mémoire

RS232
Ethernet

stubs

20 septembre 2018 © 2017 Alexis Polti SE203page 69

Debug

OS : débug distant

avantages :

très peu onéreux (liens standards)
facile à mettre en œuvre
peu intrusif

inconvénients :

nécessite un OS (Linux)
moniteur spécialisé : gdbserver

gdb

machine hôte

système cible

CPU

RS232
Ethernet

programme
à débugger

gdbserver

OS (linux)

20 septembre 2018 © 2017 Alexis Polti SE203page 70

Debug

OS : débug natif

avantages :

ne coûte rien
facile à mettre en œuvre
peu intrusif

inconvénients :

gourmand...
nécessite un OS (Linux) et une IHM

système cible

CPU

programme
à débugger

gdb

OS (linux)

20 septembre 2018 © 2017 Alexis Polti SE203page 71

Debug

Stubs
contiennent :

handlers spécialisés
routines de communication avec gdb

« linkés » avec le programme à débugger

fournis pour la plupart des processeurs

nécessitent souvent des modifications (mineures)

20 septembre 2018 © 2017 Alexis Polti SE203page 72

Debug

Stubs
nécessitent les fonctions suivantes :

 fournissent les fonctions suivantes :

/* Fonctions à fournir aux stubs */
int getDebugChar();
void putDebugChar(int);
void exceptionHandler (int exception_number, void *exception_address);
void flush_i_cache(); // sur SPARC seulement

/* Fonctions fournies par les stubs */
void set_debug_traps();
void breakpoint();

20 septembre 2018 © 2017 Alexis Polti SE203page 73

Debug

Stubs : exemple d'utilisation

#include <stdlib.h>
#include <stdio.h>

int main() {
 // setup stubs
 set_debug_traps();
 breakpoint();

 // do real work
 printf("Hello world!\n");

 return EXIT_SUCCESS;
}

CFLAGS += -g

hello : stubs.o hello.o

20 septembre 2018 © 2017 Alexis Polti SE203page 74

Debug

Perdu dans GDB ?
GDB quick reference card

à récupérer sur le site de GDB uniquement !
https://sourceware.org/gdb/download/onlinedocs/refcard.pdf.gz

Documentation officielle de GDB
https://sourceware.org/gdb/download/onlinedocs/gdb/index.html

Documentation officielle du mode TUI de GDB
https://sourceware.org/gdb/download/onlinedocs/gdb/TUI.html

Manuel de survie GDB
https://sen.enst.fr/SE203/guide-de-survie-gdb

https://sourceware.org/gdb/download/onlinedocs/refcard.pdf.gz
https://sourceware.org/gdb/download/onlinedocs/gdb/index.html
https://sourceware.org/gdb/download/onlinedocs/gdb/TUI.html
https://sen.enst.fr/SE203/guide-de-survie-gdb

20 septembre 2018 © 2017 Alexis Polti SE203page 75

Licence de droits d'usage

Par le téléchargement ou la consultation de ce document, l’utilisateur accepte la licence d’utilisation qui y est
attachée, telle que détaillée dans les dispositions suivantes, et s’engage à la respecter intégralement.

La licence confère à l'utilisateur un droit d'usage sur le document consulté ou téléchargé, totalement ou en partie, dans
les conditions définies ci-après, et à l’exclusion de toute utilisation commerciale.

Le droit d’usage défini par la licence autorise un usage dans un cadre académique, par un utilisateur donnant des cours
dans un établissement d’enseignement secondaire ou supérieur et à l’exclusion expresse des formations commerciales
et notamment de formation continue. Ce droit comprend :

● le droit de reproduire tout ou partie du document sur support informatique ou papier,
● le droit de diffuser tout ou partie du document à destination des élèves ou étudiants.

Aucune modification du document dans son contenu, sa forme ou sa présentation n’est autorisé.

Les mentions relatives à la source du document et/ou à son auteur doivent être conservées dans leur intégralité.

Le droit d’usage défini par la licence est personnel, non exclusif et non transmissible.

Tout autre usage que ceux prévus par la licence est soumis à autorisation préalable et expresse de l’auteur :

alexis.polti@telecom-paristech.fr

Contexte académique } sans modification

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43
	Diapo 44
	Diapo 45
	Diapo 46
	Diapo 47
	Diapo 48
	Diapo 49
	Diapo 50
	Diapo 51
	Diapo 52
	Diapo 53
	Diapo 54
	Diapo 55
	Diapo 56
	Diapo 57
	Diapo 58
	Diapo 59
	Diapo 60
	Diapo 61
	Diapo 62
	Diapo 63
	Diapo 64
	Diapo 65
	Diapo 66
	Diapo 67
	Diapo 68
	Diapo 69
	Diapo 70
	Diapo 71
	Diapo 72
	Diapo 73
	Diapo 74
	Diapo 75

