Countermeasures Against
Side-Channel Attacks

BB Side-Channel Attacks

Power consumption EM radiation
% K /\/J\)
P E

C
% Computation time

B Side-channels depend on the implementation of an
algorithm (hardware or software)

B Side-channels cannot be observed on the algorithmic
(mathematical, cryptanalytic) level.

B The implementation may leak sensitive information
(secrets) via side-channels, even if those secrets never
appear on the input/output interface.

e ’

I Making Attacks Difficult

Pseudo countermeasures

B These countermeasures make attacks difficult
(but not impossible)
® Examples

e Noise generator
e Dis-aligning the traces

— Variable clock
— Insertion of dummy operations
B But: There are techniques to remove noise and jitter from
the traces

A R

Countermeasures
Different levels of abstraction

Algorithm

m Algorithm / protocol level /

®m Software / binary level]

Software

®m Register Transfer Level (RTL)]
m Netlist / physical level

\

Physical

TR

N B Protocol

Key rotation

m |f 200 operations are needed to recover the key, it is
sufficient to replace the key after 100 operations

B This demands precise knowledge on existing attacks
B /n extremis, we can change the key after each operation

e ’

N Masking

D
WV

D
WV

TELECOM

EEERI

N Masking

Masking the secret with the help of a random variable
Original function: R = f(S), where S is the secret

Masked function: S'=Sa@& M, R' = g(S'), M’ = h(M) such
that R = R’ & M’ (Boolean masking)

M (the mask) is a fresh random variable for each operation
Need to take care never to manipulate S directly
If the attacker finds S’, she does not learn anything about S

To find S, she needs to find both S’ and M’ simultaneously
(second order attack)

e

I Masking

Example

Galois Field Arithmetic

B Given an n bit variable X

B X can be interpreted over the finite field GF(2")

B Addition over GF(2") corresponds to bit-wise XOR

B Subtraction is identical to addition: X + X =0

® Multiplication is defined modulo an irreducible polynomial g

wgim

I Masking

Example (continued)
Consider a simple affine function over GF(2")
f(X)=a-X+b
Using a Boolean mask M, this becomes

fX+M)y=a-X+a-M+b
W—/
correction term

wgim

I Masking

Example (continued)
Consider a simple affine function over GF(2")
f(X)=a-X+b
Using a Boolean mask M, this becomes

fX+M)y=a-X+a-M+b
H/_/
correction term

Since each element is its additive inverse, we have

gM)y=a-M

wgim

I Masking

Higher-order masking

B To protect a system against higher-order attacks, multiple
shares can be used

® Example: Threshold Implementation (Tl) [4]

FEIGT I

I Threshold Implementation

Secret sharing

A variable x is said to be split into n shares x; if
n
X = @ Xi
i=1

In a perfect (n, n) secret sharing scheme, to recover x, an
attacker needs to know all n shares, i.e. n — 1 shares do not
reveal any information on x.

FEIGT I

I Threshold Implementation

Example: Three shares

Given secret variable x and two uniform random variables ry
and r., we can define a (3, 3) secret sharing as follows:

x

X1 =XDn
Xo =XDr
X3 =XDnrnorn,

NN X =N =X=1
- 4 00— =~ 0ol
- O =2 0Ol—= 0O = o
[I = N N = =1
4 00O =0 = = oX

OO0 A a|laa00O

and we have x = Xy ® Xo @ X3.

WHEE o

Threshold Implementation
Shared functions

Given a function z = f(x, y,...), it can be split into n shares

zy=hH(x1,y1,...)
Zy = f2(727E7)

Zn - fn(Xin,W, e)7

where each sub-function takes as inputs subsets
X; € {xq,...,Xxn} of the input shares.

wgim

I Threshold Implementation

Conditions for a Tl implementation

1. Correctness: The sum of all shared functions is equal to
the original function f = @7, f;

2. Non-completeness: Each shared function is independent
of at least one share of each input variable.

3. Uniformity: For any input value x, the corresponding output
shares zy, ..., z, are uniformly distributed for z = f(x)

e ’

Urien e 2015 2020

I Threshold Implementation

Example: Boolean AND

Consider multiplication in GF(2), i.e. Boolean AND:

fx,y)=x-y

For n = 3, a three share implementation of 7 is given by

2y = fi(Xo, X3, Y2, ¥3) = X2 - Yo B Xo - Y3 D X3 - o
Zp = fo(X1,X3,Y1,¥3) = X3 - Y3 ® Xy - Y3 D X3 - ¥4
73 = (X1, X0, Y1, Y2) = X1 - Y1 D X1 - Yo D Xo - Y1

wgim

I Threshold Implementation

Example: Non-completeness

= The implementation is non-complete

EREEN e

I Threshold Implementation

Example: Uniformity

B For each (un-shared) input value, find the corresponding
valid input shares

e Valid shares for x = 0:
(X17X27X3) € {(anao)a (07171)a (1707 1)7(171a0)}
e Valid shares for x = 1:
(x1, X2, X3) € {(0,0,1),(0,1,0),(1,0,0),(1,1,1)}
B For each combination of (un-shared) inputs, compute the
distribution of the corresponding output shares

wgim

I Threshold Implementation

Example: Uniformity

Compute the uniformity table for our three share AND gate:

EEER

I Threshold Implementation

Example: Uniformity

Compute the uniformity table for our three share AND gate:

number of occurrences of output share (z1, 2, z3)

(x,y) (000) (011) (101) (110) (001) (010) (100) (111)
(0,00 7 3 3 3 0 0 0 0
(0,1 7 3 3 3 0 0 0 0
(1,00 7 3 3 3 0 0 0 0
(1,1) o0 0 0 0 5 5 5 1

wgim

I Threshold Implementation

Example: Uniformity

Compute the uniformity table for our three share AND gate:

number of occurrences of output share (z1, 2, z3)

(x,y) (000) (011) (101) (110) (001) (010) (100) (111)
(0,00 7 3 3 3 0 0 0 0
(0,1 7 3 3 3 0 0 0 0
(1,00 7 3 3 3 0 0 0 0
(1,1) o0 0 0 0 5 5 5 1

® QOur implementation is not uniform @

B [t turns out that there is no three share Threshold
Implementation for any non-linear two-input function [5]

wgim

I Threshold Implementation

Example: Boolean Equality (XNOR)

Consider equality in GF(2), i.e. Boolean XNOR:

fx.y)=x=y
For n = 3, a three share implementation of f is given by

zy = fi(Xe,¥2) =X © Yo @ 1
Zp = fp(X3,Y3) = X3 y3 @ 1
73 =MR(x1,y1) =X D y1 &1

wgim

I Threshold Implementation

Example: Boolean Equality (XNOR)

Consider equality in GF(2), i.e. Boolean XNOR:
fx.y)=x=y
For n = 3, a three share implementation of f is given by

zy = fi(Xe,¥2) =X © Yo @ 1
Zp = fp(X3,Y3) = X3 y3 @ 1
73 =MR(x1,y1) =X D y1 &1

m This Tl is correct, non-complete, and uniform! ©

wgim

I Threshold Implementation

® Three share Tl exist for various non-linear functions
e For example multiplication in GF(22)
B Finding uniform sharings is non-trivial

e Add correction terms to an even number of shares
e Check for uniformity
e Try again...

® Decomposition for higher degree non-linear functions

FEIGT I

Threshold Implementation
(De-)composition

®m Rewrite function f as composition g o h
®m Build Tl for (simpler) component functions g and h
B Add registers

i

Figure: Three share Tl for Present S-box [6]

wgim

I Masking

Summary

® (Provable) effective i . '

¢ Algorithm |
countermeasure . -
B Can be generalized against
higher order attacks SR

m Applicable on different levels of -
abstraction

B Needs a reliable source of :
randomness IR -

-gsm L2

I unrolled Implementation [1]

B |[n CMOS circuits, the easiest to exploit leakage is due to
register updates

B Remove registers to reduce information leakage

B This corresponds to unrolling partially or completely the
data path of an implementation

(AR (Ao
Tr T

EREEN e

B Example: PRESENT [2]

—--{> plaintext }---> K |

first round substitution layer [update
permutation layer

L
~---1> statey LDk |
l

rounds 2...31

,,J+> statesq %””DKM ‘
last round GB‘—‘

----{> ciphertext |} ---------

EEER e

I Example: PRESENT [2]

Substitution and permutation layer

ki

BEHE G HE B EEHEEE

Ki+1

EHET ""1"

I Example: PRESENT [2]

Substitution and permutation layer

ki

BEHE G HE B EEHEEE

B First round attack: 4 bits of Kj

Ki+1

TELECOM

EEERI

I Example: PRESENT [2]

Substitution and permutation layer

ki

BEEEHEEHEEE B

B First round attack: 4 bits of Kj

B Second round attack: 4 bits of K> + 16 bits of Kj
= 220 possible key hypotheses

Ki+1

wEim

N Balancing

B Try to hide sensitive information

B Make the behavior of the system constant with respect to
the considered side-channel
e Constant computation time
e ldentical power consumption

®m Can be very tricky to achieve (cf localized EM radiation)

FEIGT I

I Balancing

Example: RSA
Inputs : M, K
R=1;8S=M;

fori=|K|—1;i>0;i——do

/* Balanced branching */

if Ki==1 then
R=RxS;5=8%;
else
S=SxR;R=R?;
end if
end for
Return R = M¥;

B Modular exponent calculation using Montgomery ladder
exponentiation algorithm

EHET "‘1"

I Balancing

Dual-Rail Logic with Precharge (DPL) [7, 3]

B Each Boolean variable a is represented by two signals

ar and ar
ar ar state a
0 O NULLO -
0 1 VALIDO O
1 0 VALID1 1
1 1 NULL1 -

® A DPL function (st, sg) = f((ar, ar), (br, bg)) must satisfy
the following conditions:
e If aand b are NULLO, sis NULLO
e Ifaand b are VALID, sis VALID

EEER

I Balancing

Dual-Rail Logic with Precharge (DPL)

® Example of Boolean AND function:
e St =ar- bT
® SF=ar+br
® Precharge: The computation alternates between NULLO
and valid phases
B This ensures that we can only observe the following
transitions:
* (0,0) = (0,1) —(0,0)
* (0,0) = (1,0) — (0,0)
B Thus, at each transition, exactly one signal changes its
value, leading to identical power consumption

FEIGT I

Balancing
Problems

® Early evaluation: If f(VALID, NULL) = VALID, information
can leak if the input signals arrive at different times

B The frue and false networks must be close together to
avoid timing and power consumption variance

CEIE IR

I Conclusion

® Protections at different
abstraction layers (protocol to
physical)

B Security is always a trade-off

B Arms race between protections
and novel attacks

m Defender needs to know
state-of-the-art attacks

s Ui o zore-z0z0 | O3
EREEN

I Bibliography |

1]

2]

[3]

[4]

5]

6]

Shivam Bhasin, Sylvain Guilley, Laurent Sauvage, and Jean-Luc Danger.

Unrolling Cryptographic Circuits: A Simple Countermeasure Against Side-Channel Attacks.

In RSA Cryptographers’ Track, CT-RSA, volume 5985 of LNCS, pages 195-207. Springer, March 1-5 2010.
San Francisco, CA, USA. DOI: 10.1007/978-3-642-11925-5_14.

A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M. J. B. Robshaw, Y. Seurin, and

C. Vikkelsoe.

PRESENT: An Ultra-Lightweight Block Cipher.

In Pascal Paillier and Ingrid Verbauwhede, editors, Cryptographic Hardware and Embedded Systems - CHES
2007, volume 4727, pages 450—466. Springer Berlin Heidelberg, Berlin, Heidelberg, 2007.

Maxime Nassar, Shivam Bhasin, Jean-Luc Danger, Guillaume Duc, and Sylvain Guilley.
BCDL: A high performance balanced DPL with global precharge and without early-evaluation.
In DATE’10, pages 849-854. IEEE Computer Society, March 8-12 2010.

Dresden, Germany.

Svetla Nikova, Christian Rechberger, and Vincent Rijmen.

Threshold Implementations Against Side-Channel Attacks and Glitches.

In Information and Communications Security: 8th International Conference, ICICS 2006, Raleigh, NC, USA,
December 4-7, 2006. Proceedings, pages 529-545. Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.

Svetla Nikova, Vincent Rijmen, and Martin Schlaffer.

Secure Hardware Implementation of Non-linear Functions in the Presence of Glitches.

In ICISC, volume 5461 of Lecture Notes in Computer Science, pages 218-234. Springer, 2008.
Seoul, Korea.

Axel Poschmann, Amir Moradi, Khoongming Khoo, Chu-Wee Lim, Huaxiong Wang, and San Ling.
Side-Channel Resistant Crypto for Less than 2,300 GE.
Journal of Cryptology, 24(2):322—-345, April 2011.

TELECOM|

EEERI

I Bibliography Ii

[7] Kris Tiri and Ingrid Verbauwhede.
A Logic Level Design Methodology for a Secure DPA Resistant ASIC or FPGA Implementation.
In DATE'04, pages 246-251. IEEE Computer Society, February 2004.
Paris, France. DOI: 10.1109/DATE.2004.1268856.

TELECOM

EEERI

	Appendix

