
Hardware Verification
SE303b – Conception des
systèmes sur puces (SoC)

Ulrich Kühne
30/11/2018

Outline

Introduction
Design and Verification Process

Functional Verification
Circuit Models
Linear Time Logic (LTL)
Computation Tree Logic (CTL)
Model Checking

Hardware Test

2/36 SE303b Ulrich Kühne 30/11/2018

Hardware Design Flow

Specification

Electr. System Lvl.

Transaction Lvl.

Register Transfer Lvl.

Netlist

Layout

Chip

Natural language

UML, SysML, Matlab, . . .

C, C++, SystemC, . . .

VHDL, Verilog, . . .

Gate models

Geometric, electr. models

Silicon

Req. eng.,
modeling

Design Space
expl., partitioning

Implementation,
refinement

Synthesis

Place & route

Manufacturing

3/36 SE303b Ulrich Kühne 30/11/2018

Hardware Verification Flow

Specification

Electr. System Lvl.

Transaction Lvl.

Register Transfer Lvl.

Netlist

Layout

Chip

Equiv. Checking

Diagnosis

ATPG

Coverage

Robustness

Debugging

Model Checking

High Lvl. Synth.

Conf. Checking

NLP TechniquesModel Driven Eng.

Performance Evaluation

4/36 SE303b Ulrich Kühne 30/11/2018

Design Gap – Verification Gap

manufacture

design

verify

#
Tr

an
si

st
or

s

Years

5/36 SE303b Ulrich Kühne 30/11/2018

Outline

Introduction
Design and Verification Process

Functional Verification
Circuit Models
Linear Time Logic (LTL)
Computation Tree Logic (CTL)
Model Checking

Hardware Test

6/36 SE303b Ulrich Kühne 30/11/2018

Functional Verification

Dynamic verification (= simulation)
still standard technology
Pentium 4 overall simulated cycles < one minute
at operation speed [Bentley, 2005]
Full coverage is infeasible
Increasing use of formal methods

7/36 SE303b Ulrich Kühne 30/11/2018

Sequential Circuit Model

Memory

I O
n m

k k
δ

λ

Mealy Machine:

M = (I,O,S,S0, δ, λ)

δ : S × I → S
λ : S × I → O
S0 ⊆ S

I = {0,1}n
O = {0,1}m
S = {0,1}k

8/36 SE303b Ulrich Kühne 30/11/2018

From Verilog to Mealy Machine

module count(CLK, EN, CLR,
S0, S1, S2, V);

input CLK, EN, CLR;
output reg S0, S1, S2;
output V;

assign V = S0 & S1 & S2 &
!CLR & EN;

always @(posedge CLK) begin
if (CLR)
{S2, S1, S0} <= 0;

else if (EN)
{S2, S1, S0}

<= {S2, S1, S0} + 1;
end

endmodule // count

000

001 010 011

100

101110111

EN

EN EN

EN

EN

ENEN

EN/V

EN

EN

EN

EN

EN

EN

EN

EN

CLR

9/36 SE303b Ulrich Kühne 30/11/2018

Verification Model

Mealy Machine:

M = (I,O,S,S0, δ, λ)

δ : S × I → S
λ : S × I → O
S0 ⊆ S

000 001 010
EN

EN

CLR

Kripke Structure:

K = (S,S0, δ,V,L)

δ ⊆ S × S transition relation
S0 ⊆ S initial states
V propositional variables
L : S → 2V labelling function

000 | 00

000 | 10

000 | 01

000 | 11

001 | 00

001 | 10

001 | 01

001 | 11

010 | 00

010 | 10

010 | 01

010 | 11

10/36 SE303b Ulrich Kühne 30/11/2018

10000

10001

10101

10100

01101

01100

11111
11110

11010

11011

01000

01001

00111

00110

00010

00011

10011

10010
10110

10111

01110
01111

11001

11000

11100
11101

01011

01010

00001

00000

00100

00101

11/36 SE303b Ulrich Kühne 30/11/2018

Labelling Function

Propositional variables V = {S2,S1,S0,EN,CLR,V}

∅

{EN,CLR}

{S0}

{S1,CLR}

000 | 00

000 | 10

000 | 01

000 | 11

001 | 00

001 | 10

001 | 01

001 | 11

010 | 00

010 | 10

010 | 01

010 | 11

12/36 SE303b Ulrich Kühne 30/11/2018

What do we want to verify?

Safety
Something bad will never happen, e.g.
“The stack pointer will never overflow”
“The traffic lights will never be green at the same time”

Liveness
Something good will eventually happen, e.g.
“Every request will be granted”
“The cache and the main memory will eventually be consistent”

13/36 SE303b Ulrich Kühne 30/11/2018

How to specify such properties?

Temporal logic =
propositional logic + time
Discrete vs. continuous time
Linear time view
Branching time view

CTL∗

LTL CTL

14/36 SE303b Ulrich Kühne 30/11/2018

The Linear Time View

Computation paths

π0: 000 001 010 011 . . .

π1: 000 001 000 001 . . .

π2: 000 001 010 000 . . .

. . .

15/36 SE303b Ulrich Kühne 30/11/2018

Linear Time Logic (LTL)

p holds (in the initial state) p . . . p

p holds in the next state p . . . X p

p holds in the future p . . . F p

p holds globally p p p p . . . G p

p holds until q p p q . . . p U q

16/36 SE303b Ulrich Kühne 30/11/2018

Linear Time Logic (LTL)

An LTL formula over propositional variables V has the form

LTL ::= p, where p ∈ V
| ¬ϕ
| ϕ ∧ ψ
| Xϕ
| Fϕ
| Gϕ
| ϕ Uψ, where ϕ, ψ ∈ LTL.

17/36 SE303b Ulrich Kühne 30/11/2018

Branching Time View

Computation Tree

000

000 001

000 001 000 001 010

.

18/36 SE303b Ulrich Kühne 30/11/2018

Computation Tree Logic (CTL)

Some property p holds
(in the initial state)

p

p

p holds in
some next state

p

EX p

path
quantifier

next
operator

p holds in
all next states

p p

AX p

19/36 SE303b Ulrich Kühne 30/11/2018

Further Modalities

p holds in some
future state

p

EF p

p holds eventually

p

p p

AF p

p holds globally
on some path

p

p

p

EG p

p holds globally
on all paths

p

p p

p p p p

AG p

20/36 SE303b Ulrich Kühne 30/11/2018

Until Modalities

On some path, q holds
until p holds

q

q

p

E(p U q)

On all paths, q holds
until p holds

q

p q

p p

A(p U q)

21/36 SE303b Ulrich Kühne 30/11/2018

Computation Tree Logic (CTL)

A CTL formula over propositional variables V has the form

CTL ::= p, where p ∈ V
| ϕ ∧ ψ | ¬ϕ
| EX ϕ | AX ϕ
| EF ϕ | AF ϕ
| EG ϕ | AG ϕ
| E(ϕ U ψ) | A(ϕ U ψ), where ϕ, ψ ∈ CTL

22/36 SE303b Ulrich Kühne 30/11/2018

What do we want to verify?

Safety
“The stack pointer will never overflow” AG (sp < 4096)

“The traffic lights will never be green at
the same time”

¬EF (tl1 ∧ tl2)

Liveness
“Every request will be granted” AG (req→ AF gnt)

“The cache and the main memory
will eventually be consistent”

AF (memi = cachei)

23/36 SE303b Ulrich Kühne 30/11/2018

Model Checking

Model Checking

Given a Kripke Structure K and a CTL formula ϕ,
check if K |= ϕ.

How do we do this?

1. Compute all states in which ϕ holds:
τ(ϕ) = {s ∈ S | K, s |= ϕ}

2. Check if the initial states are a subset of those states:
S0 \ τ(ϕ) = ∅

24/36 SE303b Ulrich Kühne 30/11/2018

Example

p

p p

p

p p

p

p p

p

p p

p

p p

p

p p

p

p p

p

p p

p

p p

p

p p

s0 s1 s2

s3 s4 s5

τ(p) = {s2, s4, s5}

25/36 SE303b Ulrich Kühne 30/11/2018

Example

p

p p

p

p p

p

p p

p

p p

p

p p

p

p p

p

p p

p

p p

p

p p

p

p p

s0 s1 s2

s3 s4 s5

τ(p) = {s2, s4, s5}
τ(EX p) = {s1, s2, s3, s5}

25/36 SE303b Ulrich Kühne 30/11/2018

Example

p

p p

p

p p

p

p p

p

p p

p

p p

p

p p

p

p p

p

p p

p

p p

p

p p

s0 s1 s2

s3 s4 s5

τ(p) = {s2, s4, s5}
τ(EX p) = {s1, s2, s3, s5}
τ(AX p) = {s1, s2, s5}

25/36 SE303b Ulrich Kühne 30/11/2018

Example

p

p p

p

p p

p

p p

p

p p

p

p p

Expansion rules:

EF ϕ = ϕ ∨ EX EF ϕ

p

p p

p

p p

p

p p

p

p p

p

p p

s0 s1 s2

s3 s4 s5

τ(p) = {s2, s4, s5}
τ(EX p) = {s1, s2, s3, s5}
τ(AX p) = {s1, s2, s5}

τ(EF p) = {s2, s4, s5}
∪ {s1, s3} ∪ {s0}

25/36 SE303b Ulrich Kühne 30/11/2018

Example

p

p p

p

p p

p

p p

p

p p

p

p p

Expansion rules:

EF ϕ = ϕ ∨ EX EF ϕ

p

p p

p

p p

p

p p

AG ϕ = ϕ ∧ AX AG ϕ

p

p p

p

p p

s0 s1 s2

s3 s4 s5

τ(p) = {s2, s4, s5}
τ(EX p) = {s1, s2, s3, s5}
τ(AX p) = {s1, s2, s5}

τ(EF p) = {s2, s4, s5}
∪ {s1, s3} ∪ {s0}

τ(AG p) = {s2, s4, s5} ∩ {s2, s5}

25/36 SE303b Ulrich Kühne 30/11/2018

Fixed Point Algorithm for EF p

..
.

. .
.

p

S0 = p
S1 = p ∪ EX p
S2 = p ∪ EX p ∪ EX EX p
. . .
Sn = p ∪

n⋃
i=1

EXip = Sn−1

⇒ Sn = τ(EF p)

26/36 SE303b Ulrich Kühne 30/11/2018

Fixed Points

Let f : P(S)→ P(S) a set-valued function and Z ⊆ G.

Z is called a fixed point of f if f (Z) = Z
Z is the least fixed point of f it is a fixed point and for all
other fixed points U of f it holds that Z ⊆ U.
Z is the greatest fixed point of f it is a fixed point and for all
other fixed points U of f it holds that U ⊆ Z .

27/36 SE303b Ulrich Kühne 30/11/2018

Fixed Points (2)

A function f : P(S)→ P(S) is called monotone if for all
X ,Y ⊆ S

X ⊆ Y ⇒ f (X) ⊆ f (Y) (1)

Knaster-Tarski Theorem
Let f : P(S)→ P(S) be a monotone function. Then f has a
least and a greatest fixed point.

⋃
n≥1

f n(∅) is the least fixed point of f .⋂
n≥1

f n(S) is the greatest fixed point of f .

28/36 SE303b Ulrich Kühne 30/11/2018

CTL Model Checking

Let K = (S,S0, δ,V,L) be a Kripke structure.

τ(p) = {s ∈ S | p ∈ L(s)}
τ(ϕ ∧ ψ) = τ(ϕ) ∩ τ(ψ)
τ(ϕ ∨ ψ) = τ(ϕ) ∪ τ(ψ)
τ(¬ϕ) = S \ τ(ϕ)
τ(EF ϕ) = lfpZ . τ(ϕ) ∪ EX (Z)
τ(AF ϕ) = lfpZ . τ(ϕ) ∪ AX (Z)
τ(EG ϕ) = gfpZ . τ(ϕ) ∩ EX (Z)
τ(AG ϕ) = gfpZ . τ(ϕ) ∩ AX (Z)
τ(E(ϕ U ψ)) = lfpZ . τ(ψ) ∪ (τ(ϕ) ∩ EX (Z))
τ(A(ϕ U ψ)) = lfpZ . τ(ψ) ∪ (τ(ϕ) ∩ AX (Z))

29/36 SE303b Ulrich Kühne 30/11/2018

Model Checking

Complexity depends heavily
on state space
Need for efficient data structures
State space explosion still a problem
Works for small to medium
(or very regular) systems
Popular tool: NuSMV
[Cimatti et al., 2002]
Ongoing research

000

000 001

000 001 000 001 010

.

30/36 SE303b Ulrich Kühne 30/11/2018

Outline

Introduction
Design and Verification Process

Functional Verification
Circuit Models
Linear Time Logic (LTL)
Computation Tree Logic (CTL)
Model Checking

Hardware Test

31/36 SE303b Ulrich Kühne 30/11/2018

Hardware Design Flow

Specification

Electr. System Lvl.

Transaction Lvl.

Register Transfer Lvl.

Netlist

Layout

Chip

Equiv. Checking

Diagnosis

ATPG

Coverage

Robustness

Debugging

Model Checking

High Lvl. Synth.

Conf. Checking

NLP TechniquesModel Driven Eng.

Performance Evaluation

32/36 SE303b Ulrich Kühne 30/11/2018

Hardware Verification vs Test

Verification

Detect design bugs
Extract properties from
requirements
Applied on RTL code
High manual effort

Test

Detect physical defects
Test generation from netlist
according to fault model
Applied on fabricated chips
High automation

33/36 SE303b Ulrich Kühne 30/11/2018

Physical Defects

[Source: IEEE Spectrum “The Art of Failure”]

34/36 SE303b Ulrich Kühne 30/11/2018

Stuck-at Fault Model

a
b

c

d

sa-1

sa-0

a b c d
0 0 0 0 0
0 0 0/1
0 0 1 0
0 1 0 11/0
0 1 1 0
1 0 0 11/0
1 0 1 0
1 1 0 11/0
1 1 1 0

〈000〉 is a test vector for the shown stuck-at-1 fault
{〈010〉, 〈100〉, 〈110〉} are test vectors for the stuck-at-0 fault

35/36 SE303b Ulrich Kühne 30/11/2018

Automatic Test Pattern Generation

ATPG

Create a list of all possible
(stuck-at) faults
For each fault:

• Find a test pattern
• Drop all other faults

detected by this pattern

Untestable faults?
Hard to test faults?
Sequential tests?
Test compression?

36/36 SE303b Ulrich Kühne 30/11/2018

References I

Bentley, B. (2005).
Validating a modern microprocessor.
In Etessami, K. and Rajamani, S., editors, Computer Aided Verification, volume
3576 of Lecture Notes in Computer Science, pages 2–4. Springer Berlin
Heidelberg.

Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., and Tacchella, A. (2002).
NuSMV Version 2: An OpenSource Tool for Symbolic Model Checking.
In Proc. International Conference on Computer-Aided Verification (CAV 2002),
volume 2404 of LNCS, Copenhagen, Denmark. Springer.

37/36 SE303b Ulrich Kühne 30/11/2018

	Introduction
	Design and Verification Process

	Functional Verification
	Circuit Models
	Linear Time Logic (LTL)
	Computation Tree Logic (CTL)
	Model Checking

	Hardware Test
	Appendix

