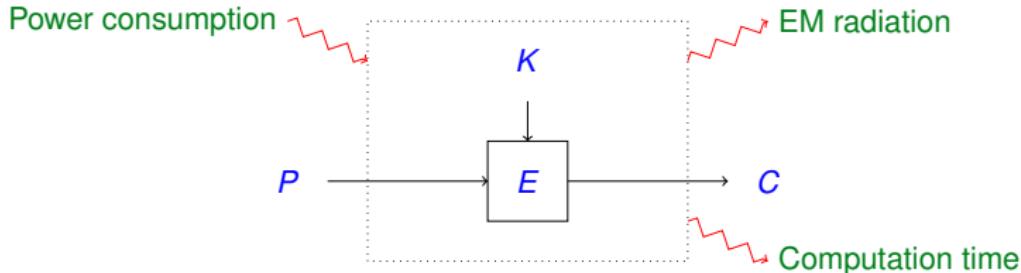


Countermeasures Against Side-Channel Attacks

Ulrich Kühne

ulrich.kuhne@telecom-paris.fr
2019–2020

Side-Channel Attacks



- Side-channels depend on the **implementation** of an algorithm (hardware or software)
- Side-channels cannot be observed on the algorithmic (mathematical, cryptanalytic) level.
- The implementation may leak **sensitive information** (secrets) via side-channels, even if those secrets never appear on the input/output interface.

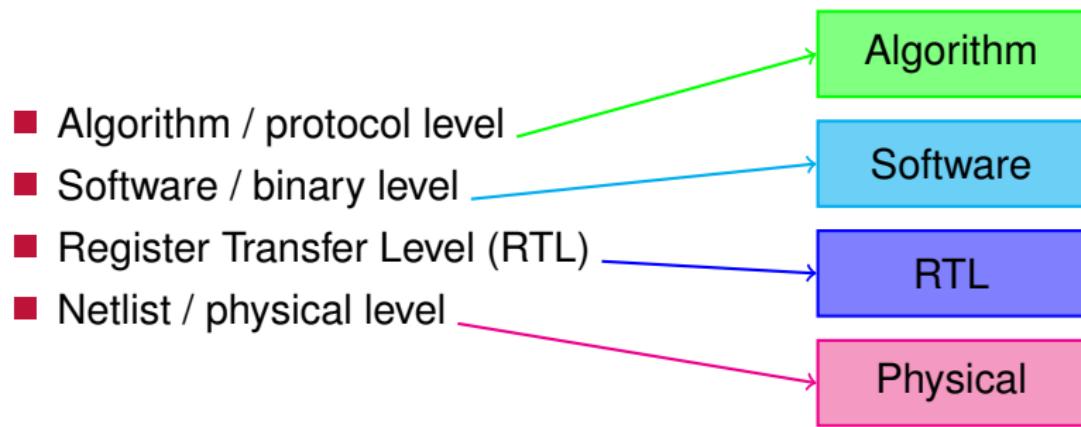
Making Attacks Difficult

Pseudo countermeasures

- These countermeasures make attacks difficult (but not impossible)
- Examples
 - Noise generator
 - Dis-aligning the traces
 - Variable clock
 - Insertion of dummy operations
- **But:** There are techniques to remove noise and jitter from the traces

Countermeasures

Different levels of abstraction

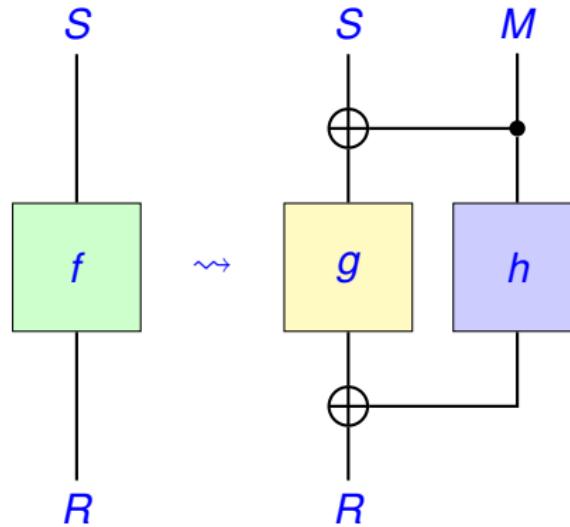


Protocol

Key rotation

- If 200 operations are needed to recover the key, it is sufficient to replace the key after 100 operations
- This demands precise knowledge on existing attacks
- *In extremis*, we can change the key after each operation

Masking



Masking

- Masking the secret with the help of a **random** variable
- Original function: $R = f(S)$, where S is the secret
- Masked function: $S' = S \oplus M$, $R' = g(S')$, $M' = h(M)$ such that $R = R' \oplus M'$ (Boolean masking)
- M (the mask) is a fresh random variable for each operation
- Need to take care never to manipulate S directly
- If the attacker finds S' , she does not learn anything about S
- To find S , she needs to find both S' and M' simultaneously (**second order attack**)

Galois Field Arithmetic

- Given an n bit variable X
- X can be interpreted over the finite field $GF(2^n)$
- Addition over $GF(2^n)$ corresponds to bit-wise XOR
- Subtraction is identical to addition: $X + X = 0$
- Multiplication is defined modulo an irreducible polynomial g

Masking

Example (continued)

Consider a simple affine function over $GF(2^n)$

$$f(X) = a \cdot X + b$$

Using a Boolean mask M , this becomes

$$f(X + M) = a \cdot X + \underbrace{a \cdot M}_{\text{correction term}} + b$$

Masking

Example (continued)

Consider a simple affine function over $GF(2^n)$

$$f(X) = a \cdot X + b$$

Using a Boolean mask M , this becomes

$$f(X + M) = a \cdot X + \underbrace{a \cdot M}_{\text{correction term}} + b$$

Since each element is its additive inverse, we have

$$g(M) = a \cdot M$$

Masking

Higher-order masking

- To protect a system against higher-order attacks, multiple shares can be used
- Example: *Threshold Implementation* (TI) [4]

Threshold Implementation

Secret sharing

A variable x is said to be split into n shares x_i if

$$x = \bigoplus_{i=1}^n x_i$$

In a perfect (n, n) secret sharing scheme, to recover x , an attacker needs to know all n shares, i.e. $n - 1$ shares do not reveal any information on x .

Threshold Implementation

Example: Three shares

Given secret variable x and two uniform random variables r_1 and r_2 , we can define a $(3, 3)$ secret sharing as follows:

$$\begin{aligned}x_1 &= x \oplus r_1 \\x_2 &= x \oplus r_2 \\x_3 &= x \oplus r_1 \oplus r_2,\end{aligned}$$

x	r_1	r_2	x_1	x_2	x_3
0	0	0	0	0	0
0	0	1	0	1	1
0	1	0	1	0	1
0	1	1	1	1	0
1	0	0	1	1	1
1	0	1	1	0	0
1	1	0	0	1	0
1	1	1	0	0	1

and we have $x = x_1 \oplus x_2 \oplus x_3$.

Threshold Implementation

Shared functions

Given a function $z = f(x, y, \dots)$, it can be split into n shares

$$z_1 = f_1(\bar{x}_1, \bar{y}_1, \dots)$$

$$z_2 = f_2(\bar{x}_2, \bar{y}_2, \dots)$$

...

$$z_n = f_n(\bar{x}_n, \bar{y}_n, \dots),$$

where each sub-function takes as inputs subsets
 $\bar{x}_i \subseteq \{x_1, \dots, x_n\}$ of the input shares.

Threshold Implementation

Conditions for a TI implementation

1. **Correctness:** The sum of all shared functions is equal to the original function $f = \bigoplus_{i=1}^n f_i$.
2. **Non-completeness:** Each shared function is independent of at least one share of each input variable.
3. **Uniformity:** For any input value x , the corresponding output shares z_1, \dots, z_n are uniformly distributed for $z = f(x)$

Threshold Implementation

Example: Boolean AND

Consider multiplication in $GF(2)$, i.e. Boolean AND:

$$f(x, y) = x \cdot y$$

For $n = 3$, a three share implementation of f is given by

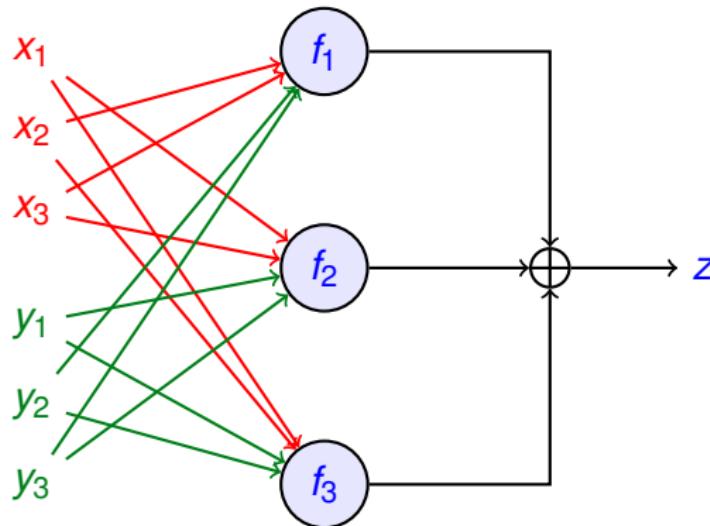
$$z_1 = f_1(x_2, x_3, y_2, y_3) = x_2 \cdot y_2 \oplus x_2 \cdot y_3 \oplus x_3 \cdot y_2$$

$$z_2 = f_2(x_1, x_3, y_1, y_3) = x_3 \cdot y_3 \oplus x_1 \cdot y_3 \oplus x_3 \cdot y_1$$

$$z_3 = f_3(x_1, x_2, y_1, y_2) = x_1 \cdot y_1 \oplus x_1 \cdot y_2 \oplus x_2 \cdot y_1$$

Threshold Implementation

Example: Non-completeness



⇒ The implementation is **non-complete**

Threshold Implementation

Example: Uniformity

- For each (un-shared) input value, find the corresponding valid **input** shares
 - Valid shares for $x = 0$:
 $(x_1, x_2, x_3) \in \{(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0)\}$
 - Valid shares for $x = 1$:
 $(x_1, x_2, x_3) \in \{(0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 1, 1)\}$
- For each combination of (un-shared) inputs, compute the distribution of the corresponding **output** shares

Threshold Implementation

Example: Uniformity

Compute the uniformity table for our three share AND gate:

Threshold Implementation

Example: Uniformity

Compute the uniformity table for our three share AND gate:

(x, y)	number of occurrences of output share (z_1, z_2, z_3)							
	(000)	(011)	(101)	(110)	(001)	(010)	(100)	(111)
(0, 0)	7	3	3	3	0	0	0	0
(0, 1)	7	3	3	3	0	0	0	0
(1, 0)	7	3	3	3	0	0	0	0
(1, 1)	0	0	0	0	5	5	5	1

Threshold Implementation

Example: Uniformity

Compute the uniformity table for our three share AND gate:

(x, y)	number of occurrences of output share (z_1, z_2, z_3)							
	(000)	(011)	(101)	(110)	(001)	(010)	(100)	(111)
(0, 0)	7	3	3	3	0	0	0	0
(0, 1)	7	3	3	3	0	0	0	0
(1, 0)	7	3	3	3	0	0	0	0
(1, 1)	0	0	0	0	5	5	5	1

- Our implementation is **not uniform** 😞
- It turns out that there is no three share Threshold Implementation for any non-linear two-input function [5]

Threshold Implementation

Example: Boolean Equality (XNOR)

Consider equality in $GF(2)$, i.e. Boolean XNOR:

$$f(x, y) = x \equiv y$$

For $n = 3$, a three share implementation of f is given by

$$z_1 = f_1(x_2, y_2) = x_2 \oplus y_2 \oplus 1$$

$$z_2 = f_2(x_3, y_3) = x_3 \oplus y_3 \oplus 1$$

$$z_3 = f_3(x_1, y_1) = x_1 \oplus y_1 \oplus 1$$

Threshold Implementation

Example: Boolean Equality (XNOR)

Consider equality in $GF(2)$, i.e. Boolean XNOR:

$$f(x, y) = x \equiv y$$

For $n = 3$, a three share implementation of f is given by

$$z_1 = f_1(x_2, y_2) = x_2 \oplus y_2 \oplus 1$$

$$z_2 = f_2(x_3, y_3) = x_3 \oplus y_3 \oplus 1$$

$$z_3 = f_3(x_1, y_1) = x_1 \oplus y_1 \oplus 1$$

- This TI is correct, non-complete, and uniform! 😊

Threshold Implementation

- Three share TI exist for various non-linear functions
 - For example multiplication in $GF(2^2)$
- Finding uniform sharings is non-trivial
 - Add correction terms to an even number of shares
 - Check for uniformity
 - Try again...
- Decomposition for higher degree non-linear functions

Threshold Implementation

(De-)composition

- Rewrite function f as composition $g \circ h$
- Build TI for (simpler) component functions g and h
- Add registers

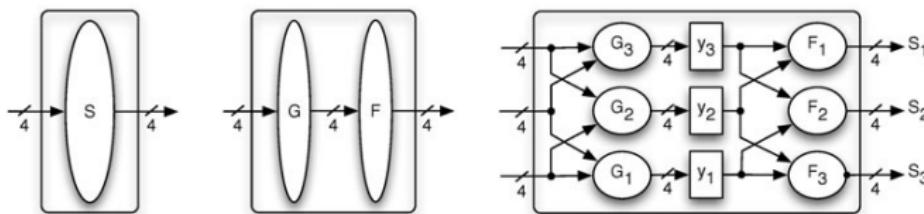


Figure: Three share TI for Present S-box [6]

Masking

Summary

- (Provable) effective countermeasure
- Can be generalized against higher order attacks
- Applicable on different levels of abstraction
- Needs a reliable source of randomness

Algorithm

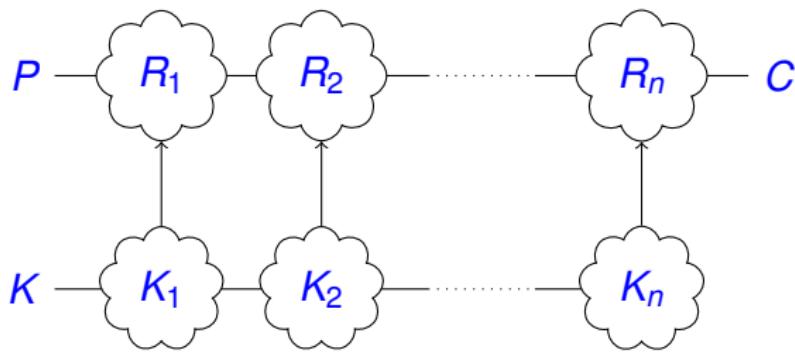
Software

RTL

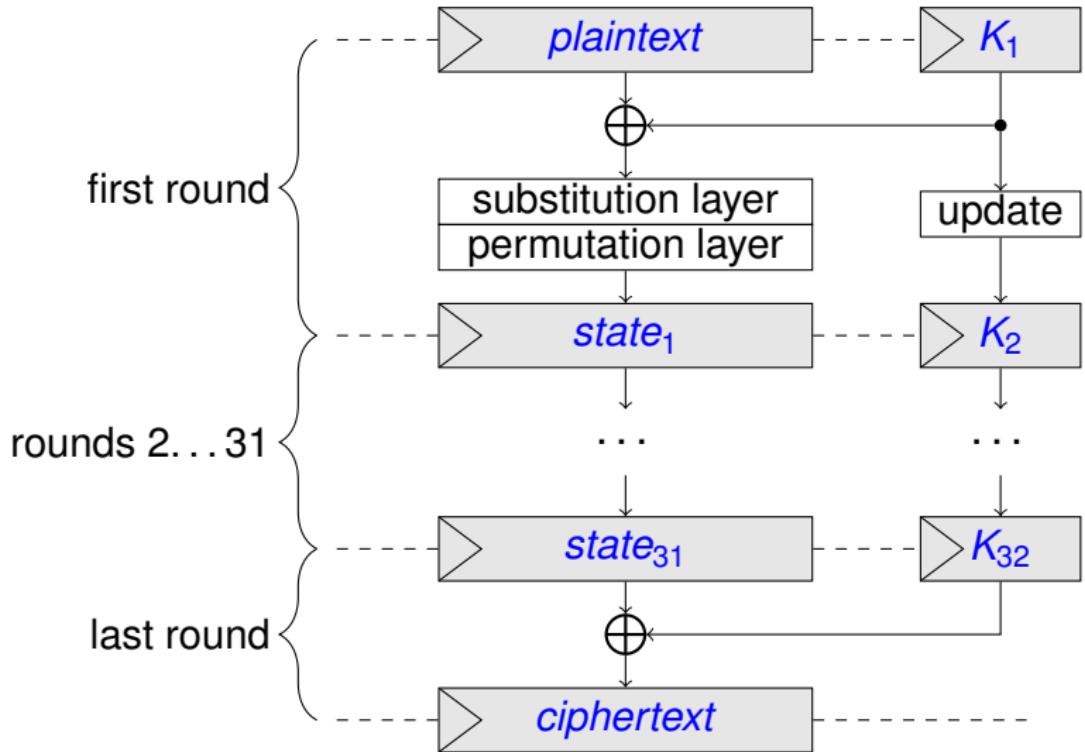
Physical

Unrolled Implementation [1]

- In CMOS circuits, the easiest to exploit leakage is due to register updates
- **Remove registers** to reduce information leakage
- This corresponds to **unrolling** partially or completely the data path of an implementation

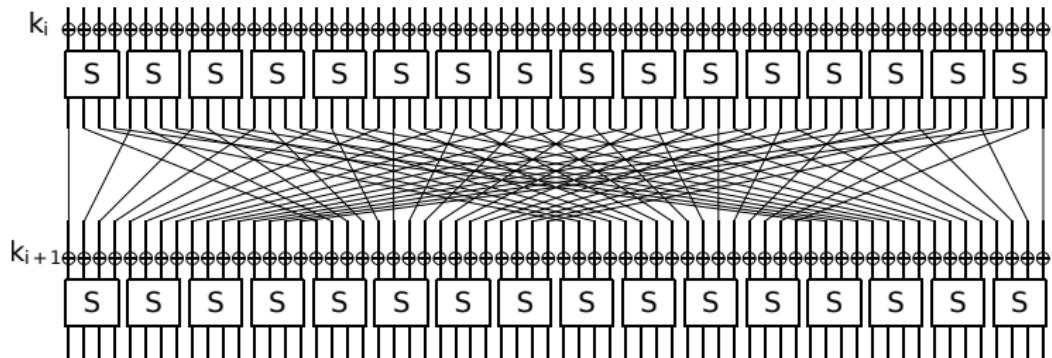


Example: PRESENT [2]



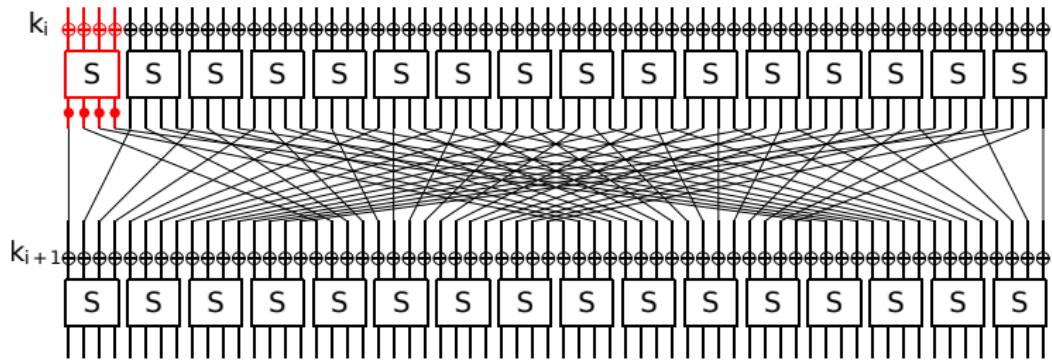
Example: PRESENT [2]

Substitution and permutation layer



Example: PRESENT [2]

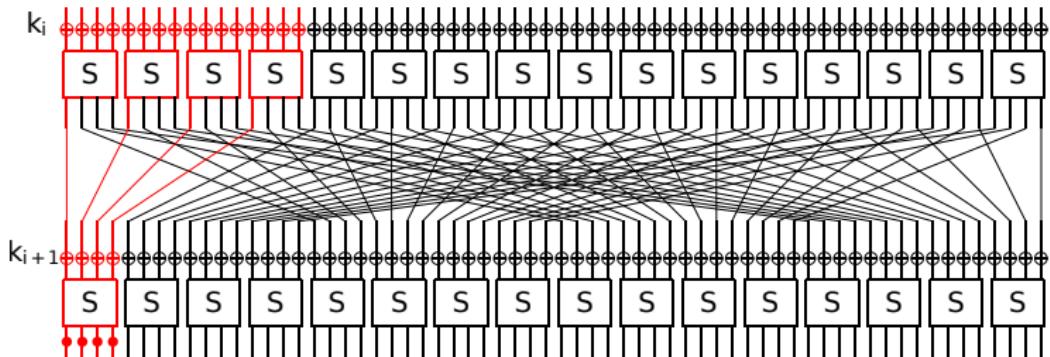
Substitution and permutation layer



- First round attack: 4 bits of K_1

Example: PRESENT [2]

Substitution and permutation layer



- First round attack: 4 bits of K_1
- Second round attack: 4 bits of K_2 + 16 bits of K_1
 $= 2^{20}$ possible key hypotheses

Balancing

- Try to **hide** sensitive information
- Make the behavior of the system **constant** with respect to the considered side-channel
 - Constant computation time
 - Identical power consumption
- Can be very tricky to achieve (cf localized EM radiation)

Balancing

Example: RSA

```
Inputs :  $M$  ,  $K$ 
 $R = 1$  ;  $S = M$  ;
for  $i = |K| - 1$ ;  $i \geq 0$ ;  $i--$  do
    /* Balanced branching */
    if  $K_i == 1$  then
         $R = R \times S$  ;  $S = S^2$  ;
    else
         $S = S \times R$  ;  $R = R^2$  ;
    end if
end for
Return  $R = M^K$  ;
```

- Modular exponent calculation using **Montgomery ladder exponentiation** algorithm

Balancing

Dual-Rail Logic with Precharge (DPL) [7, 3]

- Each Boolean variable a is represented by two signals a_T and a_F

a_T	a_F	state	a
0	0	NULL0	-
0	1	VALID0	0
1	0	VALID1	1
1	1	NULL1	-

- A DPL function $(s_T, s_F) = f((a_T, a_F), (b_T, b_F))$ must satisfy the following conditions:
 - If a and b are NULL0, s is NULL0
 - If a and b are VALID, s is VALID

Balancing

Dual-Rail Logic with Precharge (DPL)

- Example of Boolean AND function:
 - $s_T = a_T \cdot b_T$
 - $s_F = a_F + b_F$
- **Precharge**: The computation alternates between **NULL0** and valid phases
- This ensures that we can only observe the following transitions:
 - $(0, 0) \rightarrow (0, 1) \rightarrow (0, 0)$
 - $(0, 0) \rightarrow (1, 0) \rightarrow (0, 0)$
- Thus, at each transition, exactly one signal changes its value, leading to **identical power consumption**

Balancing

Problems

- **Early evaluation:** If $f(VALID, NULL) = VALID$, information can leak if the input signals arrive at different times
- The *true* and *false* networks must be close together to avoid timing and power consumption variance

Conclusion

- Protections at different abstraction layers (protocol to physical)
- Security is always a **trade-off**
- Arms race between protections and novel attacks
- Defender needs to know state-of-the-art attacks

Bibliography I

- [1] **Shivam Bhasin, Sylvain Guilley, Laurent Sauvage, and Jean-Luc Danger.**
Unrolling Cryptographic Circuits: A Simple Countermeasure Against Side-Channel Attacks.
In *RSA Cryptographers' Track, CT-RSA*, volume 5985 of *LNCS*, pages 195–207. Springer, March 1-5 2010.
San Francisco, CA, USA. DOI: 10.1007/978-3-642-11925-5_14.
- [2] **A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M. J. B. Robshaw, Y. Seurin, and C. Vinkelsoe.**
PRESENT: An Ultra-Lightweight Block Cipher.
In Pascal Paillier and Ingrid Verbauwhede, editors, *Cryptographic Hardware and Embedded Systems - CHES 2007*, volume 4727, pages 450–466. Springer Berlin Heidelberg, Berlin, Heidelberg, 2007.
- [3] **Maxime Nassar, Shivam Bhasin, Jean-Luc Danger, Guillaume Duc, and Sylvain Guilley.**
BCDL: A high performance balanced DPL with global precharge and without early-evaluation.
In *DATE'10*, pages 849–854. IEEE Computer Society, March 8-12 2010.
Dresden, Germany.
- [4] **Svetla Nikova, Christian Rechberger, and Vincent Rijmen.**
Threshold Implementations Against Side-Channel Attacks and Glitches.
In *Information and Communications Security: 8th International Conference, ICICS 2006, Raleigh, NC, USA, December 4-7, 2006. Proceedings*, pages 529–545. Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.
- [5] **Svetla Nikova, Vincent Rijmen, and Martin Schläffer.**
Secure Hardware Implementation of Non-linear Functions in the Presence of Glitches.
In *ICISC*, volume 5461 of *Lecture Notes in Computer Science*, pages 218–234. Springer, 2008.
Seoul, Korea.
- [6] **Axel Poschmann, Amir Moradi, Khoongming Khoo, Chu-Wee Lim, Huaxiong Wang, and San Ling.**
Side-Channel Resistant Crypto for Less than 2,300 GE.
Journal of Cryptology, 24(2):322–345, April 2011.

Bibliography II

[7] Kris Tiri and Ingrid Verbauwhede.

A Logic Level Design Methodology for a Secure DPA Resistant ASIC or FPGA Implementation.

In *DATE'04*, pages 246–251. IEEE Computer Society, February 2004.

Paris, France. DOI: 10.1109/DATE.2004.1268856.