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Functional Verification

Dynamic verification (= simulation)
still standard technology
Pentium 4 overall simulated cycles < one minute
at operation speed [Bentley, 2005]
Full coverage is infeasible
Increasing use of formal methods
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Sequential Circuit Model

Memory

I O
n m

k k
δ

λ

Mealy Machine:

M = (I,O,S,S0, δ, λ)

δ : S × I → S
λ : S × I → O
S0 ⊆ S

I = {0,1}n
O = {0,1}m
S = {0,1}k
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From Verilog to Mealy Machine

module count(CLK, EN, CLR,
S0, S1, S2, V);

input CLK, EN, CLR;
output reg S0, S1, S2;
output V;

assign V = S0 & S1 & S2 &
!CLR & EN;

always @(posedge CLK) begin
if (CLR)
{S2, S1, S0} <= 0;

else if (EN)
{S2, S1, S0}

<= {S2, S1, S0} + 1;
end

endmodule // count
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Verification Model

Mealy Machine:

M = (I,O,S,S0, δ, λ)

δ : S × I → S
λ : S × I → O
S0 ⊆ S

000 001 010
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EN

CLR

Kripke Structure:

K = (S,S0, δ,V,L)

δ ⊆ S × S transition relation
S0 ⊆ S initial states
V propositional variables
L : S → 2V labelling function
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Labelling Function

Propositional variables V = {S2,S1,S0,EN,CLR,V}

∅
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What do we want to verify?

Safety
Something bad will never happen, e.g.
“The stack pointer will never overflow”
“The traffic lights will never be green at the same time”

Liveness
Something good will eventually happen, e.g.
“Every request will be granted”
“The cache and the main memory will eventually be consistent”
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How to specify such properties?

Temporal logic =
propositional logic + time
Discrete vs. continuous time
Linear time view
Branching time view

CTL∗

LTL CTL
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The Linear Time View

Computation paths

π0: 000 001 010 011 . . .

π1: 000 001 000 001 . . .

π2: 000 001 010 000 . . .

. . .
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Linear Time Logic (LTL)

p holds (in the initial state) p . . . p

p holds in the next state p . . . X p

p holds in the future p . . . F p

p holds globally p p p p . . . G p

p holds until q p p q . . . p U q
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Linear Time Logic (LTL)

An LTL formula over propositional variables V has the form

LTL ::= p, where p ∈ V
| ¬ϕ
| ϕ ∧ ψ
| Xϕ
| Fϕ
| Gϕ
| ϕ Uψ, where ϕ, ψ ∈ LTL.
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Branching Time View

Computation Tree
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Computation Tree Logic (CTL)

Some property p holds
(in the initial state)

p

p

p holds in
some next state

p

EX p

path
quantifier

next
operator

p holds in
all next states

p p

AX p
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Further Modalities

p holds in some
future state
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p holds eventually
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Until Modalities

On some path, q holds
until p holds

q

q

p

E(p U q)

On all paths, q holds
until p holds

q

p q

p p

A(p U q)
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Computation Tree Logic (CTL)

A CTL formula over propositional variables V has the form

CTL ::= p, where p ∈ V
| ϕ ∧ ψ | ¬ϕ
| EX ϕ | AX ϕ
| EF ϕ | AF ϕ
| EG ϕ | AG ϕ
| E(ϕ U ψ) | A(ϕ U ψ), where ϕ, ψ ∈ CTL
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What do we want to verify?

Safety
“The stack pointer will never overflow” AG (sp < 4096)

“The traffic lights will never be green at
the same time”

¬EF (tl1 ∧ tl2)

Liveness
“Every request will be granted” AG (req→ AF gnt)

“The cache and the main memory
will eventually be consistent”

AF (memi = cachei)
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Model Checking

Model Checking

Given a Kripke Structure K and a CTL formula ϕ,
check if K |= ϕ.

How do we do this?

1. Compute all states in which ϕ holds:
τ(ϕ) = {s ∈ S | K, s |= ϕ}

2. Check if the initial states are a subset of those states:
S0 \ τ(ϕ) = ∅
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Example
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Example
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Expansion rules:

EF ϕ = ϕ ∨ EX EF ϕ
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Example
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Fixed Point Algorithm for EF p

..
.

. .
.

p

S0 = p
S1 = p ∪ EX p
S2 = p ∪ EX p ∪ EX EX p
. . .
Sn = p ∪

n⋃
i=1

EXip = Sn−1

⇒ Sn = τ(EF p)
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Fixed Points

Let f : P(S)→ P(S) a set-valued function and Z ⊆ G.

Z is called a fixed point of f if f (Z ) = Z
Z is the least fixed point of f it is a fixed point and for all
other fixed points U of f it holds that Z ⊆ U.
Z is the greatest fixed point of f it is a fixed point and for all
other fixed points U of f it holds that U ⊆ Z .

27/36 SE303b Ulrich Kühne 30/11/2018



Fixed Points (2)

A function f : P(S)→ P(S) is called monotone if for all
X ,Y ⊆ S

X ⊆ Y ⇒ f (X ) ⊆ f (Y ) (1)

Knaster-Tarski Theorem
Let f : P(S)→ P(S) be a monotone function. Then f has a
least and a greatest fixed point.

⋃
n≥1

f n(∅) is the least fixed point of f .⋂
n≥1

f n(S) is the greatest fixed point of f .
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CTL Model Checking

Let K = (S,S0, δ,V,L) be a Kripke structure.

τ(p) = {s ∈ S | p ∈ L(s)}
τ(ϕ ∧ ψ) = τ(ϕ) ∩ τ(ψ)
τ(ϕ ∨ ψ) = τ(ϕ) ∪ τ(ψ)
τ(¬ϕ) = S \ τ(ϕ)
τ(EF ϕ) = lfpZ . τ(ϕ) ∪ EX (Z )
τ(AF ϕ) = lfpZ . τ(ϕ) ∪ AX (Z )
τ(EG ϕ) = gfpZ . τ(ϕ) ∩ EX (Z )
τ(AG ϕ) = gfpZ . τ(ϕ) ∩ AX (Z )
τ(E(ϕ U ψ)) = lfpZ . τ(ψ) ∪ (τ(ϕ) ∩ EX (Z ))
τ(A(ϕ U ψ)) = lfpZ . τ(ψ) ∪ (τ(ϕ) ∩ AX (Z ))
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Model Checking

Complexity depends heavily
on state space
Need for efficient data structures
State space explosion still a problem
Works for small to medium
(or very regular) systems
Popular tool: NuSMV
[Cimatti et al., 2002]
Ongoing research
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Hardware Verification vs Test

Verification

Detect design bugs
Extract properties from
requirements
Applied on RTL code
High manual effort

Test

Detect physical defects
Test generation from netlist
according to fault model
Applied on fabricated chips
High automation
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Physical Defects

[Source: IEEE Spectrum “The Art of Failure”]
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Stuck-at Fault Model

a
b

c

d

sa-1

sa-0

a b c d
0 0 0 0 0
0 0 0/1
0 0 1 0
0 1 0 11/0
0 1 1 0
1 0 0 11/0
1 0 1 0
1 1 0 11/0
1 1 1 0

〈000〉 is a test vector for the shown stuck-at-1 fault
{〈010〉, 〈100〉, 〈110〉} are test vectors for the stuck-at-0 fault
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Automatic Test Pattern Generation

ATPG

Create a list of all possible
(stuck-at) faults
For each fault:

• Find a test pattern
• Drop all other faults

detected by this pattern

Untestable faults?
Hard to test faults?
Sequential tests?
Test compression?
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