TELECOM
ParisTech

e Hiif
ELECINF102
Processeurs et Architectures Numériques

Controéle de connaissances
12 juin 2015 a 8h30
Document autorisé : une feuille recto-verso

Durée: 1h30 minutes

Ce contrdle comporte 3 parties indépendantes :
1. Produit scalaire
2. Transmission de données par modulation de position d’impulsion

3. Amélioration du nanoprocesseur

Consignes importantes : Si des schémas sont demandés dans les différents exercices, ils doivent étre
impérativement clairs, lisibles et sans ambiguité. Les dimensions des bus doivent étre indiquées. Si nécessaire
le sens des signaux doit étre précisé. Pour la logique synchrone, les signaux d’horloge et d’initialisation
asynchrone (reset_n) ne seront pas représentés dans ces schémas.

BONUS : Les questions notées BONUS sont peut étre d’un niveau de difficulté un peu plus élevé que
les autres questions. Pensez & faire les autres exercices avant de passer trop de temps sur ces questions.

N’oubliez pas d’inscrire nom, prénom, et numéro de casier sur votre copie.

Bon courage !

Télécom ParisTech, ELECINF102, 2014-2015

1 Produit Scalaire

On veut effectuer le produit scalaire de 2 vecteurs Aet B ayant N composantes a; et b; respectivement.
N

Le produit scalaire A -Bests= Z a;-b;
i=1
Nous ne considérerons que le cas d'un circuit électronique pour N = 2. La figure suivante montre
I'utilisation de 2 multiplieurs et d’un additionneur, les entrées du calcul étant les composantes des vecteurs.

ai

D

Question 1 : Les entrées sont des nombres positifs codés sur 4 bits en virgule fixe : 2 bits pour la partie
entiere et 2 bits pour la partie fractionnaire. Les calculs se font avec la précision maximale.
Quel est le nombre de bits des parties entieres et fractionnaires de la sortie s?

Question 2 : Le calcul se fait d’une facon synchrone, les entrées sont issues de registres et la sortie s est
échantillonnée dans un registre. Tous les registres ont la méme horloge H dont la période est Tyr. Si le
multiplieur & un temps de propagation maximum de 5ns et 'additionneur 3ns et qu’on néglige les temps
de propagation et de pré-positionnement (set-up) des registres, quelle est la fréquence maximum du calcul 7
*Nous rappelons qu’un registre est un ensemble de bascules D mises en paralléle et partageant la méme
horloge.

Question 3 : Proposez une méthode pour augmenter le débit de calcul et calculez la fréquence maximale
de fonctionnement dans ce cas.

Question 4 BONUS : Proposez une méthode pour diminuer le nombre de multiplieurs (faites un shéma).
Déterminez la fréquence maximale de fonctionnement de ce nouveau circuit. A quelle fréquence peut on
envoyer des nouvelles composantes a cette structure de calcul 7

Télécom ParisTech, ELECINF102, 2014-2015

2 Transmission de données par modulation de position d’impulsion

Les questions 1, 2 et 3 peuvent étre traitées indépendamment.
Nous désirons transférer des données codées sur 4 bit en utilisant une transmission série.
La sortie serial_out du dispositif proposé géneére de maniere synchrone des séquences de bits régulieres
composées :
e D’un indicateur de début de transmission composé d’une séquence de 4 bits consécutifs a 0.
e D’une séquence de 16 bits dont le seul bit a 1 est celui dont la position dans la séquence correspond

a la valeur de la donnée a transmettre.

e D’un indicateur de fin de transmission composé d’une séquence de 4 bits consécutifs a 1.
Enfin :
e La sortie du dispositif est bloquée a 1 quand il n’y a pas de transmission.
Le chronogramme suivant montre, par exemple, la transmission de la donnée 9, suivie du début de la

transmission d’une nouvelle donnée.

étape attente...x début X donnée X fin X attente... X 0 X 1

cycle - ol a3 o e 23 4] s 6 7] 8o rofu]uafusfuafusfo 12 3] -] aeou
serial_out l [] | L

2.1 Un controéleur de transmission

Ce sous-module gere l'interface de contrdle du dispositif et la durée de la séquence de transmission.

clk
valid ———— ————— start
CONTROLEUR — end
ready «——— ——— cycle

reset : Entrée d’initialisation active a 1’état haut.

clk : Entrée d’horloge.

valid : Entrée, permettant a l'utilisateur de valider la présence d’une donnée a transmettre.

ready : Sortie permettant d’indiquer que le dispositif est prét a recevoir des données.

start : Sortie indiquant que le dispositif est en train de générer la séquence de début.

end : Sortie indiquant que le dispositif est en train de générer la séquence de fin.

cycle : Sortie sur 4 bits indiquant le numéro de la période courante pendant la séquence de trans-
mission de la donnée.

Le fonctionnement du controleur est le suivant :
e Au repos, le signal ready doit étre a 1, les signaux start et end doivent étre a 0.
e Sile signal valid passe a 1 (pendant un cycle) alors le controleur génere la séquence de transmission :

4 périodes pour l'indicateur du début de transmission (start=1)
16 périodes pour la transmission de la donnée
4 périodes pour 'indicateur de fin de transmission (end=1)

Durant toute la séquence de transmission (24 périodes) , le signal ready est maintenu a 0 et le signal
de commande valid est ignoré.

Télécom ParisTech, ELECINF102, 2014-2015

e Le signal ready repasse a 1 a la fin de la transmission.
e Enfin, la valeur du signal cycle n’a de sens que pendant les 16 périodes effectives de la transmission
de la donnée.

Question 1 : Ecrivez le code SystemVerilog du module permettant de générer cette séquence.

2.2 Génération de la sortie

Un module "sortie" est consacré a la génération de la sortie serial_out. La figure suivante montre

I'interface de ce sous-module :

start end ready cycle

data_in ——~—— SORTIE ——— serial_out

La donnée entrante data_in est :
e Présente au moment de la validation par le signal valid
e Maintenue par I'utilisateur pendant toute la durée de la transmission.

Question 2 : En remarquant que la sortie serial_out peut étre générée combinatoirement, écrivez le code
SystemVerilog du module "sortie".

2.3 Adaptation de fréquence

Dans la pratique, la fréquence de transmission n’est pas forcément la méme que celle de ’horloge du
systeme. Nous supposons que cette fréquence de transmission est N fois plus lente que la fréquence d’horloge
avec N constante entiere codée sur 8 bits.

Pour gérer cette adaptation nous créons tout d’abord un générateur de tops, consistant a générer un
signal nommé top, valant 1 pendant 1 cycle de I'horloge principale tous les N cycles.

Question 3 : Ecrivez le code SystemVerilog d’un tel générateur de top.

Question 4 BONUS : Proposez une adaptation du module "controle" pour tenir compte de 1'utilisation
de top.

Télécom ParisTech, ELECINF102, 2014-2015

3 Amélioration du nanoprocesseur

Tel que proposé en cours et en TP, le nano-processeur manque de fonctionnalités essentielles. Il est, par
exemple, difficile de structurer le code en fonctions et sous-programmes.

Nous désirons ajouter deux instructions au nanoprocesseur :
e JSR : pour "Jump to SubRoutine'. Son argument est l'adresse en mémoire du début du sous-
programme appelé.
e RTS : pour "ReTurn from Subroutine". Son argument est ignoré
e Ces instructions sont des instructions de saut au méme titre que les instructions JMP, JNZ et JNC.

Nous rappelons que le microprocesseur est piloté par un automate en 3 cycles nommés IF, AF et EX pour
"Instruction Fetch", "Address Fetch" et "Execute".

Vous trouverez en fin de sujet, un schéma du nano-processeur ainsi que les codes du compteur de
programme et du contréleur de base.

3.1 Une approche simpliste

Nous limitons 'appel de sous-programme & un seul niveau (seul le programme principal peut appeler un
sous-programine).

L’exécution de JSR doit réaliser les actions suivantes :
e Sauvegarder dans le nano-processeur ’adresse de retour, c’est a dire I'adresse de l'instruction suivant
I'instruction courante.
e Forcer le nanoprocesseur a se brancher a ’adresse du sous-programme comme dans le cas d’un JMP.

L’exécution de RTS doit réaliser les actions suivantes :
e Forcer le nanoprocesseur a se brancher a ’adresse d’instruction précédemment sauvegardée par ’ins-
truction JSR.

Question 1 : Proposez une modification du schéma, et une modification des codes permettant d’implémenter
les instructions JSR et RTS.

3.2 Une approche plus générale (BONUS)

Pour pouvoir généraliser les appels de sous-programmes (appels imbriqués), la méthode précédente né-
cessite de multiplier les registres dans le micro-processeur. Une méthode plus générique consiste a sauver
I’adresse de retour de sous-programme dans la mémoire externe, et de ne conserver en interne que la position
dans la mémoire de cette adresse de retour.

Pour cela nous ajoutons au nanoprocesseur un registre spécifique appelé "pointeur de pile" ou SP pour
"stack pointer'. Nous utiliserons les adresses "hautes" de la mémoire pour stocker les adresses de retour.

La gestion de SP en relation avec JSR et RTS est la suivante :
e A linitialisation SP est forcé a la valeur maximale des adresses en mémoire : 255.
e A chaque exécution de JSR :
— L’adresse de retour de sous programme est stockée en mémoire a ’adresse pointée par SP
— SP est décrémenté de 1 (pour anticiper le stockage d’une éventuelle nouvelle adresse de retour...)
e A chaque exécution de RTS,
— Le nanoprocesseur récupere la donnée pointée par SP+1 : ’adresse de retour.
— SP est incrémenté de 1 (pour revenir dans I’état avant ’appel du sous-programme)
Nous ne chercherons pas a gérer les cas limites (trop d’appels imbriqués pour la taille de la mémoire,
RTS sans JSR préalable...).

Question 2 : Proposez une modification du schéma, et une modification du code permettant d’implémenter
les instructions JSR et RTS.

Télécom ParisTech, ELECINF102, 2014-2015

Code du PC "de base" :

always @(posedge clk or negedge reset_n)
if(!reset_n)
PC <= 0 ;
else
if(Load_PC)
PC <= Q ;
else
PC <= PC+Inc_PC ;

Code du Contrdleur "de base" : Seuls les codes utiles pour les questions posées sont indiqués.

always @(x*)
begin
Inc_PC <= (Etat == IF) || (Etat == AF) ;
Load_ PC <= (Etat == AF) & ((I == IMP || (I==INC && !C) || (I==INZ && '2)) ;
Load_Add <= (Etat == AF) ;
Sel_Add <= (Etat == EX)
Load_I <= (Etat == IF)
Load_AZC <= ...
WRITE <= (Etat == EX) & (I == STA) ;
end

Télécom ParisTech, ELECINF102, 2014-2015

Schéma du nanoprocesseur :
Vous pouvez, si vous le voulez, inclure ce schéma "modifié par vos soins" dans votre copie. N’oubliez pas
d’indiquer vos noms et prénoms sur le shéma.
e Nom :
e Prénom :
e Casier :

Load_PC

— =] PC —L

Load_Add

ADDR[7:0]

Q[7:0]

Load_AZC

D[7:0]

s Inc_PC

s Load_PC
——» Load_Add

— > Sel_Add
—— Load_I
—— = Load_AZC

CTRL

WRITE
r o

	Produit Scalaire
	Transmission de données par modulation de position d'impulsion
	Un contrôleur de transmission
	Génération de la sortie
	Adaptation de fréquence

	Amélioration du nanoprocesseur
	Une approche simpliste
	Une approche plus générale (BONUS)

