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B Hardware Design Flow

Specification Natural language
Reg. eng.,

modeling

) Electr. System Lvl. UML, SysML, Matlab, ...
Design Space

expl., partitioning

Transaction Lvl. C, C++, SystemC, ...

Implementation,
refinement

Register Transfer Lvl. > VHDL, Verilog, . ..

Synthesis
Gate models
Place & route
Geometric, electr. models
Manufacturing
Silicon
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B Hardware Verification Flow

Specification
Model Driven Eng. NLP Techniques

Electr. System Lvl.

- Diagnosis
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Performance Evaluation

Transaction Luvl.

Debugging




I Design Gap - Verification Gap

manufacture

design

verify

# Transistors

Years

TELECOM

ParisTech



B outline

Functional Verification
Circuit Models
Linear Time Logic (LTL)
Computation Tree Logic (CTL)
Model Checking
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I Functional Verification

B Dynamic verification (= simulation)
still standard technology

B Pentium 4 overall simulated cycles < one minute
at operation speed [Bentley, 2005]

® Full coverage is infeasible
B |ncreasing use of formal methods
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I Scquential Circuit Model

Mealy Machine:

m
—— 0 M= (1,0,8, So,6,)\)
| & 5:Sx1-8
A:SxI—=0
SCS

I={0,1}"

Memor . O={0,1}7

! — 3:{{0,1}}k

TELECOM
ParisTech



I rrom Verilog to Mealy Machine

module count(CLK, EN, CLR,
S0, S1, 82, V);

input CLK, EN, CLR;
output reg SO0, S1, S2;
output V;

assign V= S0 & S1 & S2 &
ICLR & EN;

always @(posedge CLK) begin
if (CLR)
{S2, 81, S0} <= 0;
else if (EN)
{S2, S1, S0}
<={S2, S1, S0} + 1;
end
endmodule // count
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I Verification Model

Kripke Structure:
K=(S,S,4,V,L)

Mealy Machine:

M = (Iv 07 Sa SOa 67 )‘)
0 C Sx S transition relation

d:Sx1—S SCS initial states
A:SxI—=0 V propositional variables
SCS L£:S—2Y labelling function

CLR
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N Labelling Function

Propositional variables V = {S2, S1, S0, EN, CLR, V'}

(EN, CLR}

TELECOM
ParisTech

sonvzvs Jpre



I \What do we want to verify?

Safety

Something bad will never happen, e.g.

“The stack pointer will never overflow”

“The traffic lights will never be green at the same time”

Liveness

Something good will eventually happen, e.g.

“Every request will be granted”

“The cache and the main memory will eventually be consistent”
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I How to specify such properties?

CTL*
B Temporal logic =

propositional logic + time
m Discrete vs. continuous time
B Linear time view
B Branching time view
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BB The Linear Time View

Computation paths
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I Linear Time Logic (LTL)

p holds (in the initial state) (P)—( —(O—()— -
p holds in the next state (O )}—@)—(O)—()— -
p holds in the future O—O—O—@)y— -
p holds globally w e

p holds until (P—(P) )

Fp
Gp

pUq
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I Linear Time Logic (LTL)

An LTL formula over propositional variables V has the form

LTL := p, where p € V

4

|
|
| X
}
\

o Uy, where ¢, € LTL.
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N Branching Time View

Computation Tree

/@\
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I Ccomputation Tree Logic (CTL)

Some property p holds p holds in p holds in
(in the initial state) some next state all next states
EXp AX p
path next
quantifier operator
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I Further Modalities

p holds globally p holds globally
on some path on all paths

p holds in some
future state

p holds eventually
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I Until Modalities

On some path, g holds On all paths, g holds
until p holds until p holds
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I Ccomputation Tree Logic (CTL)

A CTL formula over propositional variables V has the form

CTL:= p, wherepeV

| oAY |

| EX¢p | AXop

| EF¢p | AFg

| EGy | AGy

| E(eUv) | A(pUr), where ¢ € CTL
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I \What do we want to verify?

Safety
“The stack pointer will never overflow” AG (sp < 4096)

“The traffic lights will never be green at —EF (tly Atlo)
the same time”

Liveness
“Every request will be granted” AG (req — AF gnt)

“The cache and the main memory AF (mem; = cache;)
will eventually be consistent”
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B Model Checking

Model Checking

Given a Kripke Structure K and a CTL formula ¢,
check if £ = .

How do we do this?

1. Compute all states in which ¢ holds:
() ={se€ S|K,s ¢}

2. Check if the initial states are a subset of those states:
So\7(p) =92
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N Example

So Sq So 7'(
\O m i@
S3 S4 S5

p) = {S2,54,55}
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N Example

\Eo> S1 So 7(p) = {s2, 54, 55}
M
p T(EX p) = {s1, 52, 53, S5}

S3 S4 S5
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N Example

\Eo> S1 So 7(p) = {s2, 54, 55}
M
p T(EX p) = {s1, 52, 53, S5}

T(AX p) = {51, 52, S5}

S3 S4 S5
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N Example

\Eo> S1 So 7(p) = {s2, 54, 55}
M
p T(EX p) = {s1, 52, 53, S5}

T(AX p) = {51, 52, S5}

..Q T(EF p) = {2, 84, S5}

S3 S4 Ss U {sy,83} U {sp}

Expansion rules:
EFop=¢ vV EXEFp
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N Example

\Eo> S1 So 7(p) = {s2, 54, 55}
Y
p T(EX p) = {s1, 52, 53, S5}

T(AX p) = {51, 52, S5}

..Q T(EF p) = {2, 84, S5}

S3 S4 Ss U {sy,83} U {sp}

Expansion rules: 7(AG p) = {S2, 54,55} N {Sp, S5}
EFop=¢ vV EXEFp
AGp=p N AXAG ¢
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I Fixed Point Algorithm for EF p

So=p
Si=pUEXp
S =pUEXpUEXEXp

.
Sy=pU JEXp=S,
i=1

= Sn = T(EF p)
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I Fixed Points

Let f: P(S) — P(S) a set-valued function and Z C G.

B Z s called a fixed point of fif f(Z) =Z

B Z is the least fixed point of f it is a fixed point and for all
other fixed points U of f it holds that Z C U.

B 7 is the greatest fixed point of f it is a fixed point and for all
other fixed points U of f it holds that U C Z.
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I Fixed Points (2)

A function f : P(S) — P(S) is called monotone if for all
X,YCS

XCY=fX)CHY) (1)

Knaster-Tarski Theorem

Let f: P(S) — P(S) be a monotone function. Then f has a
least and a greatest fixed point.

B | J (o) is the least fixed point of .

n>1

m () f"(S) is the greatest fixed point of f.

n>1
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I CTL Model Checking

Let £ = (S, Sp, 6, V, L) be a Kripke structure.

7(p) = {seS|peL(s)}

T(p A P) = 7(p)N7(¥)

T(p V) = 7(p)UT(¥)

() = S\ 7(¥)

T(EF ) = IfpZ. 7(p) UEX (2)

T(AF ¢) = IfpZ. 7(p) UAX (2)

T(EG ) = gfpZ. 7(p) NEX (2)

T(AG @) = gfpZ. 7(p) N AX (2)

T(E(p Uy)) = IpZ. 7(¥) U (r(p) NEX (Z))
T(A(p Uy)) = IfpZ. 7(y)U(r(p) N AX (Z))

e



B Model Checking

B Complexity depends heavily

on state space /99\
® Need for efficient data structures

B State space explosion still a problem /\0'? /0\?\

® Works for small to medium 00o) o) 000} 0ot o1
(or very regular) systems

B Popular tool: NuSMV / /l\ / /J\ \
[Cimatti et al., 2002] . “ e

B Ongoing research
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B outline

Hardware Test
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B Hardware Design Flow

Specification
Model Driven Eng. NLP Techniques

Electr. System Lvl.

- Diagnosis
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Transaction Luvl.

Debugging




I Hardware Verification vs Test

Verification Test
B Detect design bugs B Detect physical defects
B Extract properties from B Test generation from netlist
requirements according to fault model
® Applied on RTL code ® Applied on fabricated chips
® High manual effort B High automation
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I rhysical Defects

<
\\ ‘ /

,\‘ccv Spot Magn ~ Det WD F——————1 500 nm
5.00kv 30 50000x TLD 6.1

B

[Source: IEEE Spectrum “The Art of Failure”]
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I Stuck-at Fault Model

a b c d
0 0 000

ot 0 0 0/1
a 0 0 1 0
bD 0 1 0 |11/0
0 1 1 0
>d 10 0 |11/0
1 0 1 0
¢ 1 1 0 |11/0
sa-0 1 1 A 0

® (000) is a test vector for the shown stuck-at-1 fault
m {(010), (100), (110)} are test vectors for the stuck-at-0 fault
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I Automatic Test Pattern Generation

ATPG
m Create a list of all possible ® Untestable faults?
(stuck-at) faults ® Hard to test faults?

B For each fault:
* Find a test pattern
 Drop all other faults
detected by this pattern

B Sequential tests?
B Test compression?
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