
Le composeur d’images . . .

Composition par tuiles, liste graphique,
pipeline graphique

Yves Mathieu

Plan

Introduction

Transformations

Traitement par tuiles

Liste graphique

Le pipeline graphique

Conclusion et conseils

2/37 ELEC342 Yves Mathieu

Le composeur vidéo
Caractéristiques

Composition d’objets (vidéo, icones, curseurs),temps réel
Temps presque réel : transformation des objets
Filtrage bilinéaire (à la demande)
Opacité réglable (à la demande)

3/37 ELEC342 Yves Mathieu

Le programme de référence "appli.c"
Positionner un objet

Une version "logicielle" des traitements à executer
Base pour l’application devant tourner sur le CPU
Composition confinée dans "composeur.c"

// On "place" les objets dans la scène
// rappel des appels de fonction:
// obj_place_corners(obj_num, x_top_left,y_top_left, x_bottom_right, y_bottom_right)
// obj_place(obj_num, x_top_left,y_top_left, zoom_factor)

// on place la texture correspondant à la video
obj_place_corners(0,-100,300,700,100) ;
// on place le logo TPT avec interpolation
obj_place(1,300,100,to_LG_fp32(2.0)) ;
// on place le logo TPT sans interpolation
obj_place(2,120,300,to_LG_fp32(1.0)) ;
// on place le curseur avec interpolation et transparence
obj_place(4,50,100,to_LG_fp32(4.0)) ;
// on place le curseur sans interpolation
obj_place(3,400,300,to_LG_fp32(4.5)) ;
// On met à jour les listes chaînées dans les tuiles
maj_scene() ;
// On lance l’opération de composition
composeur(p_scene) ;

4/37 ELEC342 Yves Mathieu

Le Soc de base
Caractéristiques

Insertion d’un bloc entrée vidéo
Insertion d’un bloc sortie vidéo
Insertion d’un composeur d’images

5/37 ELEC342 Yves Mathieu

Plan

Introduction

Transformations

Traitement par tuiles

Liste graphique

Le pipeline graphique

Conclusion et conseils

6/37 ELEC342 Yves Mathieu

La transformation directe
Ce que spécifie l’application

Texture Image

Texture

Un objet est une texture rectangulaire
L’application spécifie la transformation affine de l’espace
"texture" vers l’espace "image"

7/37 ELEC342 Yves Mathieu

La transformation directe
Exemple : zoom ×2

Difficilement utilisable pour le rendu effectif : les pixels sont
projetés à des positions arbitraires dans l’image

8/37 ELEC342 Yves Mathieu

La transformation inverse
Ce que font les composeurs d’images

Texture

ImageImage

L’image est parcourue ligne à ligne, pixel à pixel
La transformation affine inverse donne la position dans la
texture du pixel

9/37 ELEC342 Yves Mathieu

La transformation inverse
Exemple : zoom ×2

On échantillonne le pixel le plus proche dans la texture
... ou on filtre un voisinage de pixels dans la texture

10/37 ELEC342 Yves Mathieu

Plan

Introduction

Transformations

Traitement par tuiles

Liste graphique

Le pipeline graphique

Conclusion et conseils

11/37 ELEC342 Yves Mathieu

La composition d’images
Pseudo algorithme

Initialiser l’image a la couleur de fond dans la mémoire externe
Pour chaque texture ayant une intersection non vide avec l’image:

Lire l’image courante
Lire la texture
Composer la texture avec l’image courante
Ecrire l’image courante

FinPour

Problème 1 : 2 lectures + 1 ecriture en mémoire par pixel
Problème 2 : La SDRAM n’est efficace que par paquets
Problème 3 : 4 pixels à lire pour l’interpolation bilinéaire
Problème 4 : Initialisation : écriture complète d’une image
Problème 5 : Cache statistique inefficace (taux de
réutilisation, taille des textures)

12/37 ELEC342 Yves Mathieu

La composition d’images par tuiles
Pseudo algorithme

Découper l’image en petits blocs carrés (tuiles) de 32x32
pixels

Pour chaque tuile de l’image
Initialiser une tuile avec la couleur de fond en mémoire locale
Pour chaque texture interceptant la tuile courante

Lire la portion de texture interceptant la tuile
Composer la portion de texture avec la tuile

FinPour
Sauver la tuile en mémoire externe

FinPour

Gain 1 : une lecture en mémoire par pixel
Gain 2 : Une seule écriture finale
Gain 3 : Pixels pour l’interpolation en mémoire locale
Gain 4 : Initialisation en mémoire locale.

13/37 ELEC342 Yves Mathieu

15/37 ELEC342 Yves Mathieu

Plan

Introduction

Transformations

Traitement par tuiles

Liste graphique

Le pipeline graphique

Conclusion et conseils

16/37 ELEC342 Yves Mathieu

Principes de la liste graphique
Partitionnement Logiciel / Matériel

Le Composeur est un esclave du micro-processeur
Le Composeur est accède à une structure de données
appelée "liste graphique"
La liste graphique contient toutes les informations
nécessaires au traitement de toutes les tuiles de l’image.
La liste graphique est générée par le micro-processeur

17/37 ELEC342 Yves Mathieu

Principes de la liste graphique
Partitionnement Logiciel / Matériel

Le Composeur ne communique qu’avec la mémoire
SDRAM qui contient la liste graphique, les textures et
l’image finale
Chaque tuile est traitée de manière indépendante des
autres tuiles.
Le micro-processeur ordonne au Composeur de démarrer
le traitement d’une liste graphique
Le Composeur informe le micro-processeur de la fin du
traitement

18/37 ELEC342 Yves Mathieu

Structures de données
La scène

Le micro-processeur transmet au Composeur un pointeur
en mémoire vers un descripteur de "scène"

typedef struct {
LGTuile_t* p_liste_de_tuiles ; // pointeur vers la liste de tuiles
LGPixel_t* p_image; // Addresse de l’image dans la mémoire
unsigned short largeur ; // largeur de l’image
LGPixel_t ng_fond; // le niveau de gris du fond par défaut
unsigned char vide[1]; // bourrage (alignement sur 32 bits)

} LGScene_t;

19/37 ELEC342 Yves Mathieu

Structures de données
La liste de de descripteurs de tuiles

Liste chaînée des tuiles.
Le processeur peut limiter le renouvellement à un nombre
arbitraire de tuiles.
L’ordre de traitement est quelconque

typedef struct LGTuile_struct LGTuile_t ;
struct LGTuile_struct {

LGTuile_t* p_tuile_suivante; // pointeur vers la tuile suivante
LGSurface_t* p_liste_de_surfaces; // pointeur vers la liste des surfaces
unsigned char row ; // rangée de la tuile dans la scène
unsigned char col ; // la colonne de la tuile dans la scène
unsigned char vide[2]; // bourrage

} ;

20/37 ELEC342 Yves Mathieu

Structures de données
Une "surface"

Intersection entre un objet et la tuile courante (dans
l’espace de la texture)
Paramètres nécessaires à la récupération de la portion de
texture correspondante

typedef struct LGSurface_struct LGSurface_t ;
struct LGSurface_struct {

LGSurface_t* p_surface_suivante; // pointeur vers la surface suivante
LGObj_t* p_obj; // pointer vers l’objet correspondant
LGAttributs_t* p_attributs; // pointeur vers les attributs de l’objet
LG_fp16 ox ; // abcisse dans la texture locale de la

// l’image du point (0,0) de la tuile
LG_fp16 oy ; // ordonnée dans la texture locale de la

// l’image du point (0,0) de la tuile
signed short x_texture ; // abcisse de la boite entourante

// de la surface dans la texture
signed short y_texture ; // ordonnée de la boite entourante

// de la surface dans la texture
signed short w_texture ; // largeur de la boite entourante de la

// surface dans la texture
signed short h_texture ; // hauteur de la boite entourante de la

// surface dans la texture
} ;

21/37 ELEC342 Yves Mathieu

22/37 ELEC342 Yves Mathieu

23/37 ELEC342 Yves Mathieu

Structures de données
Un objet

Un objet fait référence à une texture et éventuellement un
masque

typedef struct {
LGPixel_t * p_texture ; // addresse de la texture associée
unsigned int * p_masque ; // addresse du masque binaire de forme
unsigned short largeur ; // largeur de la texture en pixels
unsigned short hauteur ; // hauteur de la texture en pixels

} LGObj_t;

24/37 ELEC342 Yves Mathieu

Structures de données
Attributs d’un objet

Les attributs concernent la transformation de la texture et
son mode de rendu

/** @brief descripteur d’attributs */
typedef struct {

// coodonnées du point (0,0) de l’image après
// transformée inverse

LG_fp32 x0 ; // abcisse dans la texture globale
LG_fp32 y0 ; // ordonnée dans la texture globale

// coefficients de la transformée inverse
LG_fp32 a_x ; // pour l’abcisse selon l’indice i
LG_fp32 b_x ; // pour l’abcisse selon l’indice j
LG_fp32 a_y ; // pour l’ordonnée selon l’indice i
LG_fp32 b_y ; // pour l’ordonnée selon l’indice j
unsigned char alpha ; // Opacité de l’objet
unsigned char interpolation ;// choix de l’interpolation
unsigned char vide[2]; // bourrage

} LGAttributs_t;

25/37 ELEC342 Yves Mathieu

26/37 ELEC342 Yves Mathieu

26/37 ELEC342 Yves Mathieu

Types de données
Calculs en virgule fixe

Coordonnées et coefficients affines
Coordonnées 0,0 en haut/gauche des textures et images.
Eviter les calculs flottants
Deux représentations "implicites" définies par des types

// Un nombre en virgule fixe sur 16 bits
// et 8 bits de partie fractionnaire */
typedef signed short LG_fp16 ;

// Un nombre en virgule fixe sur 32 bits
// et 16 bits de partie fractionnaire */
typedef signed int LG_fp32 ;

// Un pixel
typedef unsigned char LGPixel_t ;

27/37 ELEC342 Yves Mathieu

Types de données
Pixels, textures et masques

Pixels codés sur 8 bits, 4 pixels par mot.
Masque binaire stocké à raison de 32 pixels par mot.
Largeurs de textures multiples de 32 pixels.
Stockage linéaire de la texture en mémoire.

// Un nombre en virgule fixe sur 16 bits
// et 8 bits de partie fractionnaire */
typedef signed short LG_fp16 ;

// Un nombre en virgule fixe sur 32 bits
// et 16 bits de partie fractionnaire */
typedef signed int LG_fp32 ;

// Un pixel
typedef unsigned char LGPixel_t ;

28/37 ELEC342 Yves Mathieu

Plan

Introduction

Transformations

Traitement par tuiles

Liste graphique

Le pipeline graphique

Conclusion et conseils

29/37 ELEC342 Yves Mathieu

Considérations générales

Nous voulons du temps réél
Premier cas : liste graphique statique, flux video
Deuxième cas : liste graphique dynamique, flux video
Temps d’accès aux données (lecture / écriture)
Temps de traitement
granularité du pipeline

30/37 ELEC342 Yves Mathieu

Un pipeline simpliste
et faux...

Les images sont générées à 60Hz
Le temps total dépend du nombre d’entrées sorties sur la
SDRAM
Le temps total dépend du cumul des temps (IO,CPU,
Composition)
Trop simpliste : les images vidéo doivent être reçues
et générées à rythme régulier

31/37 ELEC342 Yves Mathieu

Un pipeline simple

Paralléliser les IO sur la SDRAM
La SDRAM doit pouvoir contenir 3 images
Si on ne tient pas le temps réel :

• Répéter les images affichées
• Sauter des images entrantes

32/37 ELEC342 Yves Mathieu

Un pipeline complet

Paralléliser les mise à jour de listes graphiques avec la
composition
La SDRAM doit pouvoir contenir 4 images
La SDRAM doit contenir 2 listes graphiques

33/37 ELEC342 Yves Mathieu

Pipeline interne du composeur

Succession de lectures / traitements
Peuvent être parallélisés

34/37 ELEC342 Yves Mathieu

Pipeline interne du composeur
Parallélisation I/O et calculs

Paralléliser les I/O avec les calculs
Pipeline possible de "surfaces" ou de "tuiles"
Nécessite de dupliquer les mémoires locales de surfaces
ou de tuiles

35/37 ELEC342 Yves Mathieu

Plan

Introduction

Transformations

Traitement par tuiles

Liste graphique

Le pipeline graphique

Conclusion et conseils

36/37 ELEC342 Yves Mathieu

Conclusions

Estimer quantités de données transférées pour chaque
image
Estimer les débits sur les bus
Estimer les temps de calcul nécessaires
(micro-processeur, Composeur)
Choisir un niveau de pipeline raisonnable cohérent avec
ces estimations
En déduire une architecture générale, avec une estimation
des blocs mémoires nécessaires et de leur taille.

37/37 ELEC342 Yves Mathieu

	 Introduction
	 Transformations
	 Traitement par tuiles
	 Liste graphique
	 Le pipeline graphique
	 Conclusion et conseils

