
Countermeasures Against
Side-Channel Attacks

Ulrich Kühne
ulrich.kuhne@telecom-paris.fr

2019–2020

Side-Channel Attacks

EP C

K
EM radiationPower consumption

Computation time

Side-channels depend on the implementation of an
algorithm (hardware or software)
Side-channels cannot be observed on the algorithmic
(mathematical, cryptanalytic) level.
The implementation may leak sensitive information
(secrets) via side-channels, even if those secrets never
appear on the input/output interface.

2/33 Télécom Paris Ulrich Kühne 2019–2020

Making Attacks Difficult
Pseudo countermeasures

These countermeasures make attacks difficult
(but not impossible)
Examples
• Noise generator
• Dis-aligning the traces

– Variable clock
– Insertion of dummy operations

But: There are techniques to remove noise and jitter from
the traces

3/33 Télécom Paris Ulrich Kühne 2019–2020

Countermeasures
Different levels of abstraction

Algorithm / protocol level
Software / binary level
Register Transfer Level (RTL)
Netlist / physical level

Algorithm

Software

RTL

Physical

4/33 Télécom Paris Ulrich Kühne 2019–2020

Protocol
Key rotation

If 200 operations are needed to recover the key, it is
sufficient to replace the key after 100 operations
This demands precise knowledge on existing attacks
In extremis, we can change the key after each operation

5/33 Télécom Paris Ulrich Kühne 2019–2020

Masking

S M

g h

R

S

f

R

6/33 Télécom Paris Ulrich Kühne 2019–2020

Masking

Masking the secret with the help of a random variable
Original function: R = f (S), where S is the secret
Masked function: S′ = S ⊕M, R′ = g(S′), M ′ = h(M) such
that R = R′ ⊕M ′ (Boolean masking)
M (the mask) is a fresh random variable for each operation
Need to take care never to manipulate S directly
If the attacker finds S′, she does not learn anything about S
To find S, she needs to find both S′ and M ′ simultaneously
(second order attack)

7/33 Télécom Paris Ulrich Kühne 2019–2020

Masking
Example

Galois Field Arithmetic

Given an n bit variable X
X can be interpreted over the finite field GF (2n)

Addition over GF (2n) corresponds to bit-wise XOR
Subtraction is identical to addition: X + X = 0
Multiplication is defined modulo an irreducible polynomial g

8/33 Télécom Paris Ulrich Kühne 2019–2020

Masking
Example (continued)

Consider a simple affine function over GF (2n)

f (X) = a · X + b

Using a Boolean mask M, this becomes

f (X + M) = a · X + a ·M + b

correction term

Since each element is its additive inverse, we have

g(M) = a ·M

9/33 Télécom Paris Ulrich Kühne 2019–2020

Masking
Example (continued)

Consider a simple affine function over GF (2n)

f (X) = a · X + b

Using a Boolean mask M, this becomes

f (X + M) = a · X + a ·M + b

correction term

Since each element is its additive inverse, we have

g(M) = a ·M

9/33 Télécom Paris Ulrich Kühne 2019–2020

Masking
Higher-order masking

To protect a system against higher-order attacks, multiple
shares can be used
Example: Threshold Implementation (TI) [4]

10/33 Télécom Paris Ulrich Kühne 2019–2020

Threshold Implementation
Secret sharing

A variable x is said to be split into n shares xi if

x =
n⊕

i=1

xi

In a perfect (n,n) secret sharing scheme, to recover x , an
attacker needs to know all n shares, i.e. n − 1 shares do not
reveal any information on x .

11/33 Télécom Paris Ulrich Kühne 2019–2020

Threshold Implementation
Example: Three shares

Given secret variable x and two uniform random variables r1
and r2, we can define a (3,3) secret sharing as follows:

x1 = x ⊕ r1

x2 = x ⊕ r2

x3 = x ⊕ r1 ⊕ r2,

x r1 r2 x1 x2 x3
0 0 0 0 0 0
0 0 1 0 1 1
0 1 0 1 0 1
0 1 1 1 1 0
1 0 0 1 1 1
1 0 1 1 0 0
1 1 0 0 1 0
1 1 1 0 0 1

and we have x = x1 ⊕ x2 ⊕ x3.

12/33 Télécom Paris Ulrich Kühne 2019–2020

Threshold Implementation
Shared functions

Given a function z = f (x , y , . . .), it can be split into n shares

z1 = f1(x1, y1, . . .)

z2 = f2(x2, y2, . . .)

. . .

zn = fn(xn, yn, . . .),

where each sub-function takes as inputs subsets
xi ⊆ {x1, . . . , xn} of the input shares.

13/33 Télécom Paris Ulrich Kühne 2019–2020

Threshold Implementation

Conditions for a TI implementation

1. Correctness: The sum of all shared functions is equal to
the original function f =

⊕n
i=1 fi .

2. Non-completeness: Each shared function is independent
of at least one share of each input variable.

3. Uniformity: For any input value x , the corresponding output
shares z1, . . . , zn are uniformly distributed for z = f (x)

14/33 Télécom Paris Ulrich Kühne 2019–2020

Threshold Implementation
Example: Boolean AND

Consider multiplication in GF (2), i.e. Boolean AND:

f (x , y) = x · y

For n = 3, a three share implementation of f is given by

z1 = f1(x2, x3, y2, y3) = x2 · y2 ⊕ x2 · y3 ⊕ x3 · y2

z2 = f2(x1, x3, y1, y3) = x3 · y3 ⊕ x1 · y3 ⊕ x3 · y1

z3 = f3(x1, x2, y1, y2) = x1 · y1 ⊕ x1 · y2 ⊕ x2 · y1

15/33 Télécom Paris Ulrich Kühne 2019–2020

Threshold Implementation
Example: Non-completeness

x1

x2

x3

y1

y2

y3

f1

f3

f2 z

⇒ The implementation is non-complete

16/33 Télécom Paris Ulrich Kühne 2019–2020

Threshold Implementation
Example: Uniformity

For each (un-shared) input value, find the corresponding
valid input shares
• Valid shares for x = 0:

(x1, x2, x3) ∈ {(0,0,0), (0,1,1), (1,0,1), (1,1,0)}
• Valid shares for x = 1:

(x1, x2, x3) ∈ {(0,0,1), (0,1,0), (1,0,0), (1,1,1)}
For each combination of (un-shared) inputs, compute the
distribution of the corresponding output shares

17/33 Télécom Paris Ulrich Kühne 2019–2020

Threshold Implementation
Example: Uniformity

Compute the uniformity table for our three share AND gate:

number of occurrences of output share (z1, z2, z3)
(x , y) (000) (011) (101) (110) (001) (010) (100) (111)

(0, 0) 7 3 3 3 0 0 0 0
(0, 1) 7 3 3 3 0 0 0 0
(1, 0) 7 3 3 3 0 0 0 0
(1, 1) 0 0 0 0 5 5 5 1

Our implementation is not uniform �

It turns out that there is no three share Threshold
Implementation for any non-linear two-input function [5]

18/33 Télécom Paris Ulrich Kühne 2019–2020

Threshold Implementation
Example: Uniformity

Compute the uniformity table for our three share AND gate:

number of occurrences of output share (z1, z2, z3)
(x , y) (000) (011) (101) (110) (001) (010) (100) (111)

(0, 0) 7 3 3 3 0 0 0 0
(0, 1) 7 3 3 3 0 0 0 0
(1, 0) 7 3 3 3 0 0 0 0
(1, 1) 0 0 0 0 5 5 5 1

Our implementation is not uniform �

It turns out that there is no three share Threshold
Implementation for any non-linear two-input function [5]

18/33 Télécom Paris Ulrich Kühne 2019–2020

Threshold Implementation
Example: Uniformity

Compute the uniformity table for our three share AND gate:

number of occurrences of output share (z1, z2, z3)
(x , y) (000) (011) (101) (110) (001) (010) (100) (111)

(0, 0) 7 3 3 3 0 0 0 0
(0, 1) 7 3 3 3 0 0 0 0
(1, 0) 7 3 3 3 0 0 0 0
(1, 1) 0 0 0 0 5 5 5 1

Our implementation is not uniform �

It turns out that there is no three share Threshold
Implementation for any non-linear two-input function [5]

18/33 Télécom Paris Ulrich Kühne 2019–2020

Threshold Implementation
Example: Boolean Equality (XNOR)

Consider equality in GF (2), i.e. Boolean XNOR:

f (x , y) = x ≡ y

For n = 3, a three share implementation of f is given by

z1 = f1(x2, y2) = x2 ⊕ y2 ⊕ 1
z2 = f2(x3, y3) = x3 ⊕ y3 ⊕ 1
z3 = f3(x1, y1) = x1 ⊕ y1 ⊕ 1

This TI is correct, non-complete, and uniform! �

19/33 Télécom Paris Ulrich Kühne 2019–2020

Threshold Implementation
Example: Boolean Equality (XNOR)

Consider equality in GF (2), i.e. Boolean XNOR:

f (x , y) = x ≡ y

For n = 3, a three share implementation of f is given by

z1 = f1(x2, y2) = x2 ⊕ y2 ⊕ 1
z2 = f2(x3, y3) = x3 ⊕ y3 ⊕ 1
z3 = f3(x1, y1) = x1 ⊕ y1 ⊕ 1

This TI is correct, non-complete, and uniform! �

19/33 Télécom Paris Ulrich Kühne 2019–2020

Threshold Implementation

Three share TI exist for various non-linear functions
• For example multiplication in GF (22)

Finding uniform sharings is non-trivial
• Add correction terms to an even number of shares
• Check for uniformity
• Try again. . .

Decomposition for higher degree non-linear functions

20/33 Télécom Paris Ulrich Kühne 2019–2020

Threshold Implementation
(De-)composition

Rewrite function f as composition g ◦ h
Build TI for (simpler) component functions g and h
Add registers

Figure: Three share TI for Present S-box [6]

21/33 Télécom Paris Ulrich Kühne 2019–2020

Masking
Summary

(Provable) effective
countermeasure
Can be generalized against
higher order attacks
Applicable on different levels of
abstraction
Needs a reliable source of
randomness

Algorithm

Software

RTL

Physical

22/33 Télécom Paris Ulrich Kühne 2019–2020

Unrolled Implementation [1]

In CMOS circuits, the easiest to exploit leakage is due to
register updates
Remove registers to reduce information leakage
This corresponds to unrolling partially or completely the
data path of an implementation

P CR1 R2 Rn

K K1 K2 Kn

23/33 Télécom Paris Ulrich Kühne 2019–2020

Example: PRESENT [2]

plaintext

substitution layer
permutation layer

state1

K1

K2

update

.

state31

ciphertext

K32

first round

rounds 2. . . 31

last round

24/33 Télécom Paris Ulrich Kühne 2019–2020

Example: PRESENT [2]
Substitution and permutation layer

ki+1

S S S S S S S S S S S S S S S S

ki

S S S S S S S S S S S S S S S S

First round attack: 4 bits of K1

Second round attack: 4 bits of K2 + 16 bits of K1
= 220 possible key hypotheses

25/33 Télécom Paris Ulrich Kühne 2019–2020

Example: PRESENT [2]
Substitution and permutation layer

ki+1

S S S S S S S S S S S S S S S S

ki

S S S S S S S S S S S S S S S S

First round attack: 4 bits of K1

Second round attack: 4 bits of K2 + 16 bits of K1
= 220 possible key hypotheses

25/33 Télécom Paris Ulrich Kühne 2019–2020

Example: PRESENT [2]
Substitution and permutation layer

ki+1

S S S S S S S S S S S S S S S S

ki

S S S S S S S S S S S S S S S S

First round attack: 4 bits of K1

Second round attack: 4 bits of K2 + 16 bits of K1
= 220 possible key hypotheses

25/33 Télécom Paris Ulrich Kühne 2019–2020

Balancing

Try to hide sensitive information
Make the behavior of the system constant with respect to
the considered side-channel
• Constant computation time
• Identical power consumption

Can be very tricky to achieve (cf localized EM radiation)

26/33 Télécom Paris Ulrich Kühne 2019–2020

Balancing
Example: RSA

Inputs : M , K
R = 1 ; S = M ;
for i = |K | − 1; i ≥ 0 ; i −− do

/* Balanced branching */

if Ki == 1 then
R = R × S ; S = S2 ;

else
S = S × R ; R = R2 ;

end if
end for
Return R = MK ;

Modular exponent calculation using Montgomery ladder
exponentiation algorithm

27/33 Télécom Paris Ulrich Kühne 2019–2020

Balancing
Dual-Rail Logic with Precharge (DPL) [7, 3]

Each Boolean variable a is represented by two signals
aT and aF

aT aF state a

0 0 NULL0 -
0 1 VALID0 0
1 0 VALID1 1
1 1 NULL1 -

A DPL function (sT , sF) = f ((aT ,aF), (bT ,bF)) must satisfy
the following conditions:
• If a and b are NULL0, s is NULL0
• If a and b are VALID, s is VALID

28/33 Télécom Paris Ulrich Kühne 2019–2020

Balancing
Dual-Rail Logic with Precharge (DPL)

Example of Boolean AND function:
• sT = aT · bT
• sF = aF + bF

Precharge: The computation alternates between NULL0
and valid phases
This ensures that we can only observe the following
transitions:
• (0,0)→ (0,1)→ (0,0)
• (0,0)→ (1,0)→ (0,0)

Thus, at each transition, exactly one signal changes its
value, leading to identical power consumption

29/33 Télécom Paris Ulrich Kühne 2019–2020

Balancing
Problems

Early evaluation: If f (VALID,NULL) = VALID, information
can leak if the input signals arrive at different times
The true and false networks must be close together to
avoid timing and power consumption variance

30/33 Télécom Paris Ulrich Kühne 2019–2020

Conclusion

Protections at different
abstraction layers (protocol to
physical)
Security is always a trade-off
Arms race between protections
and novel attacks
Defender needs to know
state-of-the-art attacks

31/33 Télécom Paris Ulrich Kühne 2019–2020

Bibliography I

[1] Shivam Bhasin, Sylvain Guilley, Laurent Sauvage, and Jean-Luc Danger.
Unrolling Cryptographic Circuits: A Simple Countermeasure Against Side-Channel Attacks.
In RSA Cryptographers’ Track, CT-RSA, volume 5985 of LNCS, pages 195–207. Springer, March 1-5 2010.
San Francisco, CA, USA. DOI: 10.1007/978-3-642-11925-5_14.

[2] A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M. J. B. Robshaw, Y. Seurin, and
C. Vikkelsoe.
PRESENT: An Ultra-Lightweight Block Cipher.
In Pascal Paillier and Ingrid Verbauwhede, editors, Cryptographic Hardware and Embedded Systems - CHES
2007, volume 4727, pages 450–466. Springer Berlin Heidelberg, Berlin, Heidelberg, 2007.

[3] Maxime Nassar, Shivam Bhasin, Jean-Luc Danger, Guillaume Duc, and Sylvain Guilley.
BCDL: A high performance balanced DPL with global precharge and without early-evaluation.
In DATE’10, pages 849–854. IEEE Computer Society, March 8-12 2010.
Dresden, Germany.

[4] Svetla Nikova, Christian Rechberger, and Vincent Rijmen.
Threshold Implementations Against Side-Channel Attacks and Glitches.
In Information and Communications Security: 8th International Conference, ICICS 2006, Raleigh, NC, USA,
December 4-7, 2006. Proceedings, pages 529–545. Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.

[5] Svetla Nikova, Vincent Rijmen, and Martin Schläffer.
Secure Hardware Implementation of Non-linear Functions in the Presence of Glitches.
In ICISC, volume 5461 of Lecture Notes in Computer Science, pages 218–234. Springer, 2008.
Seoul, Korea.

[6] Axel Poschmann, Amir Moradi, Khoongming Khoo, Chu-Wee Lim, Huaxiong Wang, and San Ling.
Side-Channel Resistant Crypto for Less than 2,300 GE.
Journal of Cryptology, 24(2):322–345, April 2011.

32/33 Télécom Paris Ulrich Kühne 2019–2020

Bibliography II

[7] Kris Tiri and Ingrid Verbauwhede.
A Logic Level Design Methodology for a Secure DPA Resistant ASIC or FPGA Implementation.
In DATE’04, pages 246–251. IEEE Computer Society, February 2004.
Paris, France. DOI: 10.1109/DATE.2004.1268856.

33/33 Télécom Paris Ulrich Kühne 2019–2020

	Appendix

