TELECOM
ParisTech

m &
INSTITUT

Mines-Télécom Hardware Verification

B outline

Introduction
Design and Verification Process

TELECOM

ParisTech

B Hardware Design Flow

Specification Natural language
Reg. eng.,

modeling

) Electr. System Lvl. UML, SysML, Matlab, ...
Design Space

expl., partitioning

Transaction Lvl. C, C++, SystemC, ...

Implementation,
refinement

Register Transfer Lvl. > VHDL, Verilog, . ..

Synthesis
Gate models
Place & route
Geometric, electr. models
Manufacturing
Silicon

TELECOM

ParisTech

B Hardware Verification Flow

Specification
Model Driven Eng. NLP Techniques

Electr. System Lvl.

- Diagnosis
TELECOM
ParisTech

sonvzvs Jpre

Performance Evaluation

Transaction Luvl.

Debugging

I Design Gap - Verification Gap

manufacture

design

verify

Transistors

Years

TELECOM

ParisTech

B outline

Functional Verification
Circuit Models
Linear Time Logic (LTL)
Computation Tree Logic (CTL)
Model Checking

TELECOM

ParisTech
6/36 SE303b Ulrich Kahne 30/11/2018 =T
_oos | cn ks EAE

I Functional Verification

B Dynamic verification (= simulation)
still standard technology

B Pentium 4 overall simulated cycles < one minute
at operation speed [Bentley, 2005]

® Full coverage is infeasible
B |ncreasing use of formal methods

TELECOM

ParisTech

I Scquential Circuit Model

Mealy Machine:

m
—— 0 M= (1,0,8, So,6,)\)
| & 5:Sx1-8
A:SxI—=0
SCS

I={0,1}"

Memor . O={0,1}7

! — 3:{{0,1}}k

TELECOM
ParisTech

I rrom Verilog to Mealy Machine

module count(CLK, EN, CLR,
S0, S1, 82, V);

input CLK, EN, CLR;
output reg SO0, S1, S2;
output V;

assign V= S0 & S1 & S2 &
ICLR & EN;

always @(posedge CLK) begin
if (CLR)
{S2, 81, S0} <= 0;
else if (EN)
{S2, S1, S0}
<={S2, S1, S0} + 1;
end
endmodule // count

9/36 SE303b

W EN) JEN
EN (00 /4@35\/

TELECD M
isTech

Ulrich Kiihne 30/11/2018 -«EEMI

I Verification Model

Kripke Structure:
K=(S,S,4,V,L)

Mealy Machine:

M = (Iv 07 Sa SOa 67)‘)
0 C Sx S transition relation

d:Sx1—S SCS initial states
A:SxI—=0 V propositional variables
SCS L£:S—2Y labelling function

CLR

000y——00 —>01

EN

e

01010 +=— 01000 00101 00110
01100 35~ P
X
| | S|
;\\ ﬂ-r,';:"‘»-,
01101 TR NN/~ 00100 D
S arN R,
01110 01001 FF2
01111 —~=# 00001 Z>00010
2T
10001 >2700000 AR “ 11111
K
10011 T AR11110
10000 11001),//\ '4

e l‘ 11100 >

10101 4

/ ? 10111 11011 1110 /

10010

10100 ==* 49119 —= 11000 = 11010

11/36 SE303b Ulrich Kiihne 3

0/11/2018 ﬁﬁgml

N Labelling Function

Propositional variables V = {S2, S1, S0, EN, CLR, V'}

(EN, CLR}

TELECOM
ParisTech

sonvzvs Jpre

I \What do we want to verify?

Safety

Something bad will never happen, e.g.

“The stack pointer will never overflow”

“The traffic lights will never be green at the same time”

Liveness

Something good will eventually happen, e.g.

“Every request will be granted”

“The cache and the main memory will eventually be consistent”

TELECOM

ParisTech

I How to specify such properties?

CTL*
B Temporal logic =

propositional logic + time
m Discrete vs. continuous time
B Linear time view
B Branching time view

TELECOM

ParisTech

BB The Linear Time View

Computation paths

S S T S
DD oD @D
v DD QDD

TELECOM
ParisTech

e

I Linear Time Logic (LTL)

p holds (in the initial state) (P)—(—(O—()— -
p holds in the next state (O)}—@)—(O)—()— -
p holds in the future O—O—O—@)y— -
p holds globally w e

p holds until (P—(P))

Fp
Gp

pUq

TELECOM

ParisTech
16/36 SE303b Ulrich Kiihne 30/11/2018 =T
e | cn ks T

I Linear Time Logic (LTL)

An LTL formula over propositional variables V has the form

LTL := p, where p € V

4

|
|
| X
}
\

o Uy, where ¢, € LTL.

0/11/2018 ﬁﬁgml

17/36 SE303b Ulrich Kiihne 3

N Branching Time View

Computation Tree

/@\
a3
- -

TELECOM
ParisTech

I Ccomputation Tree Logic (CTL)

Some property p holds p holds in p holds in
(in the initial state) some next state all next states
EXp AX p
path next
quantifier operator

TELECOM

ParisTech

I Further Modalities

p holds globally p holds globally
on some path on all paths

p holds in some
future state

p holds eventually

TELECD M
isTech

e

I Until Modalities

On some path, g holds On all paths, g holds
until p holds until p holds

TELECOM
ParisTech

e

I Ccomputation Tree Logic (CTL)

A CTL formula over propositional variables V has the form

CTL:= p, wherepeV

| oAY |

| EX¢p | AXop

| EF¢p | AFg

| EGy | AGy

| E(eUv) | A(pUr), where ¢ € CTL

TELECOM
ParisTech

I \What do we want to verify?

Safety
“The stack pointer will never overflow” AG (sp < 4096)

“The traffic lights will never be green at —EF (tly Atlo)
the same time”

Liveness
“Every request will be granted” AG (req — AF gnt)

“The cache and the main memory AF (mem; = cache;)
will eventually be consistent”

TELECOM

ParisTech

B Model Checking

Model Checking

Given a Kripke Structure K and a CTL formula ¢,
check if £ = .

How do we do this?

1. Compute all states in which ¢ holds:
() ={se€ S|K,s ¢}

2. Check if the initial states are a subset of those states:
So\7(p) =92

TELECOM
ParisTech

N Example

So Sq So 7'(
\O m i@
S3 S4 S5

p) = {S2,54,55}

TELECOM

ParisTech

N Example

\Eo> S1 So 7(p) = {s2, 54, 55}
M
p T(EX p) = {s1, 52, 53, S5}

S3 S4 S5

TELECOM

ParisTech

N Example

\Eo> S1 So 7(p) = {s2, 54, 55}
M
p T(EX p) = {s1, 52, 53, S5}

T(AX p) = {51, 52, S5}

S3 S4 S5

TELECOM

ParisTech

N Example

\Eo> S1 So 7(p) = {s2, 54, 55}
M
p T(EX p) = {s1, 52, 53, S5}

T(AX p) = {51, 52, S5}

..Q T(EF p) = {2, 84, S5}

S3 S4 Ss U {sy,83} U {sp}

Expansion rules:
EFop=¢ vV EXEFp

TELECOM

ParisTech

N Example

\Eo> S1 So 7(p) = {s2, 54, 55}
Y
p T(EX p) = {s1, 52, 53, S5}

T(AX p) = {51, 52, S5}

..Q T(EF p) = {2, 84, S5}

S3 S4 Ss U {sy,83} U {sp}

Expansion rules: 7(AG p) = {S2, 54,55} N {Sp, S5}
EFop=¢ vV EXEFp
AGp=p N AXAG ¢

TELECOM

25/36 SE303b Ulrich Kahne 30/11/2018 =T
I cn ks T

I Fixed Point Algorithm for EF p

So=p
Si=pUEXp
S =pUEXpUEXEXp

.
Sy=pU JEXp=S,
i=1

= Sn = T(EF p)

TELECOM
ParisTech

I Fixed Points

Let f: P(S) — P(S) a set-valued function and Z C G.

B Z s called a fixed point of fif f(Z) =Z

B Z is the least fixed point of f it is a fixed point and for all
other fixed points U of f it holds that Z C U.

B 7 is the greatest fixed point of f it is a fixed point and for all
other fixed points U of f it holds that U C Z.

27/36 SE303b Ulrich Kiihne 3

0/11/2018 ﬁﬁgml

I Fixed Points (2)

A function f : P(S) — P(S) is called monotone if for all
X,YCS

XCY=fX)CHY) (1)

Knaster-Tarski Theorem

Let f: P(S) — P(S) be a monotone function. Then f has a
least and a greatest fixed point.

B | J (o) is the least fixed point of .

n>1

m () f"(S) is the greatest fixed point of f.

n>1

TELECOM
ParisTech

I CTL Model Checking

Let £ = (S, Sp, 6, V, L) be a Kripke structure.

7(p) = {seS|peL(s)}

T(p A P) = 7(p)N7(¥)

T(p V) = 7(p)UT(¥)

() = S\ 7(¥)

T(EF) = IfpZ. 7(p) UEX (2)

T(AF ¢) = IfpZ. 7(p) UAX (2)

T(EG) = gfpZ. 7(p) NEX (2)

T(AG @) = gfpZ. 7(p) N AX (2)

T(E(p Uy)) = IpZ. 7(¥) U (r(p) NEX (Z))
T(A(p Uy)) = IfpZ. 7(y)U(r(p) N AX (Z))

e

B Model Checking

B Complexity depends heavily

on state space /99\
® Need for efficient data structures

B State space explosion still a problem /\0'? /0\?\

® Works for small to medium 00o) o) 000} 0ot o1
(or very regular) systems

B Popular tool: NuSMV / /l\ / /J\ \
[Cimatti et al., 2002] . “ e

B Ongoing research

TELECOM

30/36 SE303b Ulrich Kahne 30/11/2018 =T
I cn ks E AL

B outline

Hardware Test

TELECOM

ParisTech

e

B Hardware Design Flow

Specification
Model Driven Eng. NLP Techniques

Electr. System Lvl.

- Diagnosis
TELECOM
ParisTech

Performance Evaluation

Transaction Luvl.

Debugging

I Hardware Verification vs Test

Verification Test
B Detect design bugs B Detect physical defects
B Extract properties from B Test generation from netlist
requirements according to fault model
® Applied on RTL code ® Applied on fabricated chips
® High manual effort B High automation

TELECOM

ParisTech

I rhysical Defects

<
\\ ‘ /

,\‘ccv Spot Magn ~ Det WD F——————1 500 nm
5.00kv 30 50000x TLD 6.1

B

[Source: IEEE Spectrum “The Art of Failure”]

TELECOM

ParisTech

I Stuck-at Fault Model

a b c d
0 0 000

ot 0 0 0/1
a 0 0 1 0
bD 0 1 0 |11/0
0 1 1 0
>d 10 0 |11/0
1 0 1 0
¢ 1 1 0 |11/0
sa-0 1 1 A 0

® (000) is a test vector for the shown stuck-at-1 fault
m {(010), (100), (110)} are test vectors for the stuck-at-0 fault

TELECOM

ParisTech

I Automatic Test Pattern Generation

ATPG
m Create a list of all possible ® Untestable faults?
(stuck-at) faults ® Hard to test faults?

B For each fault:
* Find a test pattern
 Drop all other faults
detected by this pattern

B Sequential tests?
B Test compression?

TELECOM

ParisTech

I Rcferences |

[3 Bentley, B. (2005).
Validating a modern microprocessor.
In Etessami, K. and Rajamani, S., editors, Computer Aided Verification, volume
3576 of Lecture Notes in Computer Science, pages 2—4. Springer Berlin
Heidelberg.

@ Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., and Tacchella, A. (2002).
NuSMV Version 2: An OpenSource Tool for Symbolic Model Checking.
In Proc. International Conference on Computer-Aided Verification (CAV 2002),
volume 2404 of LNCS, Copenhagen, Denmark. Springer.

TELECOM

ParisTech

e

	Introduction
	Design and Verification Process

	Functional Verification
	Circuit Models
	Linear Time Logic (LTL)
	Computation Tree Logic (CTL)
	Model Checking

	Hardware Test
	Appendix

