Countermeasures Against
Side-Channel Attacks
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B Side-channels depend on the implementation of an
algorithm (hardware or software)

B Side-channels cannot be observed on the algorithmic
(mathematical, cryptanalytic) level.

B The implementation may leak sensitive information
(secrets) via side-channels, even if those secrets never
appear on the input/output interface.
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I Making Attacks Difficult

Pseudo countermeasures

B These countermeasures make attacks difficult
(but not impossible)
® Examples

e Noise generator
e Dis-aligning the traces

— Variable clock
— Insertion of dummy operations
B But: There are techniques to remove noise and jitter from
the traces
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Countermeasures
Different levels of abstraction

Algorithm

m Algorithm / protocol level /

®m Software / binary level ]

Software

®m Register Transfer Level (RTL) ]
m Netlist / physical level
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N B Protocol

Key rotation

m |f 200 operations are needed to recover the key, it is
sufficient to replace the key after 100 operations

B This demands precise knowledge on existing attacks
B /n extremis, we can change the key after each operation
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N Masking
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N Masking

Masking the secret with the help of a random variable
Original function: R = f(S), where S is the secret

Masked function: S'=Sa@& M, R' = g(S'), M’ = h(M) such
that R = R’ & M’ (Boolean masking)

M (the mask) is a fresh random variable for each operation
Need to take care never to manipulate S directly
If the attacker finds S’, she does not learn anything about S

To find S, she needs to find both S’ and M’ simultaneously
(second order attack)
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I Masking

Example

Galois Field Arithmetic

B Given an n bit variable X

B X can be interpreted over the finite field GF(2")

B Addition over GF(2") corresponds to bit-wise XOR

B Subtraction is identical to addition: X + X =0

® Multiplication is defined modulo an irreducible polynomial g
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I Masking

Example (continued)
Consider a simple affine function over GF(2")
f(X)=a-X+b
Using a Boolean mask M, this becomes

fX+M)y=a-X+a-M+b
W—/
correction term
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I Masking

Example (continued)
Consider a simple affine function over GF(2")
f(X)=a-X+b
Using a Boolean mask M, this becomes

fX+M)y=a-X+a-M+b
H/_/
correction term

Since each element is its additive inverse, we have

gM)y=a-M
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I Masking

Higher-order masking

B To protect a system against higher-order attacks, multiple
shares can be used

® Example: Threshold Implementation (Tl) [4]
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I Threshold Implementation

Secret sharing

A variable x is said to be split into n shares x; if
n
X = @ Xi
i=1

In a perfect (n, n) secret sharing scheme, to recover x, an
attacker needs to know all n shares, i.e. n — 1 shares do not
reveal any information on x.
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I Threshold Implementation

Example: Three shares

Given secret variable x and two uniform random variables ry
and r., we can define a (3, 3) secret sharing as follows:

x

X1 =XDn
Xo =XDr
X3 =XDnrnorn,

NN X =N =X=1
- 4 00— =~ 0ol
- O =2 0Ol—= 0O = o
[ I = N N = =1
4 00O =0 = = oX

OO0 A a|laa00O

and we have x = Xy ® Xo @ X3.
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Threshold Implementation
Shared functions

Given a function z = f(x, y,...), it can be split into n shares

zy=hH(x1,y1,...)
Zy = f2(727E7)

Zn - fn(Xin,W, e )7

where each sub-function takes as inputs subsets
X; € {xq,...,Xxn} of the input shares.
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I Threshold Implementation

Conditions for a Tl implementation

1. Correctness: The sum of all shared functions is equal to
the original function f = @7, f;

2. Non-completeness: Each shared function is independent
of at least one share of each input variable.

3. Uniformity: For any input value x, the corresponding output
shares zy, ..., z, are uniformly distributed for z = f(x)
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I Threshold Implementation

Example: Boolean AND

Consider multiplication in GF(2), i.e. Boolean AND:

fx,y)=x-y

For n = 3, a three share implementation of 7 is given by

2y = fi(Xo, X3, Y2, ¥3) = X2 - Yo B Xo - Y3 D X3 - o
Zp = fo(X1,X3,Y1,¥3) = X3 - Y3 ® Xy - Y3 D X3 - ¥4
73 = (X1, X0, Y1, Y2) = X1 - Y1 D X1 - Yo D Xo - Y1
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I Threshold Implementation

Example: Non-completeness

= The implementation is non-complete
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I Threshold Implementation

Example: Uniformity

B For each (un-shared) input value, find the corresponding
valid input shares

e Valid shares for x = 0:
(X17X27X3) € {(anao)a (07171)a (1707 1)7(171a0)}
e Valid shares for x = 1:
(x1, X2, X3) € {(0,0,1),(0,1,0),(1,0,0),(1,1,1)}
B For each combination of (un-shared) inputs, compute the
distribution of the corresponding output shares
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I Threshold Implementation

Example: Uniformity

Compute the uniformity table for our three share AND gate:
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I Threshold Implementation

Example: Uniformity

Compute the uniformity table for our three share AND gate:

number of occurrences of output share (z1, 2, z3)

(x,y) (000) (011) (101) (110) (001) (010) (100) (111)
(0,00 7 3 3 3 0 0 0 0
(0,1 7 3 3 3 0 0 0 0
(1,00 7 3 3 3 0 0 0 0
(1,1) o0 0 0 0 5 5 5 1
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I Threshold Implementation

Example: Uniformity

Compute the uniformity table for our three share AND gate:

number of occurrences of output share (z1, 2, z3)

(x,y) (000) (011) (101) (110) (001) (010) (100) (111)
(0,00 7 3 3 3 0 0 0 0
(0,1 7 3 3 3 0 0 0 0
(1,00 7 3 3 3 0 0 0 0
(1,1) o0 0 0 0 5 5 5 1

® QOur implementation is not uniform @

B [t turns out that there is no three share Threshold
Implementation for any non-linear two-input function [5]
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I Threshold Implementation

Example: Boolean Equality (XNOR)

Consider equality in GF(2), i.e. Boolean XNOR:

fx.y)=x=y
For n = 3, a three share implementation of f is given by

zy = fi(Xe,¥2) =X © Yo @ 1
Zp = fp(X3,Y3) = X3 y3 @ 1
73 =MR(x1,y1) =X D y1 &1
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I Threshold Implementation

Example: Boolean Equality (XNOR)

Consider equality in GF(2), i.e. Boolean XNOR:
fx.y)=x=y
For n = 3, a three share implementation of f is given by

zy = fi(Xe,¥2) =X © Yo @ 1
Zp = fp(X3,Y3) = X3 y3 @ 1
73 =MR(x1,y1) =X D y1 &1

m This Tl is correct, non-complete, and uniform! ©
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I Threshold Implementation

® Three share Tl exist for various non-linear functions
e For example multiplication in GF(22)
B Finding uniform sharings is non-trivial

e Add correction terms to an even number of shares
e Check for uniformity
e Try again...

® Decomposition for higher degree non-linear functions
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Threshold Implementation
(De-)composition

®m Rewrite function f as composition g o h
®m Build Tl for (simpler) component functions g and h
B Add registers

i

Figure: Three share Tl for Present S-box [6]
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I Masking

Summary

® (Provable) effective i . '

¢ Algorithm |
countermeasure . -
B Can be generalized against
higher order attacks SR

m Applicable on different levels of -
abstraction

B Needs a reliable source of :
randomness IR -
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I unrolled Implementation [1]

B |[n CMOS circuits, the easiest to exploit leakage is due to
register updates

B Remove registers to reduce information leakage

B This corresponds to unrolling partially or completely the
data path of an implementation
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B Example: PRESENT [2]

—--{> plaintext  }---> K |

first round substitution layer [ update
permutation layer

L
~---1>  statey LDk |
l

rounds 2...31

,,J+> statesq %””DKM ‘
last round GB‘—‘

----{> ciphertext |} ---------
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I Example: PRESENT [2]

Substitution and permutation layer

ki

BEHE G HE B EEHEEE

Ki+1
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I Example: PRESENT [2]

Substitution and permutation layer

ki

BEHE G HE B EEHEEE

B First round attack: 4 bits of Kj

Ki+1
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I Example: PRESENT [2]

Substitution and permutation layer

ki

BEEEHEEHEEE B

B First round attack: 4 bits of Kj

B Second round attack: 4 bits of K> + 16 bits of Kj
= 220 possible key hypotheses

Ki+1
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N Balancing

B Try to hide sensitive information

B Make the behavior of the system constant with respect to
the considered side-channel
e Constant computation time
e ldentical power consumption

®m Can be very tricky to achieve (cf localized EM radiation)
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I Balancing

Example: RSA
Inputs : M, K
R=1;8S=M;

fori=|K|—1;i>0;i——do

/* Balanced branching */

if Ki==1 then
R=RxS;5=8%;
else
S=SxR;R=R?;
end if
end for
Return R = M¥;

B Modular exponent calculation using Montgomery ladder
exponentiation algorithm
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I Balancing

Dual-Rail Logic with Precharge (DPL) [7, 3]

B Each Boolean variable a is represented by two signals

ar and ar
ar ar state a
0 O NULLO -
0 1 VALIDO O
1 0 VALID1 1
1 1 NULL1 -

® A DPL function (st, sg) = f((ar, ar), (br, bg)) must satisfy
the following conditions:
e If aand b are NULLO, sis NULLO
e Ifaand b are VALID, sis VALID
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I Balancing

Dual-Rail Logic with Precharge (DPL)

® Example of Boolean AND function:
e St =ar- bT
® SF=ar+br
® Precharge: The computation alternates between NULLO
and valid phases
B This ensures that we can only observe the following
transitions:
* (0,0) = (0,1) —(0,0)
* (0,0) = (1,0) — (0,0)
B Thus, at each transition, exactly one signal changes its
value, leading to identical power consumption
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Balancing
Problems

® Early evaluation: If f(VALID, NULL) = VALID, information
can leak if the input signals arrive at different times

B The frue and false networks must be close together to
avoid timing and power consumption variance
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I Conclusion

® Protections at different
abstraction layers (protocol to
physical)

B Security is always a trade-off

B Arms race between protections
and novel attacks

m Defender needs to know
state-of-the-art attacks
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