
Le composeur d’image par tuiles

Yves Mathieu, Tarik Graba

ELEC342



Yves Mathieu, Tarik Graba ELEC342

1 Fonctionalités du composeur d’images

Le composeur à pour rôle de générer un flux vidéo temps réel à partir de la
composition de différentes textures. Les textures peuvent être des images fixes
(images, logos, curseurs...) ou animées (vidéos entrantes).

Les textures sont des images rectangulaires codées en niveau de gris sur 8
bits. Elles sont affectées de transformées géométriques (transformées affines),
de masques binaires (pour faire le découpage d’un contour d’objet) et de coef-
ficients de opacité. Les transformées géométriques et les coefficients d’opacité
doivent pouvoir eux-mêmes être modifiés en temps réel.

2 Transformations directes, Transformation inverses

Texture Image

Texture

Transformation affine "Directe"

Cette figure présente une possible transformation affine d’une texture vers
l’image à afficher. La texture peut se retrouver partiellement ou complètement en
dehors de l’image. Nous utiliserons le vocable “Transformation directe” pour re-
présenter la transformation depuis l’espace de la texture vers l’espace de l’image.

La transformation directe est la transformation qui sera spécifiée au niveau de
la composition. Elle sera utilisée, de plus, pour déterminer les zones de l’image
recouvertes par une texture.

La seconde figure présente la “Transformation inverse”, c’est a dire la trans-
formation depuis l’espace de l’image vers l’espace de texture.

Texture

Image
Transformation affine "Inverse"

Image

Le composeur d’image par tuiles 1



Yves Mathieu, Tarik Graba ELEC342

La connaissance des transformations inverses est nécessaire au composeur.
En effet le composeur effectue un parcours régulier (lignes/colonnes) de l’image
à générer et “va chercher” les pixels des textures à l’aide des transformations
inverses.

3 Traitement par “tuiles”

L’algorithme de traitement de base utilisé de manière classique pour faire la
composition d’une image peut être présenté par le pseudo-code suivant :

Initialiser l’image a la couleur du fond dans la mémoire externe
Pour chaque texture ayant une intersection non vide avec l’image:

Lire l’image courante
Lire la texture
Composer la texture avec l’image courante
Ecrire l’image courante

FinPour

Les textures sont traitées dans l’ordre de l’algorithme du “peintre” (de la plus
éloignée de l’observateur à la plus proche). Ce type de méthode a l’inconvénient
de nécessiter 3 entrées/sorties dans la mémoire d’image pour chaque pixel de
chaque texture interceptant l’image. Une façon de contourner le problème est de
découper l’image en tuiles (blocs rectangulaires) de taille fixe, et de traiter les
tuiles dans une mémoire locale.

L’algorithme devient alors :

Pour chaque tuile de l’image
Initialiser une tuile avec la couleur de fond en mémoire locale
Pour chaque texture interceptant la tuile courante

Lire la portion de texture interceptant la tuile
Composer la portion de texture avec la tuile

FinPour
Sauver la tuile en mémoire externe

FinPour

Ainsi il ne reste, dans la mémoire principale, plus qu’une opération de lecture
par pixel de texture et une opération d’écriture finale pour chaque pixel de l’image
générée.

Le composeur d’image par tuiles 2



Yves Mathieu, Tarik Graba ELEC342

4 Organisation de l’image affichée

4.1 Coordonnées

– Les pixels des images ont des coordonnées entières.
– Les pixels des textures ont des coordonnées entières.
– Le coin en haut à gauche est de coordonnées (0,0).
– L’axe horizontal est orienté de gauche à droite.
– L’axe vertical est orienté de haut en bas.

4.2 Taille des textures et des images

Les images et textures ont des largeurs et hauteurs multiples de 32 pixels.

4.3 Traitement d’une scène

L’image affichée sur l’écran est appelée “scène”. Une scène est obtenue en
composant plusieurs “objets” affectés de différents attributs de transformation
affine et de transparence.

Une scène est décomposée en “tuiles” de taille 32 × 32 pixels. L’accès aux
tuiles d’une scène se fait par l’intermédiaire d’une liste châinée.

La scène est définie par une structure “LGScene_t” comportant les para-
mètres globaux de la scène :

Variable Utilisation

p_liste_de_tuiles Pointeur vers la liste des tuiles de la scène

p_image Pointeur vers l’image à générer

largeur Largeur de l’image (en pixels, multiple de 4)
Une ligne de l’image est alignée aux frontières
de mots

ng_fond couleur du fond (niveau de gris)

Remarque : tous les pointeurs sont alignés sur des adresses de 32 bits.
Le traitement d’une scène consiste à enchainer le traitement de toutes les

tuiles qui la composent.

Le composeur d’image par tuiles 3



Yves Mathieu, Tarik Graba ELEC342

4.4 Traitement d’une tuile

A chaque tuile de la scène est associée une liste de “surfaces”. Une surface
contient les informations nécessaires au traitement d’une texture faisant intersec-
tion avec la tuile concernée. Ainsi, tenant compte de la taille des textures com-
posées, et de leur transformation géométrique, chaque tuile dispose d’une liste
de surfaces pouvant comporter de zero (aucune texture n’intercepte la tuile) au
nombre maximum de textures composant la scène.

Le traitement d’une tuile consiste d’abord à enchaîner le traitement de toutes
les surfaces qui la composent, en respectant l’algorithme du peintre : la première
surface traitée est la plus éloignée de l’observateur, la dernière surface traitée est
la plus proche de l’observateur. Le contenu de la tuile est ensuite sauvé dans la
scène.

Chaque tuile est définie par une structure “LGTuile_t” comportant les para-
mètres spécifiques de la tuile :

Variable Utilisation

p_tuile_suivante Pointeur vers la tuile suivante de la scène.
Si ce pointeur est nul alors la tuile courante est
la dernière tuile.

p_liste_de_surfaces Pointeur vers la listes des surfaces concernées
par la tuile

row Numéro de ligne de la tuile (min = 0)

col Numéro de colonne de la tuile (min = 0)

4.5 Traitement d’une surface

Pour chaque surface, le composeur doit :

1. Lire le fragment de la texture correspondante et stocker ce fragment de
texture dans une “mémoire de texture locale”. Cette mémoire locale doit
pouvoir stocker un fragment de texture de 64× 64 pixels

2. Parcourir la tuile en cours, ligne par ligne, colonne par colonne et déterminer
les coordonnées correspondantes dans la texture locale via la transformée
géométrique inverse correspondant à l’objet considéré.

3. Pour chacun des couples de coordonnées dans la texture locale récupérer
le voisinage 2 × 2 du pixel correspondant et créer le pixel résultant par

Le composeur d’image par tuiles 4



Yves Mathieu, Tarik Graba ELEC342

interpolation bilinéaire, en tenant compte éventuellement du masque de la
texture.

4. Composer ce pixel résultant avec le pixel correspondant dans une “mémoire
locale de tuile”, en tenant compte éventuellement de l’opacité du nouveau
pixel.

5. Si la surface traitée est la dernière, sauvegarder la tuile dans l’image résul-
tante.

Chaque surface est définie par une structure “LGSurface_t” comportant les
paramètres spécifiques de la surface :

Variable Utilisation

p_surface_suivante Pointeur vers la surface suivante de la tuile.
Si ce pointeur est nul alors la surface courante
est la dernière surface.

p_obj Pointeur vers l’objet concerné par la surface

p_attributs Pointeur vers les attributs de l’objet

ox abcisse dans la texture locale de la transformée
inverse du point (0,0) de la tuile

oy ordonnée dans la texture locale de la transfor-
mée inverse du point (0,0) de la tuile

x_texture Abcisse dans la texture du coin haut/gauche de
la boite entourante de
la zone de texture à charger localement
(unité : pixel)

y_texture Ordonnée dans la texture du coin haut/gauche
de la boite entourante de
la zone de texture à charger localement
(unité : pixel)

w_texture Largeur de la boîte entourante dans la texture

h_texture Hauteur de la boite enthourante dans la texture

Contraintes : Pour simplifier les calculs d’adresses et chargements, les para-
mètres x_texture, w_texture, y_texture, h_texture seront arrondis à des frontières
de 4 pixels.

Le composeur d’image par tuiles 5



Yves Mathieu, Tarik Graba ELEC342

4.6 Objet

Un objet décrit une texture et ses caractéristiques. Deux types d’objets peuvent
être créés :

1. Une image en niveaux de gris codés sur 8 bits (4 pixels par mots)

2. Une image en niveaux de gris codés sur 8 bits (4 pixels par mots, associée
à un masque codé sur 1 bit (32 pixels par mots)

Chaque objet est défini par une structure “LGObj_t” comportant les para-
mètres spécifiques de l’objet :

Variable Utilisation

p_texture Pointeur vers la texture associée

p_masque Pointeur vers le masque associé (si nul, pas de
masque)

largeur largeur de la texture (unités : pixels)

hauteur hauteur de la texture (unités : pixels)

Contraintes : pour simplifier les traitements, les textures ont des largeurs
multiples de 32 pixels. Ainsi la longueur d’une ligne de pixel ou d’une ligne de
masque est un multiple entier de mots de la mémoire.

4.7 Attributs

Les attributs permettent de déterminer la transformée affine à réaliser, ainsi
que les paramètres de composition (opacité, interpolation,. . .).

Les attributs d’un objet sont définis par une structure “LGAttributs_t” com-
portant les paramètres suivants :

Le composeur d’image par tuiles 6



Yves Mathieu, Tarik Graba ELEC342

Variable Utilisation

x0 abcisse dans la texture globale de la transformée
inverse du point (0,0) de l’image

y0 ordonnée dans la texture globale de la transfor-
mée inverse du point (0,0) de l’image

a_x coefficient de la transformée inverse pour l’ab-
cisse selon l’indice i

b_x coefficient de la transformée inverse pour l’ab-
cisse selon l’indice j

a_y coefficient de la transformée inverse pour l’or-
donnée selon l’indice i

b_y coefficient de la transformée inverse pour l’or-
donnée selon l’indice j

alpha Opacité de l’objet

interpolation Choix de l’interpolation (1 :interpolation 0 : sans
interpolation)

L’usage et le calcul des coefficients sont détaillés dans les sections suivantes.

5 Calcul des attributs :

Cette section vise à expliquer la manière dont sont calculés les attributs de
surfaces. Cette section n’est pas utile à la réalisation du composeur mais peut
servir de référence pour modifier le logiciel.

D’un point de vue utilisateur, la transformation affine de référence est celle
permettant de “placer” une texture dans l’image : L’espace de départ est la texture,
l’espace d’arrivée est l’image. Si nous appelons (xt , yt) les coordonnées dans la
texture et (xi , yi ) les coordonnées dans l’image via la transformée affine f nous
avons alors :

(xi , yi) = f (xt , yt)

Le composeur réalise un parcours régulier dans l’image, il accède donc aux
pixels des textures sur la base de la transformée inverse f −1de f :

(xt , yt) = f −1(xi , yi)

La fonction f −1 étant une transformée affine, nous pouvons écrire :

Le composeur d’image par tuiles 7



Yves Mathieu, Tarik Graba ELEC342

xt = x0 + ax · xi + bx · yi
yt = y0 + ay · xi + by · yi

Nous traitons l’image tuile par tuile, les tuiles sont de taille 32 × 32. Nous
pouvons transposer la fonction f −1 dans le cadre d’une tuile de rangée “row” et
de colonne “col”. En appellant (i , j) les coordonnées dans la tuile nous obtenons :

xt = (x0 + 32 · (ax · col + bx · row)) + ax · i + bx · j
yt = (y0 + 32 · (ay · col + by · row)) + ay · i + by · j

Le composeur ne peut pas accéder directement à toute la texture, mais sim-
plement à une portion de celle ci placée dans une mémoire locale de 32x32
pixels. Il faut déterminer les coordonnées de la zone à charger. Pour cela on
calcule les antécédants par la fonction f −1 des quatre sommets de la tuile, et
on détermine les coordonnées de la boite entourante. Les valeurs obtenues per-
mettent de déterminer les paramètres x_texture, y_texture, w_texture et h_texture
de la surface (voir section 3.4).

Le point de coordonnée (x_texture, y_texture) dans la texture se retrouve en
position (0, 0) dans la mémoire locale 32 × 32. Dans l’espace de cette mémoire
locale , la transformation f −1 devient la transformation inverse locale f −1

l :

(xtl, ytl) = f −1 (i , j)

avec :

xtl = (x0 − xtexture + 32 · (ax · col + bx · row)) + ax · i + bx · j
ytl = (y0 − ytexture + 32 · (ay · col + by · row)) + ay · i + by · j

En conclusion, les attributs définis en 3.6 sont :

ox = x0 − xtexture + 32 · (ax · col + bx · row)
oy = y0 − ytexture + 32 · (ay · col + by · row)

6 Composition des pixels dans une tuile

6.1 Interpolation

Le composeur dispose d’une mémoire de tuile locale 32 × 32. Pour un point
de coordonnée (i,j) on récupère la coordonnée antécédante (xtl, ytl). Cette co-

Le composeur d’image par tuiles 8



Yves Mathieu, Tarik Graba ELEC342

ordonnée n’est pas entière. La partie fractionnaire permet de calculer un pixel
résultant Pr par interpolation bilinéaire entre les 4 pixels voisins de (xtl, ytl) dans
la mémoire locale de texture. Si la texture a un masque binaire associé, alors on
interpole aussi le masque binaire pour obtenir une opacité Or propre au pixel Pr .

6.2 « Clipping »

Au niveau « local »il n’est pas possible de déterminer si le pixel calculé est en
dehors des limites de la texture. Il faut, parallèlement au calcul local, réaliser un
calcul de position global et forcer le pixel à être totalement transparent.

6.3 Composition

Enfin, si on appelle Pc la valeur du pixel courant à la coordonnée (i , j), et Pf

la valeur finale du pixel on aura :

Pf = Or · alpha · Pr + (1− Or · alpha) · Pc

Le paramètre alpha est l’opacité générale de l’objet considéré. Les valeurs
d’opacité sont considérées comme étant en virgule fixe avec un maximum égal à
1. Enfin, si le paramètre d’interpolation de l’objet est zero alors Pr est obtenu en
cherchant le pixel le plus proche (arrondi des coordonnées) et Or est l’opacité de
ce pixel (0 ou 1).

Le composeur d’image par tuiles 9


