
ELECINF102
Processeurs et Architectures Numériques

Contrôle de connaissances

12 juin 2015 à 8h30

Document autorisé : une feuille recto-verso

Durée: 1h30 minutes

Ce contrôle comporte 3 parties indépendantes :
1. Produit scalaire
2. Transmission de données par modulation de position d’impulsion
3. Amélioration du nanoprocesseur

Consignes importantes : Si des schémas sont demandés dans les différents exercices, ils doivent être
impérativement clairs, lisibles et sans ambiguïté. Les dimensions des bus doivent être indiquées. Si nécessaire
le sens des signaux doit être précisé. Pour la logique synchrone, les signaux d’horloge et d’initialisation
asynchrone (reset_n) ne seront pas représentés dans ces schémas.

BONUS : Les questions notées BONUS sont peut être d’un niveau de difficulté un peu plus élevé que
les autres questions. Pensez à faire les autres exercices avant de passer trop de temps sur ces questions.

N’oubliez pas d’inscrire nom, prénom, et numéro de casier sur votre copie.

Bon courage !

1

Télécom ParisTech, ELECINF102, 2014–2015

1 Produit Scalaire
On veut effectuer le produit scalaire de 2 vecteurs ~A et ~B ayant N composantes ai et bi respectivement.

Le produit scalaire ~A · ~B est s =
N∑

i=1
ai · bi

Nous ne considérerons que le cas d’un circuit électronique pour N = 2. La figure suivante montre
l’utilisation de 2 multiplieurs et d’un additionneur, les entrées du calcul étant les composantes des vecteurs.

a2

b2

s

a1

b1

Question 1 : Les entrées sont des nombres positifs codés sur 4 bits en virgule fixe : 2 bits pour la partie
entière et 2 bits pour la partie fractionnaire. Les calculs se font avec la précision maximale.

Quel est le nombre de bits des parties entières et fractionnaires de la sortie s ?

Question 2 : Le calcul se fait d’une façon synchrone, les entrées sont issues de registres et la sortie s est
échantillonnée dans un registre. Tous les registres ont la même horloge H dont la période est TH . Si le
multiplieur à un temps de propagation maximum de 5ns et l’additionneur 3ns et qu’on néglige les temps
de propagation et de pré-positionnement (set-up) des registres, quelle est la fréquence maximum du calcul ?
*Nous rappelons qu’un registre est un ensemble de bascules D mises en parallèle et partageant la même
horloge.

Question 3 : Proposez une méthode pour augmenter le débit de calcul et calculez la fréquence maximale
de fonctionnement dans ce cas.

Question 4 BONUS : Proposez une méthode pour diminuer le nombre de multiplieurs (faites un shéma).
Déterminez la fréquence maximale de fonctionnement de ce nouveau circuit. A quelle fréquence peut on
envoyer des nouvelles composantes à cette structure de calcul ?

2

Télécom ParisTech, ELECINF102, 2014–2015

2 Transmission de données par modulation de position d’impulsion
Les questions 1, 2 et 3 peuvent être traitées indépendamment.

Nous désirons transférer des données codées sur 4 bit en utilisant une transmission série.
La sortie serial_out du dispositif proposé génère de manière synchrone des séquences de bits régulières

composées :
• D’un indicateur de début de transmission composé d’une séquence de 4 bits consécutifs à 0.
• D’une séquence de 16 bits dont le seul bit à 1 est celui dont la position dans la séquence correspond
à la valeur de la donnée à transmettre.

• D’un indicateur de fin de transmission composé d’une séquence de 4 bits consécutifs à 1.
Enfin :
• La sortie du dispositif est bloquée à 1 quand il n’y a pas de transmission.

Le chronogramme suivant montre, par exemple, la transmission de la donnée 9, suivie du début de la
transmission d’une nouvelle donnée.

étape attente... début donnée fin attente... 0 1

cycle
... 0 1 2 3 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 ... début

serial_out

2.1 Un contrôleur de transmission

Ce sous-module gère l’interface de contrôle du dispositif et la durée de la séquence de transmission.

contrôleur

valid

ready

start

end
cycle

4

clk

• reset : Entrée d’initialisation active à l’état haut.
• clk : Entrée d’horloge.
• valid : Entrée, permettant à l’utilisateur de valider la présence d’une donnée à transmettre.
• ready : Sortie permettant d’indiquer que le dispositif est prêt à recevoir des données.
• start : Sortie indiquant que le dispositif est en train de générer la séquence de début.
• end : Sortie indiquant que le dispositif est en train de générer la séquence de fin.
• cycle : Sortie sur 4 bits indiquant le numéro de la période courante pendant la séquence de trans-

mission de la donnée.

Le fonctionnement du contrôleur est le suivant :
• Au repos, le signal ready doit être à 1, les signaux start et end doivent être à 0.
• Si le signal valid passe à 1 (pendant un cycle) alors le contrôleur génère la séquence de transmission :

4 périodes pour l’indicateur du début de transmission (start=1)
16 périodes pour la transmission de la donnée
4 périodes pour l’indicateur de fin de transmission (end=1)

• Durant toute la séquence de transmission (24 périodes) , le signal ready est maintenu à 0 et le signal
de commande valid est ignoré.

3

Télécom ParisTech, ELECINF102, 2014–2015

• Le signal ready repasse à 1 à la fin de la transmission.
• Enfin, la valeur du signal cycle n’a de sens que pendant les 16 périodes effectives de la transmission

de la donnée.

Question 1 : Écrivez le code SystemVerilog du module permettant de générer cette séquence.

2.2 Génération de la sortie

Un module "sortie" est consacré à la génération de la sortie serial_out. La figure suivante montre

l’interface de ce sous-module :

sortiedata_in
4

serial_out

start end ready cycle

4

La donnée entrante data_in est :
• Présente au moment de la validation par le signal valid
• Maintenue par l’utilisateur pendant toute la durée de la transmission.

Question 2 : En remarquant que la sortie serial_out peut être générée combinatoirement, écrivez le code
SystemVerilog du module "sortie".

2.3 Adaptation de fréquence

Dans la pratique, la fréquence de transmission n’est pas forcément la même que celle de l’horloge du
système. Nous supposons que cette fréquence de transmission est N fois plus lente que la fréquence d’horloge
avec N constante entière codée sur 8 bits.

Pour gérer cette adaptation nous créons tout d’abord un générateur de tops, consistant à générer un
signal nommé top, valant 1 pendant 1 cycle de l’horloge principale tous les N cycles.

Question 3 : Ecrivez le code SystemVerilog d’un tel générateur de top.

Question 4 BONUS : Proposez une adaptation du module "controle" pour tenir compte de l’utilisation
de top.

4

Télécom ParisTech, ELECINF102, 2014–2015

3 Amélioration du nanoprocesseur
Tel que proposé en cours et en TP, le nano-processeur manque de fonctionnalités essentielles. Il est, par

exemple, difficile de structurer le code en fonctions et sous-programmes.
Nous désirons ajouter deux instructions au nanoprocesseur :
• JSR : pour "Jump to SubRoutine". Son argument est l’adresse en mémoire du début du sous-

programme appelé.
• RTS : pour "ReTurn from Subroutine". Son argument est ignoré
• Ces instructions sont des instructions de saut au même titre que les instructions JMP, JNZ et JNC.

Nous rappelons que le microprocesseur est piloté par un automate en 3 cycles nommés IF, AF et EX pour
"Instruction Fetch", "Address Fetch" et "Execute".

Vous trouverez en fin de sujet, un schéma du nano-processeur ainsi que les codes du compteur de
programme et du contrôleur de base.

3.1 Une approche simpliste

Nous limitons l’appel de sous-programme à un seul niveau (seul le programme principal peut appeler un
sous-programme).

L’exécution de JSR doit réaliser les actions suivantes :
• Sauvegarder dans le nano-processeur l’adresse de retour, c’est à dire l’adresse de l’instruction suivant
l’instruction courante.

• Forcer le nanoprocesseur à se brancher à l’adresse du sous-programme comme dans le cas d’un JMP.
L’exécution de RTS doit réaliser les actions suivantes :
• Forcer le nanoprocesseur à se brancher à l’adresse d’instruction précédemment sauvegardée par l’ins-
truction JSR.

Question 1 : Proposez une modification du schéma, et une modification des codes permettant d’implémenter
les instructions JSR et RTS.

3.2 Une approche plus générale (BONUS)

Pour pouvoir généraliser les appels de sous-programmes (appels imbriqués), la méthode précédente né-
cessite de multiplier les registres dans le micro-processeur. Une méthode plus générique consiste à sauver
l’adresse de retour de sous-programme dans la mémoire externe, et de ne conserver en interne que la position
dans la mémoire de cette adresse de retour.

Pour cela nous ajoutons au nanoprocesseur un registre spécifique appelé "pointeur de pile" ou SP pour
"stack pointer". Nous utiliserons les adresses "hautes" de la mémoire pour stocker les adresses de retour.

La gestion de SP en relation avec JSR et RTS est la suivante :
• A l’initialisation SP est forcé à la valeur maximale des adresses en mémoire : 255.
• A chaque exécution de JSR :
— L’adresse de retour de sous programme est stockée en mémoire à l’adresse pointée par SP
— SP est décrémenté de 1 (pour anticiper le stockage d’une éventuelle nouvelle adresse de retour...)

• A chaque exécution de RTS,
— Le nanoprocesseur récupère la donnée pointée par SP+1 : l’adresse de retour.
— SP est incrémenté de 1 (pour revenir dans l’état avant l’appel du sous-programme)

Nous ne chercherons pas à gérer les cas limites (trop d’appels imbriqués pour la taille de la mémoire,
RTS sans JSR préalable...).
Question 2 : Proposez une modification du schéma, et une modification du code permettant d’implémenter
les instructions JSR et RTS.

5

Télécom ParisTech, ELECINF102, 2014–2015

Code du PC "de base" :

...

always @(posedge clk or negedge reset_n)

if(!reset_n)

PC <= 0 ;

else

if(Load_PC)

PC <= Q ;

else

PC <= PC+Inc_PC ;

...

Code du Contrôleur "de base" : Seuls les codes utiles pour les questions posées sont indiqués.

...

always @(*)

begin

Inc_PC <= (Etat == IF) || (Etat == AF) ;

Load_PC <= (Etat == AF) && ((I == JMP || (I==JNC && !C) || (I==JNZ && !Z)) ;

Load_Add <= (Etat == AF) ;

Sel_Add <= (Etat == EX) ;

Load_I <= (Etat == IF) ;

Load_AZC <= ...

WRITE <= (Etat == EX) && (I == STA) ;

end

...

6

Télécom ParisTech, ELECINF102, 2014–2015

Schéma du nanoprocesseur :
Vous pouvez, si vous le voulez, inclure ce schéma "modifié par vos soins" dans votre copie. N’oubliez pas

d’indiquer vos noms et prénoms sur le shéma.
• Nom :
• Prénom :
• Casier :

ALU

PC

Addr 1

0

I
I

Load_I

Acc

Z

C

D[7:0]

Inc_PC

Load_PC

Q[7:0]

I

Load_AZC

Inc_PC

CTRL

Sel_Add

ADDR[7:0]
Load_Add

WRITE
Load_AZC
Load_I
Sel_Add

Load_PC

Load_Add

7

	Produit Scalaire
	Transmission de données par modulation de position d'impulsion
	Un contrôleur de transmission
	Génération de la sortie
	Adaptation de fréquence

	Amélioration du nanoprocesseur
	Une approche simpliste
	Une approche plus générale (BONUS)

