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Chapitre 1

Traitement matériel de 'information

1.1 Du composant aux systemes numériques

Alors que le cerveau de I’étre humain qui a écrit ce texte comporte 102 neurones, le
micro-ordinateur qui a servi a le mettre en forme comporte au maximum 10'% composants de
base : les zransistors. Malgré cette relative simplicité, la réalisation de tels systemes de traitement
est difficilement concevable par un méme individu dans sa globalité. La maitrise de cette
complexité est le résultat d’'un découpage hiérarchique aboutissant a des étapes ayant une
cohérence soit logique (fonction) soit physique (composant). La figure 1.1 représente les trois
premiers niveaux de cette hiérarchisation.

L
S I

(Transistor 1) (Porte logique 10) (Opérateur 1000)

Figure 1.1: Complexité des niveaux hiérarchiques.

Lassemblage judicieux de moins d’une dizaine de transistors permet la réalisation des
briques de base du traitement logique : les portes logiques 2 quelques entrées. Avec le méme
nombre de transistors, nous pouvons stocker une information binaire (0/1) dans un point
mémoire et I'y maintenir tant que nous fournissons de 'énergie.

Il est possible par I'assemblage de quelques milliers de portes logiques et de fonctions de
mémorisation de créer des opérateurs de calcul ou de traitement tels que des multiplieurs ou
des unités de contrdle.

Lassemblage d’opérateurs permet la création d’un nouveau composant : le circuit intégré.
Les millions de transistors des circuits intégrés sont réalisés sur un unique carré de matériau
semiconducteur (le silicium) de la taille d’'un ongle. Parmi les exemples les plus connus de
circuits intégrés citons le microprocesseur et la mémoire dynamique (DRAM) qui sont au coeur
des micro-ordinateurs.

17
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Nous quittons maintenant le domaine de la micro-électronique numérique pour passer a
une vision macroscopique illustrée dans la figure 1.2.

Ron| | RA

:l]]] |I‘u1ULT|

(Circuit intégré 10%) (Micro-ordinateur 10'%)  (Systéme Télécom 10*%)

Figure 1.2: Complexité des niveaux hiérarchiques.

Lassemblage de circuits intégrés sur des cartes ou circuits imprimés de quelques centaines
de cm? permet la réalisation de systémes de traitements numériques autonomes tels qu’une
calculatrice, un agenda électronique ou un ordinateur de bureau.

Enfin, ces systémes électroniques numériques permettent de réaliser la plupart des fonc-
tions de traitement des réseaux de #élécommunications. Bien malin qui peut savoir combien de
transistors ont participé a votre derniere conversation téléphonique...

La maitrise parfaite d’un de ces niveaux de complexité dans ses aspects techniques, scien-
tifiques ou économiques, nécessiterait, a elle seule, une formation d’ingénieur électronicien...
De fagon réaliste, nos objectifs sont, dans le cadre d’'une « base de connaissances indispen-
sables », d’une part de vous permettre de comprendre le domaine de [électronique numérique
intégrée dans son ensemble et d’autre part, d’acquérir une premiere expérience concrete de la
réalisation d’opérateurs numériques, ce que nous déclinons de maniere plus précise par :

e compréhension de la technologie de fabrication et du fonctionnement des transistors ;

e maitrise d’'une technique de réalisation de portes logiques;

e maitrise de techniques de réalisation d’opérateurs ;

e compréhension de 'influence de la technologie sur les performances des circuits inté-

grés;

o compréhension des enjeux techniques et économiques de I'industrie micro-électronique.

1.2 Signal et Information

Avant de nous intéresser au composant électronique il convient de définir son usage, c’est
a dire de définir les caractéristiques des signaux qu’il est sensé générer, transmettre ou modifier.

1.2.1 Signal électrique et traitement de 'information

Le signal électrique est actuellement le support nécessaire a 'ensemble des systemes de #7ai-
tement de l'information qui nous sont familiers. Le mot information prend ici un sens tres large
que nous expliciterons ultérieurement. Votre télévision (information visuelle), votre chaine
HiFi (information musicale) ou votre micro-ordinateur (programmes...) sont des exemples
concrets de systémes de traitement de I'information utilisant le support électrique.
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Figure 1.3: Le signal électrique support de Uinformation...

On peut envisager évidemment d’autres supports physiques que le signal électrique (papier,
lumiere, champs électromagnétiques) il n’en reste pas moins vrai que ces supports, sils sont
trés adaptés 4 la transmission et au stockage de I'information (livres, cédéroms, fibre optiques,
téléphone portable ou par satellite), ne permettent guére de réaliser des fonctions de traitement
élaborées.

Figure 1.4: Le signal mécanique support de 'information...

Nous pouvons mesurer les valeurs instantanées (tension, courant, charges...) d’'un signal
électrique quelconque ainsi que I'évolution de ces valeurs instantanées au cours du temps. Il
est possible de caractériser un tel signal par des grandeurs de forme. La fréquence, la phase et
Pamplitude sont, par exemple, trois parametres caractérisant la forme d’un signal électrique
sinusoidal. Il est facile d’imaginer 'utilisation des variations de ces grandeurs ou parameétres
pour représenter une information dont le signal électrique serait porteur, la restitution de
I'information se faisant en interprétant la mesure de ces grandeurs.

Dans un article considéré comme fondateur de la théorie de 'information C.E. Shannon a
proposé en 1948 un schéma de communication : 'information est définie comme un élément
de connaissance de I'état d’'un systeme. Une chaine de communication comporte une source
(ou émetteur) qui émet (code) des messages vers une destination (récepteur). Le récepteur
ne peut décoder les informations émises par 'émetteur que s'il connait 'ensemble des états
possibles de la source. Le but de la théorie de 'information est de dégager les lois théoriques
qui limitent les performances des syst¢mes de traitement et de communication. Elle permet
également I'optimisation des codages en fonction des contraintes matérielles des systémes.
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Figure 1.5: Claude Shannon

1.2.2 Codage analogique de I'information : ’exemple du signal sonore

Jusqu’au lancement du « disque compact numérique », mis au point par les sociétés Sony
et Philips au début des années 80, les technologies de stockage et de transfert du son ap-
partenaient au domaine du traitement analogique (signal analogique a temps continu). En
clair, depuis la premiere description du téléphone a ficelle (Robert Hooke en 1667) jusqu’a
la fin des années 1970, ces techniques se basaient toutes sur la transformation d’un phéno-
mene physique (par exemple une variation de pression) en un autre phénomene physique (par
exemple vibration d’'une membrane) se comportant de mani¢re analogue au premier. Le signal
électrique analogique sortant d’une téte de lecture d’un lecteur de disque microsillon est un
exemple typique de ce codage analogique : la valeur instantanée de la tension a la sortie de la
téte de lecture varie comme le signal audio enregistré mécaniquement sur le disque.

Le signal analogique électrique est malheureusement sujet & de nombreux phénomeénes
qui viennent détériorer la qualité de I'information transmise (atténuation, distortion, bruits
parasites...), la correction de ces phénomenes n’est pas chose aisée et rarement satisfaisante. Ce
n'est, de plus, pas un support tres pratique des que I'on envisage d’effectuer des traitements
complexes. Les calculateurs analogiques ont eu une bréve existence dans les années 60 a 80
lorsque leurs homologues numériques étaient a leurs balbutiements.

N’oublions cependant pas, en reprenant I'exemple de la chaine de transmission du son, que
le capteur (microphone) de méme que I'enceinte acoustique ont un fonctionnement analo-
gique; le traitement analogique de I'information reste 'indispensable interface avec le monde
«réel ».

1.2.3 Codage numérique de 'information

Maintenant, revenons a la théorie de I'information et reprenons I'exemple du signal sonore.
Nous ne désirons transmettre et stocker que I'information pertinente a notre oreille. Comme
le montre le diagramme de la figure 1.6, nous savons que celle-ci ne peut pas distinguer de
variations de pression inférieures 2 2 x 107° Pa et qu’elle ne peut supporter de variations de
pression supérieures a 20 Pa. On appelle ce rapport la dynamique du signal que I'on a coutume
de mesurer en décibels :



1.2. SIGNAL ET INFORMATION 21

20 -

M
m
L
1

TUltrasons

)
m
c

Pression {Pa)

2.ES

"
»

|
20 100 200 1000 10000 20000

| : seuil de douleur

Il : seuil d'audibilité AL (k)

Figure 1.6: Laudition moyenne d’un étre humain

I décibels (dB) = 20 x log,,(P/Fy)

Notre source audio nécessite une dynamique de 120 dB. Cela signifie aussi (au sens de la
théorie de I'information) que le récepteur (Ioreille) ne peut décoder que 10 états différents
par pas de 2 X 107° Pa. D’autre part, nous ne pouvons entendre que des signaux ayant une
bande de fréquence limitée de 20 Hz 4 20 000 Hz. Le théoréme d'échantillonnage indique qu’il
est possible de reconstruire avec exactitude un signal 2 bande limitée a partir d’échantillons de
ce signal pris & intervalles réguliers a une fréquence double de la fréquence maximale du signal
original. Nous avons donc montré que notre signal sonore pouvait étre représenté par une suite
de nombres entiers : c’est un signal prenant un nombre discret d’états de maniere discréte dans
le temps. Nous qualifierons ce signal de signal numérique. Lopération de quantification (dis-
crétisation des niveaux) et d’échantillonnage (discrétisation du temps) nous conduit a redéfinir
la notion de dynamique que I'on mesurera en bits (pour « binary digit ») :

N bits = log, (nombre de niveaux)

Nous pouvons maintenant associer au signal numérique un 4ébit de données mesuré en
bits par seconde. Un lecteur de disque compact audio a, par exemple, un débit correspondant
a 2 canaux (stéréophonie) échantillonnés a 44,1 kHz sur une dynamique de 16 bits soit 1,41
Mb/sec.

Nous allons donner un support électrique a ce signal numérique. Lidée la plus simple
consiste a associer a chaque niveau du signal une tension et de faire évoluer dans le temps
cette tension pour représenter la suite de symboles. La figure 1.7 montre un signal électrique
multivalué support d’'un signal numérique a trois niveaux prenant successivement les états
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«2», «1»et«0». Les plages hachurées représentent des plages de tensions pour lesquelles il
n'est pas possible de déterminer I'état du signal ce qui est matérialisé par le symbole « X ».

v

A

2 a 4
I'-I]'I'l

1] D

0 \ 4

Figure 1.7: Un signal multivalué codant une valeur numérique

Remarquons (voir figure 1.8), qu’a débit d’information constant nous pouvons jouer sur
le nombre de signaux physiques (ou de fils de liaison) utilisés, le nombre de niveaux codés et
la fréquence de changement des symboles. Ce choix est essentiellement guidé par des consi-

L

N SV EE "

3 bits @ Fm

Figure 1.8: Une liaison a la fréquence 3 - F,, est équivalente a 3 liaisons opérants & la fréquence Fy,

dérations de facilité de traitement et sur la robustesse du codage au regard du bruit ou de
latténuation du signal électrique. Sans entrer dans le détail de ces considérations, il est pos-
sible de justifier 'usage généralisé du codage binaire de la maniére suivante.

Considérons la représentation de nombres sous la forme de n canaux physiques (n fils)
utilisant b niveaux électriques. Le nombre total de symboles représentables sous cette forme
est () = b™. La réalisation de cette représentation a un colit matériel ; il faut en effet mettre
en place des dispositifs de détection de niveaux plus ou moins complexes en fonction de la
base choisie et adapter le nombre de canaux pour obtenir la qualité @) choisie. Ce colit est
évidemment proportionnel au nombre 72 de canaux ; nous allons en premiére approximation
considérer qu’il est aussi proportionnel a la base b choisie : C' = b X n.
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Nous pouvons en déduire la base optimale qui minimise le cotit C' pour une qualité ()

donnée. Nous avons
7 =1n(Q)/ In(b)
D’ou
C' =bxIn(Q)/In(b)

Lexpression de C' possede un minimum en b = e (base des logarithmes népériens) quelle
que soit la qualité @) souhaitée. Cela nous conduit a ne considérer que les bases « 2 » ou « 3 »
comme candidates possibles. Dans la réalité, la complexité d’un opérateur de calcul physique
en base « 3 » est plus que 1,5 fois plus grande que celle d’un opérateur en base « 2 » (la fonction
C' dépend de b de fagon grandement non linéaire). Cela justifie le choix quasi universel de la

base « 2 » dans les systémes de traitement numérique. Il arrive que ce choix soit remis en cause
dans des cas particuliers.

1.2.4 Lexemple du signal binaire

Dans un signal binaire, seuls deux états sont possibles : 0/1. Nous choisissons deux plages
de tensions disjointes pour représenter les deux états, un symbole ne pouvant étre a la fois dans
Pétat « 1 » etI'état « 0 ». Lorsque le signal électrique évolue dans le temps, il passe successivement
et continuement d’une plage de définition d’état a 'autre en croisant une plage intermédiaire
pour laquelle on qualifie le signal d’indéterminé. Une vision simplifiée du signal consiste a ne
représenter que les états détectés « 0 » et « 1 » reliés par des segments de droite représentant
leur transition d’un état  un autre (figure 1.9).

0 >

Figure 1.9: Un signal binaire : signal électrique et interprétation.

Méme si le signal électrique subit des distortions, une atténuation, ou s’il est entaché de
bruit, il est possible de reconstruire avec exactitude les symboles émis jusqu’a un certain niveau
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de dégradation (figure 1.10). Remarquons que pour une excursion totale de tension donnée,
la multiplication des états possibles (codage multivalué) diminue 'amplitude des plages de
tensions associées a chaque état et donc augmente la difficulté de détection ; le codage binaire
est & nouveau , de ce point de vue, le codage le plus robuste.

|Irt0 >

Figure 1.10: Un signal binaire distordu, atténué et bruité, mais reconstruit.

Pour conclure sur le signal binaire, nous pouvons lister les quelques caractéristiques qui
ont conduit a 'imposer dans le monde de I'électronique numérique :

e Cest d’une part le symbole du raisonnement logique, de la prise de décision et du
contrdle (si /alors/ sinon).

o Clest d’autre part une base de représentation des nombres entiers permettant d’effectuer
tous calculs arithmétiques a partir d’opérations simples.

o Il est, comme tout signal numérique, utilisable pour coder de I'information comme le
son ou I'image.

o Il peut utiliser un support électrique trés simple (codage direct en amplitude).

1.3 Lesignal binaire représenté par une grandeur électrique

Nous allons, dans ce chapitre, montrer quelques techniques simples permettant de dégager
les caractéristiques des composants nécessaires a la génération, la détection et le traitement de
signaux binaires électriques; notre but n'est pas de présenter des implantations réalistes de
fonction logiques.

1.3.1 Comment peut-on générer un signal électrique binaire ?

Il s'agit la de créer un signal électrique pouvant se stabiliser dans deux plages de tension
prédéfinies correspondant aux deux états « 0 » et « 1 ». Nous pouvons partir d’une source d’ali-
mentation continue fournissant a ses bornes une tension V4 donnée. Le montage de la figure
1.11 basé sur un simple interrupteur et une résistance permet de générer la tension « 0 V »(resp.
Viaa) lorsque l'interrupteur est fermé (resp. ouvert) sur la sortie.

1.3.2 Comment peut-on extraire un symbole binaire d’un signal élec-
trique ?

Supposons que nous disposons d’'un composant, que nous appellerons « transistor », com-
posé d’un premier dispositif capable de comparer une tension a une référence donnée, couplé
a un second dispositif se comportant comme un interrupteur commandé en fonction du ré-
sultat de la comparaison. Le symbole et la fonction de cet interrupteur sont représentés en
figure 1.12.
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Vdd

sortie

Figure 1.11: Génération d’un signal binaire avec une source de tension, une résistance et un interrupteur.

| I o Si Vi, <V, alors l'interrupteur est ouvert.
vi“T e Si Vi, > Ve alors linterrupteur est fermé.

Figure 1.12: Le transistor interrupteur.

Remplagons 'interrupteur de la section précédente par notre transistor. Pour toute tension
d’entrée inférieure (resp. supérieure) a V,..r, la tension de sortie prend la valeur Vi, (resp.
«0 V»). Nous disposons bien d’un dispositif capable de détecter I'état du signal d’entrée méme
entaché de bruit ou de distortions. La figure 1.13 présente tout d’abord la fonction de transfert
théorique du dispositif, cest-a-dire la relation liant la tension d’entrée 4 la tension de sortie.
Ce dispositif est appelé « inverseur ».

Vsortie Vsortie
Vdd . Vdd o

1
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------- A S
) Ventree ._,____L____:L _____ L Ventree
0 Vret  Vad 0 ' Vdd
Fonction de transfert idéale Fonction de transfert réaliste

Figure 1.13: Fonctions de transfert de inverseur.

Dans la pratique, il n’est pas possible de créer des dispositifs électroniques aussi sélectifs ;
nous pouvons retenir les deux imperfections suivantes :

e Dassage « continu » entre le mode ouvert et le mode fermé;

e Résistance non nulle en mode fermé.
La deuxi¢me fonction de transfert de la figure 1.13 présente un comportement plus « réaliste »
d’un tel opérateur. Tant que le signal reste dans les plages oti la pente de la fonction de transfert
est faible (en valeur absolue, c’est-a-dire ici supérieure & —1), 'immunité au bruit est maximale
et le signal est régénéré de fagon convenable.
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1.3.3 Comment peut-on créer un opérateur de traitement binaire ?

Considérons maintenant le montage de la figure 1.14, composé de deux transistors et une
résistance. Nous pouvons construire une table représentant la valeur de la tension en sortie du
montage en fonction des tensions en entrée. Nous pouvons traduire cette table en une zable
de vérité en remplagant les valeurs de tension par les états « 0 » ou « 1 » correspondants. Nous
avons créé un opérateur de traitement binaire (la fonction « non-ou ») qui prend la valeur « 0 »
en sortie si 'une ou 'autre des entrées est a « 1 ».

Vad
Vini | Vin2 | Viortie || Inl | In2 | Sortie
e Vies | <Vies | Vaa || 0 | 0 | 1
T ‘.—T_ <Vier | >Vies | «0V» 0 1 0
¥in1 | ~ ¥in2 | N Sortle Vies | <Vies | <OV . 0 0
>Vier | >Vies | «0V» 1 1 0
AT

Figure 1.14: Fonction NOR2 : schéma et table de vérité

Nous pouvons évidemment élaborer des fonctions plus complexes soit par construction
soit par combinaisons de différentes fonctions déja créées. La fonction « ou» peut se construire,
par exemple, en connectant une fonction « inverseur » derriére la fonction « non-ou ». Une
autre fonction importante du traitement numérique est la mémorisation des informations.
La figure 1.15 montre comment au moyen de deux inverseurs connectés I'un a l'autre il est
possible de créer un dispositif possédant deux états stables que 'on assimilera au stockage
d’une information binaire. Comme indiqué dans la représentation des fonctions de transfert
des deux inverseurs le couple de tensions (V,, V3) ne peut prendre que les valeurs (Vg Vinin)
ou (Vinin, Vaa) et ce tant que le dispositif est alimenté par la source de tension V4. Nous ne
traiterons pas dans ce cours de la maniére de forcer cette mémoire a prendre un état désiré 0
ou 1.

Ydd

Figure 1.15: Fonction mémorisation : schéma et fonctions de transfert
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1.4 La technologie micro-électronique

Le ro6le de la technologie micro-électronique est la réalisation et 'intégration des transistors
nécessaires a la réalisation des opérateurs dont nous avons vu un premier apergu. Il se trouve
que le traitement ou le stockage de données manipule une matiere premicre sans dimensions
physiques : I'information. Par conséquent, le dispositif de traitement ou de stockage peut étre
aussi petit que 'on peut le souhaiter dans la limite de nos capacités ou de nos connaissances
scientifiques a une période donnée. Toutes les bases techniques de la fabrication des circuits
intégrés électroniques ont été établies vers 1960 ; depuis les progres ne sont que des améliora-
tions successives sans remise en question fondamentale du procédé initial.

1.4.1 Quelles propriétés des matériaux peut-on exploiter pour créer des
transistors ¢

Nous désirons créer un dispositif passant d'un mode isolant (interrupteur ouvert) a un
mode conducteur (interrupteur fermé) en fonction d’'une commande électrique extérieure.
Un relai électro-mécanique ferait I'affaire, mais il semble plus judicieux de chercher a exploi-
ter des phénomenes physiques qui permettraient de modifier directement les caractéristiques
conductrices d’'un matériau. Les matériaux semi-conducteurs (silicium, germanium, arséniure
de gallium...) sont des matériaux révés pour cet usage. Ces matériaux ont les deux propriétés
fondamentales suivantes :

o Il est possible de modifier « statiquement » les densités de charges libres, et donc suscep-
tibles de créer un courant électrique, dans le matériau en injectant des impuretés (bore,
arsenic, phosphore...) dans leur structure : on appelle cela le dopage.

o Il est possible de modifier « dynamiquement » les densités de charges libres dans le ma-
tériau sous I'influence de champs électriques.

En combinant ces deux phénomenes, nous pouvons créer des transistors ayant le compor-
tement demandé. Le transistor le plus couramment utilisé actuellement est le transistor MOS
(pour Métal/Oxyde/Semi-conducteur). La figure 1.16 présente une vue en coupe et en pers-
pective d’un transistor MOS de type N (vous verrez en électronique analogique qu’il existe
deux types de transistors MOS, les N et les P).

Les éléments essentiels constituant un transistor MOS de type N sont les suivants :

o Un substrat faiblement dopé avec des dopants de type P (atomes de dopants accep-
teurs d’électrons). On note P~ ce type de dopage. Polarisé correctement, ce substrat est
isolant.

e Au sein de ce substrat, deux zones approximativement parallélépipédiques, fortement
dopées avec des dopants de type /N (atome de dopants donneurs d’électrons). On note
N ce type de dopage. Ces zones dopées sont nommées Source et Drain du transistor.
Notons que Source et Drain sont indiscernables : le transistor est physiquement symé-
trique.

e La zone de substrat située entre Source et Drain se nomme le canal du transistor. La
longueur L et la largeur W (de I'anglais Width) du canal étaient dans les technologies
courantes en 2004 de 'ordre du dixiéme de micron. En 2014, cest le centiéme de mi-
cron. En jouant sur ces deux dimensions le concepteur peut controler les performances
du transistor.

e Au dessus du canal, une fine couche isolante, constituée d’oxyde de silicium (SiOs).
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777

Figure 1.16: Ve en coupe d’un transistor NMOS

Lépaisseur de cette couche est actuellement de moins de 10 nm.

e Enfin, au dessus de cette couche d’oxyde, un dépét de silicium poly-cristallin, aligné
avec la canal du transistor. Il s'agit de la Grille du transistor. Le silicium poly-cristallin
est un agglomérat de petits cristaux de silicium (cest un matériau conducteur).

e La perspective nous montre, de plus, les connecteurs métalliques permettant de « rac-
corder » Source et Drain du transistor au reste du circuit.

Dans le transistor MOS, le champ électrique créé en polarisant convenablement la Grille

permet de moduler le courant passant entre Drain et Source.

1.4.2 Quelles sont les différentes étapes de la fabrication des circuits in-
tégrés ?

La fabrication d’un circuit intégré doit satisfaire a trois besoins :
o créer des transistors les plus performants possibles ;
o offrir les moyens d’interconnecter entre eux ces transistors, ainsi que d’interconnecter
le circuit intégré avec le monde macroscopique ;
e offrir une protection, contre les agressions liées aux conditions d’utilisation, suffisante
pour garantir une fiabilité satisfaisante.
Le matériau de base est le silicium, I'élément le plus commun sur Terre apres 'oxygene.
Ce matériau est purifié et transformé en un /ingor mono-cristallin de quelques dizaines de cm
de diamétre. Le silicium est purifié pour comporter moins d’une impureté pour 100 millions
d’atomes de silicium, en effet le niveau des dopages destinés a ajuster les propriétés semi-
conductrices du matériau sont de I'ordre de 10 atomes de dopant pour un million d’atomes
de silicium. Le lingot est découpé en tranches (wafer pour les anglo-saxons) de faible épaisseur.
Ces tranches sont polies jusqu’a ce que les défauts de surface n’excedent pas quelques couches
atomiques. Les tranches sont ensuite envoyées en fonderie pour la fabrication proprement dite
des circuits intégrés. On fabrique ainsi en parallele plusieurs dizaines de circuits sur la méme
tranche.
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Les traitements effectués sur les tranches se résument a quelques étapes simples plusieurs
fois répétées :

o Croissances ou dép6ts de silice sur la surface de tranche : il s'agit de réaliser des isolations

entre éléments de différentes couches ou des grilles de transistors.

o Lithographie : il sagit de dessiner les motifs désirés dans le matériaux. Cela commence
par le dépdt d’une résine photo-sensible sur la surface de la tranche. Apres exposition a
travers un masque et développement la résine est éliminée des endroits désirés. La résine
restante servira de protection pour une attaque chimique sélective de la tranche.

o Implantation ionique : il sagit de réaliser les dopages nécessaires au fonctionnement des
transistors. La silice au préalablement gravée par lithographie sert de masque naturel
pour définir les zones ol seront les transistors.

o Dépits de métaux : il s'agit la de déposer uniformément sur la tranche une couche de
métal qui servira a réaliser des connections entre transistors.

La derniére étape de traitement de la tranche consiste & noyer les circuits dans un épais
matériau de protection, sauf aux endroits ot 'on voudra souder des fils les reliant au monde
extérieur. Apres différents test sur les tranches, les circuits sont découpés et, apres étre de
nouveau testés, montés dans un boitier comme indiqué figure 1.17.

Figure 1.17: Encapsulation d'un circuit intégré dans un boitier.

1.5 Les filieres technico-économiques

1.5.1 La recherche d’'un optimum de rendement dans I’utilisation de la
technologie

Pour finir nous abordons, dans ce chapitre, différentes applications qui sont faites de la
technologie micro-électronique et qui conduisent pour des raisons techniques et économiques
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a différentes filieres de réalisation des systemes électroniques numériques. Nous ne nous in-
téressons ici qu'a la fonction « traitement », 'industrie des mémoires (fonction « stockage »)
n’étant pas abordée.

1.5.2 Les circuits « universels » tels les microprocesseurs

Pour minimiser 'impact du cotit de conception et de fabrication des circuits intégrés les
plus complexes, il est intéressant de leur donner une gamme d’applications permettant de
sadresser une clientele la plus large possible. Dans cet esprit, il sagit de créer un circuit de
traitement numérique dont I'usage final (lapplication) n’est pas connue a la fabrication. Pour
cela, il suffit de réaliser un circuit intégré ayant quelques ressources de traitement assez géné-
riques (addition de deux nombres, stockage d’un nombre en mémoire, lecture d’'un nombre
d’une mémoire...) associées a un dispositif de contréle capable d’interpréter des ordres simples
qui sont stockés dans une mémoire extérieure au circuit. Il suffit de changer le contenu de
cette mémoire (le programme) pour changer 'enchainement des traitements effectués par le
circuit, donc 'application. Avec de tels circuits 'augmentation de complexité des applications
est gérée simplement par 'augmentation de la taille des programmes.

1.5.3 Les circuits spécifiques a une application

Considérons maintenant une application tres spécifique, faiblement complexe mais né-
cessitant beaucoup de puissance de calcul. Un microprocesseur peut ne pas suffire a fournir
la puissance de calcul nécessaire. On peut tenter d’utiliser plusieurs microprocesseurs, mais la
gestion des échanges est malaisée et le colit du systéme risque de devenir rapidement prohi-
bitif. Une alternative au microprocesseur est le ciblage direct des applications sur le silicium.
Les circuits intégrés réalisés de cette fagon sappellent des circuits intégrés spécifiques a une
application (ASICs pour les anglo-saxons). Par exemple, une opération cruciale en télévision
numérique, I'estimation de mouvement est réalisée actuellement par un seul circuit ASIC
capable de calculer plus de dix milliards d’additions par seconde, ce qui dépasse de loin les
performances des meilleurs microprocesseurs. La contrepartie a cette performance est que ce
circuit ne peut servir qu'a la télévision numérique...

1.5.4 Les circuits logiques programmables

Les circuits logiques programmables (CLP) visent 2 un compromis entre les avantages des
ASIC et des microprocesseurs. Il s’agit comme pour un ASIC de viser des applications relati-
vement simples mais demandant de fortes puissances de calcul tout en conservant la souplesse
de la programmation. Pour arriver a cela, ces circuits sont composés de milliers de fonctions
logiques dont les équations sont stockées sous forme de tables de vérité dans des mémoires
internes au circuit. Des centaines de milliers de fils de connexions parcourent le circuit en
tous sens et sont potentiellement connectables aux fonctions logiques via des transistors ser-
vant d’interrupteurs. Les états de ces interrupteurs sont a leur tour stockés dans des mémoires
internes au circuit. En résumé, ces circuits peuvent changer de fonction et de ciblage par
simple modification du contenu de mémoires. Cette souplesse est évidemment trés avanta-
geuse, trés utilisée pour la réalisation de prototypes ou de petites séries. Les ASIC remplacent
cependant systématiquement les CLP dés qu'il sagit de produire en masse, notamment pour
des questions de rendement d’utilisation du silicium.
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1.5.5 Les systemes intégrés sur puces

Petits derniers des évolutions de I'industrie micro-électronique, les systémes sur puces (ou
SOC pour « System On Chip ») tirent avantage des taux d’intégration faramineux atteints ces
derniéres années (plus de 400 000 portes logiques par mm? de silicium) pour intégrer sur
une seule puce de Silicium toutes les fonctionnalités « logicielles » et « matérielles » nécessaires
a la réalisation de syst¢mes de traitements totalement autonomes. Ces puces inteégrent non
seulement des fonctionnalités communes aux trois variantes précédemment présentées mais
aussi des capteurs et éventuellement dans un futur proche des éléments mécaniques (moteurs,
pompes...).

1.6 Bibliographie

Lesite Webhttp://jas2.eng.buffalo.edu/applets du professeur Chu Ryang WIE
de 'université de Buffalo (état de New-York) permet d’exécuter quelques démonstrations in-
teractives sur 'usage des matériaux-conducteurs, sur le fonctionnement des transistors ainsi
que sur le fonctionnement de quelques montages de bases de 'électronique. Les liens suivants
sont particulierement en rapport avec ce chapitre :

e n-channel MOSFET, both side-view and top-view and full photoresist steps ;

e CMOS Inverter, side-view, device fabrication steps ;

e Fabrication @ various companies.


http://jas2.eng.buffalo.edu/applets
http://jas2.eng.buffalo.edu/applets/education/fab/NMOS/nmos.html
http://jas2.eng.buffalo.edu/applets/education/fab/invFab/index.html
http://jas2.eng.buffalo.edu/applets/education/fab/pn/finish8.html
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Chapitre 2

Fonctions combinatoires

2.1 Introduction

Nous avons évoqué, dans le chapitre 1, la possibilité de réaliser physiquement des fonc-
tions de calcul utilisant une représentation binaire des données. Avant de poursuivre plus avant
Iétude de la réalisation physique de ces fonctions, nous allons développer les bases mathéma-
tiques des fonctions logiques (Algebre de Boole) ainsi que les méthodes de représentation et
de manipulation associées.
Le choix d’une structure physique optimale pour construire une fonction logique est une
opération complexe dépendant de nombreuses contraintes telles que I'optimisation de la vi-
tesse de traitement, la minimisation de I'énergie dissipée par opération ou tout simplement le
colit de fabrication.
Nous nous contenterons dans ce chapitre d’envisager le critére suivant qui pourra étre
remis en cause dans la suite du cours :
e La construction de fonctions combinatoires complexes est basée sur I'utilisation d’une
bibliotheque de fonctions logiques (ou portes) élémentaires telles que I'inversion, le
«ou» logique, et le «et» logique.

e Loptimisation des fonctions complexes est basée sur la minimisation du nombre des
portes élémentaires utilisées qui correspond a une simplification des équations boo-
léennes associées.

2.2 Variables et fonctions logiques, tables de vérité

Considérons I'ensemble £ i 2 éléments (0, 1).

1. Une variable logique est un élément de £ et ne posseéde ainsi que 2 valeurs O et 1. Elle
est représentée par des lettres (A, b,e, X, -+ ).

2. Une fonction logique de plusieurs variables applique £ x E'x - - - I/ dans E. Elle associe
aun n-uplet de variables booléennes (eg, €1, - - - , €, _1) unevaleur F'(eg, €1, -+, €,_1).

3. Il existe différentes manieres d’exprimer une fonction booléenne. Une fonction de n va-
riables est enti¢rement décrite par I'énoncé des valeurs de cette fonction pour I'ensemble
(ou le sous-ensemble de définition) des combinaisons du n-uplet de variables :

F(Oa 7070)7F(07"' 7071)7F(O7"' 717())7"' 7F(17 7171>
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Cet énoncé prend généralement la forme d’un tableau 2 n + 1 colonnes et au plus 2"
lignes, chaque ligne exposant une combinaison des variables et la valeur correspondante
de la fonction. Les tableaux 2.1 et 2.2 suivants donnent la forme générale de tables de
vérité de fonctions de trois variables totalement (fonction F') ou partiellement (fonction

(7) définies.
A| B|C| F(AB,QC)
0/ 0|o0| F@,00)
001 F0,01)
0ol1]0]| F0,1,0)
011 F0,1,1)
1100 F(1,0,0)
10| 1] F1,01)
1|10 Fe11,0
111 Fa,1,1)

A|B|C| GAB,CQC)
01010 1
01011 1
0] 110 0
0| 1| 1| nondéfinie
110 | 0 | non définie
110|1 1
11110 0
17111 0

Table 2.2: Table de vérité d’une fonction partiellement définie.

2.3 Représentations des fonctions logiques

2.3.1 Formes algébriques

Nous associons, a 'ensemble F, I'algébre de Boole basée sur trois opérateurs logiques :

o Opérateur NON : réalise la complémentation (ou inversion) représentée ici par une
barre horizontale : « 7 ».

e Opérateur OU : réalise 'union (ou addition logique) notée ici : « + ».

o Opérateur ET : réalise 'intersection (ou multiplication logique) notée ici : « - ».
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Al A
1
1]0

Table 2.3: Opérateur NON.

A+ B

A
0
0
1
1

— o ~= ol
—_ = = o |+

Table 2.4: Opérateur OU.

A-B

A
0
0
1
1

— o ~ ol

_ o O O

Table 2.5: Opérateur ET.

Les tables de vérité de ces trois fonctions logiques sont données dans les tableaux 2.3, 2.4
et 2.5.

Une fonction logique booléenne se présente comme une association des opérations algé-
briques précédentes sur un ensemble de variables. Elle peut s’écrire de plusieurs fagons.

2.3.2 Forme disjonctive

Elle correspond 4 une somme de produits logiques : F' = ¥II(e;), ol e; représente une
variable ou son complément. Exemple :

XY, 2)=X-Y+X-Z+X-Y-Z

Sichacun des produits contient toutes les variables d’entrée sous une forme directe ou com-
plémentée, alors la forme est appelée « premiere forme canonique » ou « forme canonique
disjonctive ». Chacun des produits est alors appelé minterme. Exemple de forme canonique
disjonctive :

R(X)Y,2)=X-Y-Z+X-Y-Z+X-Y-Z

2.3.3 Forme conjonctive
Elle fait référence  un produit de sommes logiques : F' = I1¥(e;). Voici un exemple :

BXY,Z)=(X+Y) (X+2)- (X+Y +2)
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Si chacune des sommes contient toutes les variables d’entrée sous une forme directe ou
complémentée, alors la forme est appelée « deuxiéme forme canonique » ou « forme cano-
nique conjonctive ». Chacune des sommes est alors appelée maxterme. Exemple de forme
canonique conjonctive :

(XY, Z2)=(X+Y+2) - (X+Y+2)- (X+Y +2)

2.3.4 Equivalence entre la table de vérité et les formes canoniques

Nous avons défini la table de vérité d’une fonction comme la correspondance entre chaque
combinaison des variables (du domaine de définition de la fonction) et la valeur (0 ou 1)
associée de cette fonction.

Chacune des combinaisons des variables définit une configuration des entrées, on peut
donc associer une configuration a chaque ligne d’une table de vérité.

2.3.5 Forme canonique disjonctive

Une fonction logique est représentée par I'ensemble des configurations pour lesquelles la
fonction est égale & « 1 ».

Considérons maintenant une configuration des entrées pour laquelle une fonction boo-
léenne vaut « 1 » : il existe un minterm unique prenant la valeur « 1 » dans cette configuration.

Il sufhit donc d’effectuer la somme logique (ou réunion) des minterms associés aux confi-
gurations pour lesquelles la fonction vaut « 1 » pour établir 'expression canonique disjonctive
de la fonction.

Exemple d’une fonction H a trois variables entierement définie :

A|B|C | H(A, B,C) | Etat | Minterme
0010 1 0 |A-B-C
001 1 1 |A-B-C
0[1]0 0 2 |A-B-C
0111 1 3 ||A-B-C
11010 0 4 |A-B-C
11011 1 5 |A-B-C
11110 0 6 |A-B-C
1111 0 7 |A-B-C

Table 2.6: Table de vérité de la fonction H : états associés et mintermes.

On remarque que H(A, B,C) = 1 pour les états 0, 1, 3, 5. On écrit la fonction ainsi
spécifiée sous une forme dite numérique : H = R(0, 1, 3, 5), Réunion des états 0, 1, 3, 5. La
premiere forme canonique de la fonction H s'en déduit directement :

H(A,B,C)=A-B-C+A-B-C+A-B-C+A-B-C
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2.3.6 Forme canonique conjonctive

Considérons maintenant une configuration des entrées pour laquelle la fonction vaut « 0 ».

Il existe un maxterm unique prenant la valeur « 0 » en cette configuration. Ce maxterm
prend donc la valeur « 1 » dans toutes les autres configurations des entrées.

Il sufht donc d’effectuer le produit logique (ou intersection) des maxterms associés aux
configurations pour lesquelles la fonction vaut « 0 » pour établir 'expression canonique conjonc-
tive de la fonction.

Reprenons 'exemple de la fonction H :

A|B|C| H(A B,C) || Etat | Maxterme
000 1 0 |A+B+C
001 1 1 |A+B+C
010 0 2 |A+B+C
011 1 3 |A+B+C
110]0 0 4 ||[A+B+C
101 1 5 |A+B+C
111]0 0 6 |A+B+C
111 0 7 |A+B+C

Table 2.7: 1able de vérité de la fonction H : états associés et maxtermes.

On remarque que H(A, B,C) = 0 pour les états 2, 4, 6, 7. On écrit la fonction ainsi
spécifiée sous une forme dite numérique : H = I(2, 4, 6, 7) Intersection des états 2, 4, 6, 7.
La deuxi¢me forme canonique de la fonction H s’en déduit directement :

H(A,B,C)=(A+B+C)- (A+B+C)-(A+B+C)-(A+B+C)

2.4 Description de méthodes de simplification

On cherche ici 4 obtenir une expression algébrique comportant un nombre minimal de
termes, ainsi qu'un nombre minimal de variables dans chaque terme dans le but de simplifier
la réalisation matérielle.

Attention : Comme nous 'avons indiqué en introduction, 'optimisation d’une fonction
logique dépend de paramétres tels que la performance en vitesse désirée, la consommation
maximale autorisée ou 'obligation d’utiliser des bibliothéques de fonctions élémentaires pré-
définies. La complexité de la représentation algébrique n’est donc qu’un critére d’optimisation
parmi d’autres.

2.4.1 Utilisation des propriétés de I’algébre de Boole

Les propriétés, lois et théorémes fondamentaux de I'algebre de Boole sont a notre disposi-
tion pour manipuler les équations.
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Attention! Il ny a pas de structure de groupe, ni pour ET, ni pour OU! En effet, il n'y a
pas d’élément opposé pour ces deux opérations. C’est avec le OU EXCLUSIF (XOR) quil y
a une structure de groupe.

La structure d’anneau s'obtient en prenant le groupe obtenu avec le XOR et en ajoutant
comme loi multiplicative, soit le ET, soit le OU.

Complémentarité : at+a=1, a-a=0, a=a

Idempotence : ata+ta+--=a, a-a-a---=a
Eléments neutres : a+0=a, a-l=a

Elts absorbants : a+1=1, a-0=0
Commutativité : a+b=b+a, a-b=>b-a
Associativité : (a+b)+c=a+(b+c)=a+b+c, (a-b)-c=a-(b-c)=a-b-c
Distributivité : (a+b)-c=(a-c)+(b-c), (a-b)+c=(a+c) - (b+c)
Th. d’absorption (1) : a+(a-b)=a, a-(a+b)=a

Th. d’absorption (2) : a-b+b=a+b, (a+b)-b=a-b

Th. d’adjacence : (a+b) - (a+b)=a, a-b+a-b=a

Remarque : Deux termes sont dits adjacents logiquement s’ils ne different que par une
variable.

Théoréeme de De Morgan :

a+b=a-b, a-b=a+b

Premier théoréme d’expansion :

F(607617'” y €iy 76n—1) = ei'F(Ganla”' 71a"' 7€n—1)+€_i'F(607617"' 707"' aen—l)

Second théoréme d’expansion :
p

F<60)617"' y Ciyt aen—l): [€i+F(€07617"' 707"' 76n—1)]'[€_i+F(607617"' 717"'

2.4.2 Simplification a partir de la forme algébrique

Les méthodes algébriques employées se rapportent aux relations fondamentales d’absorp-
tion, d’adjacence, de mise en facteur et aux théorémes de De Morgan. On distingue plusieurs
procédés permettant d’aboutir au but recherché :

Regroupement des termes et mises en facteur

Z = a-c-d+

= a-c+a-

Nous avons successivement utilisé une mise en facteur, la complémentarité, une deuxieme
mise en facteur et enfin le théoréme d’absorption.

)6n—1)]
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Réplication de termes existants

Z = a-b-c+a-b-c+a-b-t4+a-b-c
a-b-cta-b-cta-b-cta-b-cta-b-c+a-b-c
(@+a)-b-c+(b+b)-a-ct+(@+c)-a-b

= b-c+a-c+a-b

La réplication du terme @ - b - ¢ permet de simplifier chacun des trois premiers termes en
utilisant une mise en facteur et la complémentarité.

Suppression de termes superflus

N
1
@I @l
@‘I O“l @l

a-
b-

\
e |

_l_
+
+

Nous avons ici réintroduit la variable b dans le troisiéme terme par I'intermédiaire de
la propriété de complémentarité, nous avons ensuite utilisé la propriété d’absorption pour
simplifier les produits.

Simplification par utilisation des formes canoniques

Silon dispose de la table de vérité de la fonction, on prend pour équation algébrique de
départ la forme canonique comportant le minimum de termes. Cette équation sera ensuite
simplifiée en utilisant les méthodes décrites précédemment. En effet, pour une fonction 8 N
entrées, la forme canonique disjonctive comportera P mintermes (avec P < 2V), alors que la
forme conjonctive comportera 2 — P maxtermes.

2.4.3 Méthode des tables de Karnaugh

Les tables de Karnaugh sont des représentations sous forme d’un tableau & deux dimensions
de la table de vérité. Elles sont construites de fagon a ce que les termes logiquement adjacents
soient géométriquement adjacents. Chaque ligne de la table de vérité est représentée par une
case du tableau de Karnaugh dans laquelle on indique la valeur de la fonction.

La contrainte d’adjacence géométrique est réalisée par un ordonnancement des lignes (resp.
colonnes) du tableau pour lequel le nombre de bits modifiés d’un code au suivant est constant
et égal 4 un (code de Gray). Cette propriété est respectée entre le code de la derniere ligne
(resp. colonne) et celui de la premiere ligne (resp. colonne). Prenons par exemple le cas d’une
fonction F' de trois variables, spécifiée dans le tableau 2.8.

Nous constatons que la fonction F' est égale a « 1 » pour :

o les 4 cases (adjacentes) qui constituent la ligne «a = 1 » (Fig. 2.11);

o les 4 cases (adjacentes) qui constituent le carré « ¢ = 1 » (Fig. 2.12).

Les deux zones déterminées « recouvrant » exactement les cases du tableau ot la fonction
F vaut 1, nous pouvons en déduire directement que : F' = a + c.

Nous allons maintenant généraliser la méthode exposée dans I'exemple.
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A|B|C| F(A B,C) | minterme
0[0]0 0 A-B-C
0011 1 A-B-C
0[1]0 0 A-B-C
011 1 A-B-C
11010 1 A-B-C
1101 1 A-B-C
1111]0 1 A-B-C
111 1 A-B-C

Table 2.8: Table de vérité de la fonction F' : états associés et mintermes.

BC 00| 01|11 ]10
A
0 O] 1]11]0
111

Table 2.9: Table de Karnaugh de la fonction F.

Be 00 01 11 10

0 ABC | ABC | ABC | AB-
ABC | ABC | ABC | AB-

Ql Ql

Table 2.10: Correspondance des mintermes.

Be 00 |01 |11 10

A
0 O} 11,0
1 1111

Table 2.11: Adjacence : a = 1

Be 00 |01 |11 ] 10

A
0 o} 11,0
1|1 ]1]1

Table 2.12: Adjacence : ¢ = 1
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2.4.4 Construction du tableau de Karnaugh

o Ilya?2" cases pour n variables.

o A chaque case est associé un minterm égal a 1 pour la combinaison considérée.

o Le passage d’'une case a une de ses voisines se fait par changement d’une seule variable
3 la fois.

2.4.5 Regles de simplification

Il sagit de « paver » le tableau de Karnaugh en regroupant les « 1 » adjacents de telle maniere
que :

e chaque « 1 » de la fonction appartient 2 au moins un pavé,

e les pavés sont rectangulaires,

o 2 la fois la longueur et la largeur de chaque pavé sont une puissance de 2.

Chaque pavé ainsi constitué représente un terme produit de la fonction ne contenant que
les variables « stables » (par rapport au codage des lignes et des colonnes du tableau).

Attention !

e De méme qu'il n'y a pas unicité de la représentation algébrique d’une fonction boo-
léenne, il n’y a pas unicité des regroupements géométriques dans le tableau de Karnaugh.

o Il ne faut pas oublier les adjacences possibles entre colonnes et lignes extrémes du tableau
de Karnaugh.

Lexemple suivant (Tab. 2.13) illustre ces deux principes :

BC 00|01]11] 10
A
0 1 1 1 0
1 1 0 1 1
Table 2.13: 7able de Karnaugh
BC 000111110
0 1 1 1 0
1 0 1
Table 2.14: Premier pavage
BC 000111110
0 1 1 1 0
[N

Table 2.15: Deuxiéme pavage
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Selon le premier pavage (Tab. 2.14), 'expression obtenue est :
b-e+a-c+a-b
Le second pavage (Tab. 2.15), qui utilise une adjacence entre deux cases extrémes, donne :

a-b+b-c+a-c

2.4.6 Fonctions non complétement définies

Certaines combinaisons peuvent ne pas se produire : elles n'ont pas d’effet sur la valeur
de la fonction. Ces états indifférents, notés X ou —, peuvent étre utilisés partiellement ou
totalement pour simplifier la fonction, comme illustré dans I'exemple de la Fig. 2.16.

“p 00 [ 01 | 11 | 10
AB
00 11700
01 1 | X | X | X
11 0|1 1]0
10 0] 0010

Table 2.16: 7able de Karnaugh

oD 00 [ 01| 11| 10
AB
00 1 100
01 1 1 | X | X
11 0|1 1]0
10 0] 01010

Table 2.17: Premier pavage

“p 00 [ 01 | 11 | 10
AB
00 111700
01 111 1]|X
11 01 110
10 0] 0010

Table 2.18: Deuxiéme pavage

On profite du fait que les états indifférents peuvent étre interprétés au choix comme des 1
ou des 0 pour réaliser les regroupements les plus pertinents permettant d’aboutir a une expres-
sion logique minimale. Ici, les deux regroupements en carrés retenus dans les tableaux 2.17
et 2.18 simposent naturellement.
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Lexpression obtenue finalement est :

a-c+b-d

2.4.7 Pertinence de la méthode

Remarquons que l'ordre des lignes et des colonnes est celui d’'un “code de Gray”. Cest-
a-dire que d’une colonne 2 la suivante, un seul bit de numero de colonne est modifié. Idem
entre les extrémités droite et gauche du tableau. Idem pour les lignes. Ceci est indispensable
pour que les regroupements de cases adjascentes soit équivalents a 'application du “théoréme
d’adjascence”. Ceci fonctionne bien avec des adresses de lignes et de colonnes sur 2 bits car il
n’y a qu'un seul code de Gray sur 2 bits (2 une symétrie ou permutation circulaire pres). Or
cette propriété d’'unicité du code de Gray n’existe plus sur 3 bits. Il y a donc plusieurs fagons
de construire le “cube de Karnaugh”, et il faudrait toutes les essayer... sans compter que C'est
difficile de voir les regroupements dans un tel cube...

Cette méthode n’est donc pas utilisée avec plus de 4 variables.

2.5 Représentation schématique des fonctions logiques

Notre bibliotheéque de fonctions ou portes logiques élémentaires n’est pour I'instant consti-
tuée que des trois opérateurs inversion (NOT), « et » logique (AND) et « ou » logique (OR).
Nous allons compléter cette bibliothéque par quelques éléments supplémentaires dont I'ob-
jectif est de mettre en place une représentation schématique des fonctions logiques.

Nous distinguerons ainsi :

e lafonction NON-ET ou NAND dont la sortie vaut 0 si et seulement si toutes les entrées

sontal,

e la fonction NON-OU ou NOR dont la sortie vaut 1 si et seulement si aucune entrée

nesta 1.
Ces deux fonctions sont la simple négation des fonctions AND et OR.
Nous associons maintenant 4 chacune des fonctions NOT, OR, AND, NAND et NOR

un symbole graphique. La négation sera représentée systématiquement par un cercle :

AND NOT NAND NOR

DD%DSD@

Figure 2.1: Symboles des portes élémentaires.

Exemple de schéma et équation algébrique correspondante :
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Y= ((A+B)-C)+C

Figure 2.2: Un exemple de schéma.
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2.6 Quelques fonctions combinatoires importantes

2.6.1 Fonctions d’aiguillage : multiplexeurs

La fonction « multiplexeur & N entrées » consiste a aiguiller vers la sortie de la fonction
une entrée parmi N. Le multiplexeur a 2 entrées est le multiplexeur le plus simple & concevoir.
Son équation algébrique est de la forme :

Y=A-Ey+A FE,

ol (Ey, E) sont les entrées a multiplexer et A est une entrée de sélection.

La fonction multiplexeur est une traduction directe d’une instruction de type « 1£
then --- else --- »dansle cadre de langages informatiques. Elle permet aussi de décom-
poser une fonction booléenne complexe en utilisant les théor¢mes d’expansion.

Le multiplexeur & deux entrées est souvent symbolisé de la fagon suivante :

A

EO
El

Y

Figure 2.3: Multiplexeur & deux entrées (Mux2).

Le multiplexeur 2 2V entrées nécessite N entrées de sélection pour distinguer les 2V confi-
gurations des entrées.

Nous allons tenter maintenant de construire un multiplexeur a 4 entrées a partir des portes
de base définies dans le chapitre précédent. Lexpression algébrique de la sortie est de la forme :

S:A_o'A_l'E0+A0'A_1'E1+A_0'A1'E2+A0'A1'E3

Cette formulation fait apparaitre tous les minterms possibles a partir des entrées de sélec-
tion (Ao, A1). Le schéma de la Fig. 2.4 présente un multiplexeur a 4 entrées muni en outre
d’une entrée supplémentaire V' permettant de valider ou d’invalider (S = 0) la sortie de la
fonction.

Remarque : Il est possible de construire un multiplexeur a 4 entrées a partir de 3 mul-
tiplexeurs a 2 entrées. On se base pour cela sur la reformulation suivante, illustrée dans la
Fig. 2.5.

S=A1-(Ay-Eo+ Ay Er) + A - (Ag- By + Ay - E3)
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Figure 2.4: Schéma interne d’un multiplexeur a 4 entrées avec entrée de validation.

A0

= g
L |
—_ O

A0 S

e
T
o

i

Figure 2.5: Reformulation du multiplexeur & 4 entrées.
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2.6.2 Opérateurs de comparaison

Les fonctions de comparaison les plus simples sont le test de I'égalité de deux variables boo-
léennes ainsi que le test de complémentarité de deux variables booléennes. Ces deux fonctions
ont pour équations algébriques respectives :

Egali: S = A-B+A-B
Complémentarité: S = A-B+A-B
Ces fonctions étant tres souvent utilisées, il a été jugé utile de définir un nouvel opérateur
booléen pour les représenter. Il s’agit de opérateur « OU exclusif » que nous représenterons
par le symbole suivant : @.

Les relations précédentes deviennent :

Egalité (NON-OU-exclusifouXNOR): S = A-B+A-B = A& B
Complémentarité (OU-exclusif ou XOR): S = A- B+A-B = A®B

Les tables de vérité et symboles associés a ces fonctions sont donnés dans les tableaux 2.19

et 2.20.
A

jD@ 0

0

1

1

Table 2.19: Table de vérité et symbole des opérateurs XNOR
A
jD 0
0
1
1

Table 2.20: 7able de vérité er symbole des opérateurs XOR

Ae B

— o = o |
—_ o o = [P

— o = o |
o~ — o|®

Disposant du comparateur d’égalité & deux entrées, il est possible de généraliser I'opérateur
a la comparaison de deux mots de NV bits. Lexemple suivant montre un comparateur opérant
sur 2 mots de 4 bits.

Nous disposons de 2 nombres codés sur 4 bits : A = asasaiag et B = bsbaby by.

Alors A = B si et seulement si (a3 = b3) et (a2 = by) et (a1 = by) et (ag = by), ce qui
justifie le montage de la Fig. 2.6.
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Figure 2.6: Test dégalité de deux mots de 4 bits.
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2.7 Annexes

2.7.1 Exercice de consolidation

Lexpérience a montré que parmi les notions qui viennent d’étre exposées, celle dans la-
quelle on se prend le plus fréquemment les « pieds dans le tapis » et qui par ailleurs sert le
plus dans le cadre du module est la simplification des tables de Karnaugh. Lexercice suivant
constitue en conséquence un petit entrainement qui pourrait savérer salutaire afin d’étre au
point sur ce sujet.

On désire réaliser un afficheur 7 segments (a, b, c, d, e, f, g, voir Fig. 2.7) traduisant un
nombre binaire exprimé sur 4 bits A, B, C, D en un symbole hexadécimal :

(0,---,9,A4,b,C,d,E, F).

a

i b
L]

e C
d

Figure 2.7: Afficheur 7 segments. Un segment = une diode électro-luminescente.

La transcription de cette réalisation en tables de vérité si I'on considere que 'on travaille
en logique positive (segment allumé = « 1 ») donne une table par segment.

Pour vous aider, il vous est proposé de vous donner directement le tableau de Karnaugh
correspondant au segment « @ » ainsi que le résultat obtenu apres simplification.

AB\CD [o00][o01]11] 10
00 1 o] 1]
01 o 1] 11
11 1 o] 1]1
10 1| 1]o]1

Figure 2.8: Tableau de Karnaugh de a = F (A, B,C, D).

Le résultat A trouver est :
a=A-D+B-C+A-C+B-D+A-B-D+A-B-C

Comment l'obtient-on ? Détaillons pour les sceptiques !
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AB\ CD 00 01| 11 | 10

00 1 0 1 1

01 0 1
Regroupement : B - C' T T 1o 1

10 11 ]o]1

AB\CD [00[o01]11] 10
00 1

_ 01 0
1

1

Regroupement : A - C' T

10

AB\ CD 00 | 01 | 11 | 10

00 1 0 1 1
— 01 0 1 1 1

Regroupement: A - D T o 11
10 ! 0 !

AB\CD [o00[o01]11] 10

— 00 1 0 1 1
Regroupem.ent: B-D. . o1 o I 11 111
Les extrémités sont logiquement T T To 111
adjacentes ! 10 ] o 1

AB\ CD 00 01| 11 | 10

00 1 0 1 1

— 01 0 1 1
Regroupement: A - B - D T T To 111
10 1 1 0 1

AB\ CD 00 | 01 | 11 | 10

00 1 0 1 1

_ 01 0 1 1 1

Enfin, Regroupement: A - B - C. T T T o0 1 1
10 1 0 1

Léquation du premier segment a est ainsi obtenue 4 I'aide des 6 regroupements précédents.
A vous de les effectuer pour les autres segments. . .

Si vous arrivez au bout de cet exercice dans un temps raisonnable, vous pouvez considérer
que vous ne rencontrerez pas beaucoup de problémes dans le futur!

2.7.2 Bibliographie

o Groupe numérique Polycopié Composants et fonctions de I'électronique numérique, ENST
e Ronald Tocci « Digital Systems », Prentice Hall
e Eugene D. Fabricius, « Modern Digital Design and Switching Theory », CRC Press, 1992.
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Chapitre 3

Opérateurs arithmétiques

3.1 Introduction

Jusqu’a présent, nous avons principalement travaillé sur des bits simples (comprendre : des
nombres de 1 bit), ce qui ne nous permet de représenter que les valeurs 0 et 1. Dans ce chapitre
nous introduirons la représentation des nombres entiers plus grands que 1 et fractionnaires,
ainsi que les opérateurs associés. Nous verrons donc :

1. Représentation des nombres (codage des nombres)
(a) Représentation Simples de Position
(b) Conversions entre Bases
(c) Représentation en Signe et Valeur Absolue
(d) Représentation en Complément a 2
(e) Autres Codes

2. Opérateurs arithmétiques
(a) Additionneur

(b) Soustracteur

3.2 Représentation (codage) des nombres

3.2.1 Représentation Simples de Position

Un nombre positif N dans un systeme de base b peut étre exprimé sous la forme polyno-
miale N = a,_1 - 0" ' 4 a,_o- "2+ .. 4a b 4ag 4. . Faq- b +a b2+
gy 0™ fa_, - b7™

La représentation simples de position correspondante est ay,—1 4y ...01 G, A—1 ...Q—p,
La position d’un chiffre rappelle quelle puissance de la base multiplie ce chiffre :

e q; est le chiffre de rang i (a; appartient & un ensemble de b symboles)

® a,_; estle chiffre le plus significatif

® a_,, est le chiffre le moins significatif

S’il s’agit du systeme héxadécimal (b = 16) :
e a; appartient a 'ensemble {0, 1,2, 3,4,5,6,7,8,9, A, B,C, D, E, F'}

53
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§’il Sagit du systéme octal (b = 8) :
e a; appartient a 'ensemble {0,1,2,3,4,5,6,7}

§’il Sagit du systéme binaire (b = 2), les chiffres sont appelés bits :
e q; appartient a I'ensemble {0, 1}

Sil'on se déplace d’un rang vers la gauche, le poids est augmenté d’un facteur b. Si le déplace-
ment se fait vers la droite, il y a une division par b.
Le tableau 3.1 montre la représentation simples de position pour les nombres décimaux de
0 a 8 et leurs correspondances en binaire. Les décalages correspondant aux multiplications et
divisions par 2 peuvent étre vus :

e cn comparant 1yg et 219 (12 et 102)

e en comparant 31 et 619 (112 et 1105)

e en comparant 44 et 819 (1002 et 10002)

Décimal | Binaire

0

1

10

11
100
101
110
111
1000

e}

0~ O Ul R W N

Table 3.1: Exemple conversion binaire-décimal

3.2.2 Conversions entre Bases
Base b vers base 10

Pour cette conversion, il suffit de substituer la valeur b dans I'expression polynomiale par
lavaleurdelabase : N = a1 - 0" '+ a,o-0" 24+ ... +a;-b +ag-0+...+a_q-
bil +a_o- b72 + A1 ° b7m+1 +a_p, - b—m

Par exemple, pour trouver le correspondant de (A1C')16 dans le systéme décimal, il suffic

de faire : 10 - 162 + 1 - 16" + 12 - 16° = 2768,

Base 10 vers base b

Partie Entiere
Cette conversion consiste 4 faire des divisions successives du nombre décimal par b, jusqu’a
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obtenir un quotient nul. Le nombre dans la base b correspond aux restes des divisions faites,
dans le sens inverse ot ils ont été obtenus.
Soit la conversion 571 vers base 2 :

Division | Quotient | Reste

57/2 28 | 1(ap)
28/2 14 | 0(ay)
14/2 7| 0(a)
7/2 3 1(a3)
3/2 1 1(ay)
1/2 0 | 1(as)

Le résultat est donc (111001),, ott 'on n’affiche que les “restes”.

Partie Fractionnaire
Cette conversion consiste a faire des multiplications successives du nombre décimal par b. Le
nombre dans la base b correspond aux parties entieres des produits des multiplications faites,
dans le sens direct o ils ont été obtenus.

Soit la conversion 0, 571 vers base 2 :

Multiplication | Produit | Partie entiere
0,57-2 1,14 1(a_y)
0,14 -2 0,28 0(a—2)
0,28 -2 0,56 0(a—s)
0,56 -2 1,12 1(a_4)
0,122 0,24 0(a_s)
0,24-2 0,48 0(a—e)

Le résultat est donc (0, 100100)s5.

Base 2" vers base 2 et base 2 vers base 2"

A Taide de n bits, la conversion se fait sur chaque chiffre en base 2 pour ensuite les juxta-
poser :

Par exemple, (349)16 = (001110101001)5 et (264)s = (010110100)5

Base i vers base j

Si les deux bases sont des puissances de 2, la conversion se fait en utilisant 2 comme base
relais (¢ vers 2 et ensuite 2 vers 7). Sinon, la base relais est la base 10.
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3.2.3 Représentation en Signe et Valeur Absolue

La représentation en signe et valeur absolue consiste a ajouter un bit s a la représentation
simple de position afin de pouvoir représenter des nombres négatifs :
(S Ap_1 Gpg ...a1 Ao, A_1 ... G_p).

La convention adoptée est s = 0 pour un nombre positif et s = 1 pour un nombre
négatif. Ainsi, pour une représentation sur 4 bits, +5 = 0101 et —5 = 1101.

Du fait que cette représentation implique un traitement différent pour le bit de signe, elle
est peu intéressante pour I'implantation d’opérateurs arithmétiques.

3.2.4 Représentation en Complément a 2

Il existe une forme de représentation des nombres signés plus efficace que la représentation
en Signe et Valeur Absolue : le complément a deux. Le principe du complément a deux est
simple : dans la représentation non signée (simples de position, ou notation binaire habituelle)
sur n bits, on travaille implicitement modulo 2". Ainsi, sur n bits :

e 2" 3 ]la méme représentation que 0,

e (2" + 1) la méme que 1,

o ctc.

Clest pour cela que pour éviter les ambiguités, on se limite (en binaire non signé) a la repré-
sentation des nombres allant de 0 & (2" — 1) (soit 2" nombres au total).

Ce principe du modulo peut étre étendu aux nombres négatifs. Toujours sur 7 bits :
o si 0 a la méme représentation que 2" (soit 00...00),
e —1 devra donc avoir la méme que (2" — 1) (soit 11...11),
e —2la méme que (2" — 2) (soit 11...10),
® ctC.

Le complément 4 deux n'est qu'une convention, consistant a dire qu’ on décale la plage des
nombres représentables, en mettant le O au centre, et que, par compatibilité avec la représentation
binaire non signée, les nombres commengant par O seront considérés positifs, et ceux commengant
par 1 négatifs.

Autrement dit, au lieu de représenter des nombres non-signés allant de 0 & (2" — 1), on
représentera des nombres signés allant de —(2"7!) a +(2"~! — 1), soit 2" nombres au total
dans les deux cas.

Remarques :

e Par convention, le 0 est donc classé dans les nombres positifs.

e Les nombres positifs ont la méme représentation en binaire non signé qu'en complé-
ment a 2.

o Le complément a 2 permet de représenter moins de nombres positifs que le binaire non
signé (c’est normal, l'intervalle de 2" nombres a été séparé en deux parties de méme
longueur, une pour les positifs, une pour les négatifs).

e Le nombre d’entiers non nuls représentables en CA2 etant impair, une des deux plages
sera plus grande que l'autre. Le 0 étant considéré positif (car sa représentation com-
mence par un 0), il y aura donc un nombre strictement négatif de plus que de nombres
strictement positifs.
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Par exemple, pour une représentation sur 4 bits (n = 4),
e on peut représenter les nombres signés allant de —8 4 +7,

+5 = 01015,
—5 =2+ (=5) = +11 = 1011,
+7=0111,

—7=2"+(-7) =49 = 1001,
—8 =2+ (—8) = +8 = 1000,

+8 est non représentable (car il aurait la méme représentation que —8).

Le complément a deux permet que 'opérateur utilisé pour faire des additions puisse aussi
faire des soustractions : au lieu de soustraire un nombre a I'aide d’un opérateur spécialisé de
soustraction, il suffit d’ajouter son opposé (attention : “opposé” n'est pas la négation binaire
bit a bit, mais 'opposé arithmétique) en complément a deux, et de travailler 4 nombre de bits
constant (pour rester modulo 2").

Exemple : soit I'opération 7 — 5 en décimal. En binaire, pour une représentation sur 4 bits,
cela correspond 2 01115 — 0101,.

La soustraction de 01015 peut étre remplacée par une addition de son complément a 2,
soit 10115.

7—5=7+(—5)=01113 + 10115 = 10010,. Il ne faut garder que les 4 bits de poids

faible, pour obtenir la réponse exacte, c’est-a-dire, 0010, = 2.

3.2.5 Autres Codes

Ci-apres sont présentés quelques codes utilisés dans les syst¢tmes numériques. Les codes
de Gray, p parmi n et le code a bit de parité ne sont pas pondérés, Cest-a-dire qu'il n’y a pas
de poids attribué a chaque position (rang). Les rapports entre les symboles des codes et les
nombres sont de simples tableaux de correspondances convenus. De ce fait, ils sont moins
appliqués aux opérations arithmétiques. Ils sont principalement rencontrés dans les systemes
de communication pour le contrdle de transmission/réception de données.

Code BCD (Binary Coded Decimal)
Dans le code BCD chaque chiffre décimal (0,1, 2,3,4,5,6,7,8,9) est codé en binaire

a l'aide de 4 bits. Pour la conversion BCD vers Binaire, il suffit de convertir chaque chiffre
individuellement. La conversion Binaire vers BCD se fait en regroupant les bits 4 par 4. Ainsi,

178 scp = 0001011110005.

Code de Gray

Dans le code de Gray, deux termes successifs ne different que par un seul bit. Les termes
ne différant que par un seul bit sont appelés adjacents.
Code p parmi n

Dans ce code, a chaque nombre décimal correspondent n bits, dont p valent 1 et n — p
valent 0. I permet de détecter jusqu’a une erreur : si lors d’'une communication, il y a réception
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d’un nombre de 1 différent de p, cela signifie qu'il y a eu une erreur de transmission. Le tableau
3.2 illustre un exemple de ce code pourle casn =5 et p = 2.

Code a bits de parité

Dans ce code, un bit est ajouté aux symboles de départ de sorte que le nombre total de
1’s soit pair (impair), si la parité convenue est paire (impaire). Le tableau 3.2 donne I'exemple
pour 4 bits d’'information et une parité paire.

Décimal | Binaire | BCD | Gray | p parmin | parité
n DCBA | DCBA | DCBA | EDCBA | DCBAP
0 0000 0000 0000 00011 00000
1 0001 0001 0001 00101 00011
2 0010 0010 0011 01001 00101
3 0011 0011 0010 10001 00110
4 0100 0100 0110 00110 01001
5 0101 0101 0111 01010 01010
6 0110 0110 0101 10010 01100
7 0111 0111 0100 01100 01111
8 1000 1000 1100 10100 10001
9 1001 1001 1101 11000 10010
10 1010 - 1111 - 10100
11 1011 - 1110 - 10111
12 1100 - 1010 - 11000
13 1101 - 1011 - 11011
14 1110 - 1001 - 11101
15 1111 - 1000 - 11110

Table 3.2: Exemple de différents codes

3.3 Fonctions arithmétiques

La réalisation de fonctions arithmétiques est basée sur la décomposition de ces fonctions
en opérations booléennes élémentaires.

3.3.1 Additionneur

Considérons 'addition de deux nombres a; et b; codés sur 1 bit. Le résultat peut prendre
les valeurs 0, 1 ou 2, que 'on peut coder en binaire comme 00, 01 et 10. Les deux bits de ce
code sont appelés bit de somme s; (poids faible) et bit de retenue 7;;1 (poids fort). A 'aide
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de ces deux bits, 'addition s’exprime de la fagon suivante :
ai+b =21+

Attention! Ici, les signes “+” et “-” ne représentent pas le OU et le ET, mais 'addition et
la multiplication arithmétiques sur plusieurs bits!

Laddition peut étre vue comme une fonction booléenne a deux entrées (a; et b;) et a deux
sorties (s; et 7;41). Cette fonction est appelée demi-additionneur. Ses caractéristiques sont
résumées dans le tableau 3.1.

a; bz Tit1 S; Valeur déc1male
010 0 0 0
011 0 1 1
110 0 |1 1
111 1 0 2
Tit1 = a; - b;
S; = a; D bl
- o
P ) >—s
bi
TR
| 1 i

Figure 3.1: Table de vérité, équations algébriques et schéma d’un demi-additionneur.

Nous pouvons généraliser cette structure pour décrire 'addition de deux mots A et B de
taille supérieure a 1. Chacun des bits a; et b; sont additionnés un par un en commencant par
les bits de poids faible. Il faut pour cela répercuter a 'étape i + 1 'éventuelle retenue provenant
de l'addition de a; et b;. Une variable supplémentaire r; représentant une retenue entrante est
donc introduite. Par analogie, le bit ;1 est appelé retenue sortante.

A chaque itération 7, le résultat de cette addition des nombres a;, b; et r; peut prendre
les valeurs 0, 1, 2 ou 3, que 'on code en binaire comme 00, 01 et 10, 11. En utilisant les
notations précédentes, 'équation arithmétique de I'additionneur « 1 bit» avec retenue entrante
(ou additionneur « complet ») est alors :

a; +b+1; =211+ s

Nous présentons dans les tableaux suivants (3.3, 3.4, 3.5) la table de vérité de 'additionneur
complet ainsi que les tables de Karnaugh associées a ;11 et s;.
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a; | by | i || miv1 | Si || Valeur décimale
0100 0 |0 0
010]1 0 |1 1
0110 0 |1 1
0111 1 0 2
11010 0 |1 1
11011 1 0 2
11110 1 10 2
1111 1 1 3

Table 3.3: 1able de vérité de l'additionneur complet

ri\a;b; || 00 | 01 | 11 | 10
0 0(11]0
1 11707110

Table 3.4: Table s;

ri\a;b; || 00 | 01 | 11 | 10
0 00 17]O0
1 0111

Table 3.5: Table r;1q

Nous observons sur les tables de Karnaugh que I'expression de la somme s; n'est pas ré-
ductible, la forme en damier obtenue est caractéristique des fonctions de type ou-exclusif :

Si=a; Bb;dr;

En ce qui concerne la retenue, pour donner un exemple « d’optimisation », nous allons
supposer 'existence d’une structure de calcul de la somme et tenter de mettre en facteur le
« matériel » :

Tiv1 = azb2+rzbz+naz:azbz+mbl(a_z—l—az)—l—rzaz(b_me,)
= albﬁ—n(al@bl)

Le schéma de I'additionneur complet s’en déduit : (figure 3.2)

Pour des nombres de n chiffres, la sommation va entrainer une propagation de la retenue
si 'on adopte la structure série qui résulte de la mise en oeuvre de I'équation précédente. Dans
'additionneur a retenue série (Ripple Carry Adder), on assiste 2 un phénomene de propagation

de la retenue (cf. Fig. 3.3), facile a cerner si 'on étudie 'addition de tranches de bits du type
suivant : 11111111 + 00000001
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Ri > .

o e 5

bi

;D ;. ) Ri+1

=0 =)

Figure 3.3: Additionneur i retenue série.

Remarque : La structure proposée dans la Fig. 3.2 pour I'additionneur complet n’est pas
la seule possible. Suivant 'objectif visé par 'utilisateur, d’autres structures sont envisageables,
notamment dans le but d’accélérer la vitesse de calcul de la retenue qui conditionne le temps
de calcul total de I'additionneur.

3.3.2 Soustracteur

La soustraction de deux nombres a; et b; codés sur 1 bit chacun (attention a 'ordre!) donne
un résultat pouvant prendre les valeurs arithmétiques —1, 0 et 1, qui seront, tout comme pour
addition, codées sur 2 bits : 7,41 et d; (d; est la “différence”). Nous pouvons formuler cette
opération sous la forme :

ai—bi:—Z-nHdei

ol ;41 et d; sont deux variables booléennes représentant respectivement la retenue sortante
et la différence.

Attention : Le bit de retenue ;41 est précédé du facteur —2, C’est-a-dire qu'il est interprété
comme une valeur négative. On peut comprendre cela en considérant que le résultat sur 2 bits
est codé en CA2.

Cette fonction de deux entrées et deux sorties est appelée demi-soustracteur. Ses caracté-
ristiques sont résumées dans le tableau suivant : (figure 3.4)

Nous pouvons généraliser cette structure pour décrire la soustraction de mots de taille su-
périeure a 1. Pour cela il faut introduire une variable supplémentaire 7; qui représente une
retenue entrante. Léquation générale du soustracteur « 1 bit » avec retenue entrante (ou sous-
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a; | b; || mix1 | d; || Valeur décimale
010 0 |0 0

01 1 1 -1

110 0 1

1|1 0 |0 0

Tit1 = a; - b;

| oo

Ri+1

Figure 3.4: Equations algébriques, table de vérité et schéma d’'un demi-soustracteur.

tracteur « complet ») est alors :
a;— b —ri=—-2-r41+d;

Nous pouvons constater que les deux variables 7; et 7,41 sont affectées d’un facteur négatif,
ce qui établit la cohérence de leurs représentations.

Nous présentons, dans les tableaux suivants, la table de vérité du soustracteur complet
(Tab. 3.6) ainsi que les tables de Karnaugh associées a ;11 (3.7) et d; (3.8).

a; | by | 7 || miv1 | d; || Valeur décimale
0[0]0 0 |0 0
0101 1 1 —1
0(110 1 1 -1
011 1 0 —2
17101]0 0 1
1101 0 [0
11110 0 0
17111 1 1 -1

Table 3.6: Table de vérité du soustracteur complet

Un raisonnement identique a celui utilisé dans le cas de 'additionneur aboutit aux équa-
tions :

di = a;®b; D1y,

Tign = @G -bi+ri(a; ®b)
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0 0] 11]0
1 1701110

Table 3.7: Table d;

ri\a;b; || 00 | 01 | 11 | 10
0 0(11]0
1 111

Table 3.8: Table r; i1

Un schéma du soustracteur complet s’en déduit (cf Fig. 3.5).

Ri ] > Di

bl én.z ........... :
— e : § .

Figure 3.5: Schéma interne du soustracteur complet.
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Chapitre 4

Logique séquentielle synchrone, bascules

4.1 Introduction

D’une fagon complémentaire a la logique combinatoire, la logique séquentielle permet
d’organiser les calculs booléens dans le temps. Par exemple, pour additionner 1000 nombres,
plutot que d’effectuer 999 additions avec 999 additionneurs, une solution consiste a addition-
ner a tour de rdle les 1000 opérandes avec 1 seul additionneur. Pour ce faire un circuit a base
de logique séquentielle est nécessaire pour :

e présenter successivement les 1000 opérandes

o accumuler le résultat de I'addition avec un résultat intermédiaire

o arréter le calcul sur le 1000¢me opérande
Cet exemple illustre la « sérialisation » des calculs mais la logique séquentielle peut tout aussi
bien servir & « paralléliser ». Par exemple, si les débits de calcul sont 2 fois trop faibles en
utilisant la logique combinatoire, une solution consiste & mettre en paralléle 2 opérateurs et
présenter alternativement les données impaires sur le premier et paires sur 'autre. Dans cet
exemple, la logique séquentielle permet d’orienter correctement les données et de concaténer
les résultats.

Lordonnancement temporel et conditionnel des tiches que procure la logique séquentielle
permet de concevoir des algorithmes de calcul puissants et des machines a calculer génériques
comme les automates et les processeurs. Le séquencement nécessite une fonction propre 2 la
logique séquentielle : la mémorisation. Celle-ci permet de geler les données et les commandes
de facon a les réutiliser dans un ordre défini.

4.1.1 Comment reconnaitre la logique séquentielle 2

Depuis le début du cours de PAN, nous avons étudié les circuits combinatoires. Le com-
portement logique de ces circuits est tel que la présentation, a des instants différents, des
mémes valeurs d’entrée produira a chaque fois les mémes résultats. La figure 4.1 dans laquelle
on a représenté le chronogramme des combinaisons des entrées et des sorties par des couleurs
illustre cette propriété.

Quelles que soient les couleurs présentées aux entrées pendant les intervalles de temps
figurés en grisé et quelles que soient les couleurs correspondantes observées aux sorties, la
couleur bleu a I'entrée du circuit produit toujours (aprés un temps de propagation) la couleur
vert en sortie.

65
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Circuit

combinatoire Sorties

Entrées

Entrées %‘ Bleu W % Bleu W
sois NN NN

Figure 4.1: Chronogramme d’un circuit combinatoire

Un circuit de logique séquentielle ne possede pas cette propriété ; la connaissance des en-
trées appliquées 2 un instant donné ne suffit pas & déterminer les valeurs des sorties comme
le montre la figure 4.2. La combinaison bleue présentée a plusieurs reprises aux entrées du
circuit ne produit pas toujours le méme résultat. La valeur observée aux sorties est tantot le
vert, tantdt le violet.

Circuit

Entrées Sorties

séquentiel

Entrées V Bleu W % Bleu W
Sorties % % Vert V Violet'@

Figure 4.2: Chronogramme d'un circuit séquentiel

Le comportement de la logique séquentielle s'explique par la présence de variables supplé-
mentaires internes au circuit dont la valeur évolue au cours du temps, ce sont les mémoires
internes. La connaissance de la valeur de ces variables internes est nécessaire si 'on veut prévoir
la valeur des sorties. La figure 4.3 illustre le chronogramme du circuit en tenant compte des
variables internes.

Circuit
séquentiel

Entrées -
yariables
mternes

Variables Jaun R
internes aune ouge
Sorties W% Vert W Violet'@

Figure 4.3: Chronogramme avec les variables internes

Sorties
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4.1.2 Comment construire la logique séquentielle 2

Les valeurs des variables internes reflétent « 'état du systeme » qui dépend des entrées et
de leurs valeurs précédentes. Les variables internes contiennent une partie de Ihistoire du
circuit car elles dépendent des valeurs passées des entrées. La structure du circuit de logique
séquentielle posséde donc un circuit combinatoire calculant les variables internes et recevant
les entrées et les variables internes, entrainant ainsi un rebouclage. Ce rebouclage doit inclure
la fonction de mémorisation propre a la logique séquentielle.

I est difficile de faire fonctionner un dispositif rebouclé, d’une fagon fiable, car chaque
variable interne et chaque sortie a son propre temps de propagation, générant des courses entre
signaux et pouvant entrainer un dysfonctionnement du syst¢me. Une méthode largement
répandue pour I'évolution des calculs consiste a les synchroniser. Dans cette méthode les va-
riables internes et les sorties sont gelées dans une mémoire, généralement une bascule D (cf
paragraphe 4.2), et mises a jour apres la fin de calcul d’un circuit combinatoire. Les sorties sont
mémorisées car elles sont potentiellement utilisées comme entrées d’autres circuits séquentiels.
La mise & jour des mémoires, ou échantillonnage des résultats, se fait d’un fagon synchrone
au rythme d’un signal de commande périodique : 'horloge. La figure 4.4 illustre la structure
générale de la logique séquentielle synchrone :

variables internes

sorties

horlogc bascules D

Figure 4.4: Structure de base d'un circuit en logique séquentielle synchrone

Linstant d’échantillonnage correspond a une transition montante ou descendante du si-
gnal d’horloge dont le chronogramme est donné en figure 4.5. Le rapport cyclique de cette
horloge, c’est a dire le rapport entre le temps ot 'horloge vaut 1 et le temps ou 'horloge vaut
0, peut en conséquence étre différent de 50/50.

T N

A :instant d’échantillonnage —— : mémorisation

Figure 4.5: Chronogramme du signal d’horloge

Pour assurer la bonne marche d’un circuit en logique séquentielle synchrone disposant
d’une unique horloge, il suffit de connaitre le temps maximum de calcul du circuit combi-
natoire et d’utiliser une période d’horloge supérieure a ce temps. Le chemin le plus lent d’'un
circuit combinatoire s'appelle « chemin critique » . Si 7}, est la période d’horloge et 17, est le
temps de propagation du chemin critique, alors il sufht de respecter :

Th > Tcrit
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Le calcul du chemin critique se fait dans les conditions d’utilisation les pires, c’est-a-dire un
procédé technologique sous-optimal, une tension d’alimentation Vj faible et une température
de jonction élevée.

4,2 Les bascules D

La brique de base spécifique a la logique séquentielle est le point mémoire. Il existe diffé-
rentes technologies pour créer le point mémoire. La « bascule D » est un composant de mé-
morisation pour un seul point mémoire. La mémoire RAM Random Access Memory est un
ensemble de points mémoires regroupés dans une matrice. Lacces 2 la RAM ne permet pas
d’accéder a tous les point mémoires en méme temps, mais a un seul. Un mécanisme d’adres-
sage est donc nécessaire pour sélectionner un point mémoire qui dispose ainsi de sa propre
« adresse » .

4.2.1 Le point mémoire élémentaire

Une des techniques de mémorisation repose sur le principe de stabilité des systemes en
boucle fermée comme illustré par la figure 4.6. Ce principe est utilisé en technologie CMOS
pour construire les bascules et les RAMs statiques. Un amplificateur rebouclé sur lui méme
constitue un systéme stable (qui ne change pas d’état). S’il existe un moyen d’initialiser 'am-
plificateur avec une certaine valeur, celle ci est gelée dans 'amplificateur qui, par le rebouclage
sur lui-méme, a le role de point mémoire. Une autre technique de mémorisation consiste a cap-
turer des charges électriques dans un condensateur. Ce principe est utilisé pour les mémoires

FLASH et RAM dynamiques.

Figure 4.6: Point mémoire basé sur un amplificateur rebouclé

La fonction de transfert de 'amplificateur doit avoir une zone d’amplification dans son
milieu (pente strictement supérieure a 1) pour pouvoir converger vers le niveau haut ou bas
de la courbe. La figure 4.7 illustre un exemple de fonction de transfert.

Il existe 3 points stables de la fonction de transfert 0, V,,,4, et X. Les 2 premiers corres-
pondentau fonctionnement normal et permettent d’associer les grandeurs physiques (0,Vmax)
A des niveaux booléens (vrai, faux).

Le point X correspond a un état « métastable » associé a aucun niveau booléen, il faut donc
Péviter . S’il existe la zone d’amplification en milieu de courbe, Il suffit de s’écarter légerement
de ce point pour converger vers O ou Vmax. La figure 4.8 illustre le fait que le point initial
(Ver, V1) proche du point X converge rapidement vers V5.

Le bruit ambiant contribue & ce que cet état métastable ne dure pas et que le systéme
converge. Le temps de convergence n'est pas constant, il dépend de la technologie et peut étre
trés long. Les points mémoires ont toujours des contraintes dutilisation pour éviter cet état.
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Vs
vadl  Vmax
I
|
l
X I
I
|
I
l
:Ve
& -
0 vdd

Figure 4.7: Fonction de transfert de lamplificateur

Vs
vd d“ Vmax

N
Vs2

Vsl

L Ve
5 Vel Ve2 Ve3 \7dd

Figure 4.8: Convergence vers un état stable en ne partant pas de X

4.2.2 structure avec 2 inverseurs téte béche : bascule RS et RAM statique

En pratique, 'amplificateur est réalisé avec 2 inverseurs en téte béche comme représenté

sur la figure 4.9

Figure 4.9: Inverseurs en téte béche pour la mémorisation

Pour initialiser le point mémoire, il faut forcer un niveau sur 'entrée d’un inverseur. La
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bascule RS (Reset Set) consiste a utiliser une initialisation logique avec des signaux pilotant des
portes NAND ou NOR comme illustré dans la figure 4.10. Par exemple pour la bascule RS
a base de NAND, les entrées RESET et SET sont complémentaires et actives 2 0. Quand
RESET est actif (au niveau 0) , et SET inactif (au niveau 1), la sortie Q) est initialisée 4 0.
Quand RESET et SET sont inactifs (au niveau 1) la bascule RS est en mode mémoire et
garde la valeur préalablement initialisée.

Q Reset i ._Q
Q.

Reset

Set

Set

Figure 4.10: Bascule RS avec une structure NAND et NOR

Dans le cas du point mémoire RAM statique, l'initialisation est effectuée grice a 2 tran-
sistors NMOS de part et d’autre des 2 inverseurs comme le montre la figure 4.11. Lorsque la
commande C est activée, la valeur de D et son complément sur D sont écrites dans le point
mémoire. Cette opération nécessite des transistors NMOS plus gros que ceux des inverseurs
pour imposer électriquement un niveau pouvant étre différent au départ. Si D est flottant ou
en haute impédance, la valeur du point mémoire apparait sur D et son complément sur D, ce
qui permet d’effectuer une lecture de ce point. La commande C est issue d’'un décodage de
signaux d’adresse sur N bits permettant d’accéder 2 un seul point parmi 2.

Figure 4.11: Point mémoire RAM statique

4.2.3 Delabascule RS a la bascule D sur état : le latch

La bascule RS peut évoluer vers la bascule D qui voit les 2 entrées Reset et Set remplacées
par une unique entrée D. De facon a avoir la mémorisation quand Reset = Set = 0, une
entrée EN est utilisée pour forcer les entrées a 0 avec 2 portes ET. Ce dispositif est appelé Lazch
a entrée D. Quand EN vaut 1, il y a recopie de I'entrée sur la sortie, le latch est zransparent, et
quand EN vaut 0, il est en mémorisation. La structure du latch est illustrée par la figure 4.12 :

4.2.4 Labascule D sur front ou Flip-Flop

Dans le paragraphe 4.1.2, nous avons vu que la synchronisation des variables internes et
des sorties permet de fiabiliser les calculs. Cette méthode nécessite une mémoire mise a jour par
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° _} S Ql—
TP

EN Reset Q—

Figure 4.12: Structure du latch a entrée D

une horloge lors de 'instant d’échantillonnage. En conséquence, le latch ne convient pas pour
cette méthode car il perd sa fonction de mémorisation durant une phase de 'horloge, quand
il est transparent. 11 faut nécessairement utiliser une bascule D sur front aussi appelée Flip-
Flop ou tout simplement bascule D. La bascule D peut étre obtenue avec 2 latches en cascade
(figure 4.13 disposant d’entrées EN complémentaires. Cette bascule permet de mémoriser et
d’échantillonner la valeur de la variable d’entrée sur une transition du signal EN.

D2 S

D Q—>2

EN Q]

D1

D Q

‘:EI

EN Q H |

Figure 4.13: Structure de la bascule D & partir de latches

Le chronogramme de la figure 4.14 illustre le fonctionnement de la bascule D. La sortie
S ne change qu'apres échantillonnage sur front montant de 'horloge H, et est mémorisée
pendant une période d’horloge. Ces points importants sont a noter :

e Lasortie S ne change pas immédiatement apres le front montant de H car la bascule D
a son propre temps de propagation.

e Si D1 change entre 2 fronts montants d’horloge (cas des valeurs €0 et €2), elles ne sont
pas prises en compte dans la bascule. Seules comptent les valeurs de D1 au moment du
front montant d’horloge.

En pratique, une technique consiste a utiliser respectivement pour les 2 latches, 2 horloges

®1 et $2 non recouvrantes correspondant aux 2 phases de I’horloge.

H

DI 0 iel e ées
D277/X <0 X Eel i 2 ><Ee3
S //IX el ;>< e3

Figure 4.14: Chronogramme de la bascule D avec 2 latches

La bascule D peut disposer optionnellement d’entrées de mise 4 1 Preset ou mise a 0
Reset ou Clear. Ces entrées sont asynchrones, c’est a dire actives immédiatement sans at-
tendre le front montant de 'horloge. Ces entrés asynchrones sont actives 2 0, ce qui est indiqué
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sur le symbole de la bascule par un cercle signifiant I'inversion de polarité. Le symbole de la
bascule D est illustré en figure 4.15 et ses fonctions par la table 4.1. La bascule D peut avoir
une sensibilité au front descendant plutét qu'au front montant de I'horloge. Dans ce cas le
symbole de la bascule dispose d’un cercle sur 'entrée de I'horloge signifiant I'inversion de
polarité.

Preset

e

D Q——

D |
H

7

Reset

Figure 4.15: Symbole de la bascule D

Preset | Reset Etat

échantillonnage

mémorisation

forage a 1

XXX XK= |=o|D
XX | =] |=|— | T
—_ O | = | = = =
[ i i
Sl= IR ILI=e |IP

forcage a 0

Table 4.1: Fonctions de la bascule D
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4.2.5 Conditions d’utilisation de la bascule

De fagon a éviter les états métastables (cf paragraphe 4.2.1) de la bascule, les constructeurs
spécifient une fenétre temporelle autour de 'instant d’échantillonnage, dans laquelle la variable
d’entrée ne doit pas changer de valeur. 2 temps sont utilisés a cette fin :

o 1, : temps de prépositionnement ou sez #p : temps durant lequel les données doivent

rester constantes avant le front montant d’horloge.

e 1}, : temps de maintien ou hold : temps durant lequel les données doivent rester constantes

apres le front montant d’horloge.

Le temps de propagation des bascules ¢, correspond au temps séparant le front d’horloge
des données stabilisées en sortie. La figure 4.16 illustre les caractéristiques temporelles de la

bascule D.

A

lt—

tCO

Figure 4.16: Caractéristiques temporelles de la bascule D

Dans le calcul du chemin critique, les temps de propagation 7, et de prépositionnement
T, doivent étre pris en compte, comme indiqué dans la figure 4.17. Si T}, est la période
d’horloge alors il faut respecter :

Th > Tco + Tcrit + Tsu

Tco Terit Tsu

entrées sorties

circuit combinatoire

reglistre
1

horloge

Figure 4.17: Temps de propagation & considérer en logique séquentielle
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Exemples fondamentaux de la logique séquentielle syn-
chrone

4.3.1 Le mécanisme de décalage avec un registre a décalage

Un registre est par définition un ensemble de bascules. Un registre a décalage est constitué

de N bascules en cascade comme indiqué dans la figure 4.18.

E D1 D2 D3 S

o [ = &= |

Figure 4.18: Registre & décalage

A chaque front d’horloge, le contenu de chaque bascule amont est décalé dans la bascule

aval. Ainsi au bout de N fronts montants d’horloge, la premiere valeur rentrée se retrouve en
sortie comme représenté dans la figure 4.19. Le fonctionnement correct du registre impose
d’avoir un temps de propagation 7, supérieur au temps de maintien 77,.

Figure 4.19: Chronogramme du registre & décalage

Le registre a décalage est une structure importante de la logique séquentielle qui permet
de réaliser beaucoup d’opérations élémentaires :

Passage d’un format série 4 un format parallele : les bits rentrent en série et les N bits
du registre sont les sorties.

Passage d’un format parallele & un format série : Les bascules sont initialisées par un
mot d’entrée et la sortie s'effectue sur la derniére bascule.

Recherche d’une chaine de bits particuliere : les sorties des bascules sont comparées avec
la chaine de référence.

Compteur Johnson : le registre est rebouclé sur lui méme et ne contient qu'un seul ’1’
qui boucle.

Et encore : générateur de nombres pseudo aléatoires (LFSR Linear Feedback shift regis-
ter), filtres numériques RIE...
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4.3.2 Le mécanisme de comptage

Le compteur est un opérateur tres fréquemment utilisé en électronique numérique. Dans
sa version la plus simple il s'agit d’un dispositif dont la sortie représente une donnée numérique
qui augmente d’une unité a chaque période d’horloge. Celui que nous allons présenter possede
une sortie codée sur 3 bits et enchaine la séquence :

0,1,2,3,4,5,6,7,0, 1, ...

Le compteur est muni d’une horloge qui rythme son fonctionnement et d’un signal op-
tionnel de remise & zéro asynchrone, RAZ. Pour réaliser ce compteur il sufhit de se munir
d’un incrémenteur combinatoire de 3 bits (opérateur qui réalise +'001°) et d’un registre 3 bits
comme lillustre la figure 4.20. A chaque période d’horloge, I'état futur du compteur est égal
a son état courant augmenté de 1. Linitialisation du compteur se fait par le signal RAZ sur
entrée Reset asynchrone des 3 bascules.

D Q ES[2 0]

RAZ 0

Figure 4.20: Compteur binaire

4.3.3 Principe de sérialisation des calculs

La logique séquentielle permet de sérialiser les opérations sur N opérandes. A chaque pé-
riode d’horloge, une seule opération est effectuée entre un nouvel opérande sur U'entrée, et
un résultat intermédiaire stocké dans un registre. La figure 4.21 représente un additionneur
de mots de 16 bits dont la somme totale ne dépasse pas 255. Cet opérateur sappelle aussi
accumulateur. 1l faut noter dans le circuit proposé qu'il manque la fonction d’initialisation et
que 'additionneur utilisé est sur 8 bits, ce qui limite la dynamique de la variable accumulée a
255.

Le compteur binaire étudié préalablement est une version simplifiée de 'accumulateur ot
tous les mots a accumuler sont remplacés par une constante égale a 1. Dans les microproces-
seurs, les opérations sont effectuées dans un accumulateur capable d’effectuer la plupart des
opérations arithmétiques et logiques.

Le chronogramme des opérations est indiqué dans la figure 4.22 ot il est supposé que la
valeur initiale est 0.

4.3.4 Principe d’accélération des calculs par la mise en pipeline

Le débit de calcul est une caractéristique importante des systemes électroniques, en par-
ticulier dans le domaine des télécommunications. Les données a traiter arrivent d’une fagon
synchrone a un rythme f. Pour traiter ces données il suffit d’utiliser un circuit séquentiel utili-
sant une horloge de fréquence f comme illustré dans la figure 4.23 ot1 ¢ représente 'opération
a effectuer.
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Horloge

gEgd

a0 Bbits 4

+
Bbits 3

[ -

ittty

Figure 4.21: Accumulateur

Horloge
E% Do ‘ D1 ‘ D2 ‘ D3 ‘ D4 “

S ‘ 0 ‘ DO ‘ Di+D1 ‘I)l}o—Dl-f—DZ‘ Di+.+D3 ‘----‘

Figure 4.22: Chronogramme de l'accumulateur

Tp

A
y

entrées sorties

circuit combinatoire

\_

Figure 4.23: Circuir Céquentiel de traitement de flot de données

reglistre
|

horloge |

Pour que 'opérateur fonctionne correctement il sufhit que :
Th=1/fetT,<1/f,on

o f estle débit de calcul

o Tj, est la période d’horloge

o T, est le temps de propagation du chemin critique, incluant celui des bascules

Si cette condition nest pas respectée, des solutions architecturales existent en logique sé-
quentielle pour accélérer le débit des calculs. Une méthode consiste 4 faire une mise en pipeline.
Si par exemple T, est 3 fois trop long : T'p = 3/ f, on peut décomposer ¢ en 3 sous-fonctions
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cascadables @1 * ¢2 * ¢3. On obtient alors la structure de la figure 4.24. Celle ci ne résout
toujours pas le probleme de non respect de la contrainte de débit de f.

Y

sorties

Figure 4.24: Circuit séquentiel de traitement de flot de données aprés décomposition en sous fonctions

Si les 3 circuits réalisant les sous-fonctions ont des temps de propagation identiques de
Tp/3, le temps de propagation du chemin critique devient 7},/3 4 la place de T}, en plagant
des registres entre ces circuits. Cette mise en pipeline permet ainsi de respecter la contrainte de
débit. La figure 4.25 illustre cette nouvelle structure avec les étages de pipeline correspondant
aux registres rajoutés.

sorties

Figure 4.25: Circuit séquentiel de traitement de flot de données aprés décomposition en sous fonctions

Par définition la latence de calcul est le nombre de cycles pour obtenir le résultat du calcul.
Dans 'exemple ci-dessus, la latence est passée de 1 a 3. Une plus grande latence ne signifie pas
un retard absolu plus grand car la période d’horloge est d’autant diminuée.

En pratique, si on veut générer N étages de pipeline, il est souvent difficile d’équirépartir
les temps de propagation en T},/ N et il faut aussi prendre en compte les temps de propagation
et de prépositionnement des bascules. Donc la décomposition en N étages de pipeline permet
de gagner en débit un facteur un peu inférieur 3 N.



78

CHAPITRE 4. LOGIQUE SEQUENTIELLE SYNCHRONE, BASCULES



Chapitre 5

Machines a états

5.1 Introduction

Les machines a états sont des circuits de logique séquentielle (cf chapitre 4) servant exclu-
sivement a générer des signaux de commande. Il existe en effet 2 grands types de signaux en
électronique :

e Signaux 4 traiter : les données

e Signaux pilotant le traitement : les commandes

Cette classification des signaux se retrouve au niveau des architectures des systémes élec-
troniques quon peut schématiser comme dans la figure 5.1 ot la partie contréle, générant
les commandes, est dissociée de la partie opérative, traitant les données. Les 2 parties sont
toujours réalisées en logique séquentielle et dans une treés grande majorité des cas en logique

données d’entrée

A 7’ .
contréle opérations

" données de sortie

Figure 5.1: Architecture générique d’un circuit électronique

séquentielle synchrone.

entrées commandes

Pour la logique séquentielle synchrone, il existe 2 signaux de commandes importants :

e Lhorloge : pour la synchronisation

o Le Reset : pour l'initialisation du systeme

La machine a état représente la partie controle, cest a dire le cervean du systeme électro-
nique et la partie opérative , les jambes.

Il existe beaucoup de déclinaisons de cette architecture, des plus compliquées comme les
microprocesseurs qui ont plusieurs machines a états et plusieurs parties opératives, des plus
simples mais tout aussi importantes comme les controleurs d’ascenseurs ou de machine a café.
Pour ce dernier type de systeme, les données sont inexistantes car les commandes servent a
piloter des actionneurs, valves et moteurs,...

79



80 CHAPITRE 5. MACHINES A ETATS

Les étars de la machine & états représentent toutes les valeurs que peuvent prendre les
variables internes du circuit de logique séquentielle (cf chapitre 4). Le schéma de la machine
a érats générique est représenté en figure 5.2

variables internes

—_— —

horloge U bascules D

Figure 5.2: Schéma d’un machine a érat générique

Par exemple pour la machine a café, les états peuvent étre :

1. Attente de piece

2. Descendre le gobelet

3. Verser la poudre de café

4. Verser 'eau chaude

5. Indiquer que Cest prét

Cette machine peut se compliquer en prenant en compte : le choix de la boisson, le dosage
du sucre, mais elle reste néanmoins trés simple par rapport a certaines machines a états indus-
trielles comme la conduite d’une centrale nucléaire, ou 'automatisation d’un usine de pro-
duction. D’autres types de machines a états ont des contraintes de performances trés grandes,

Cest la cas de celles utilisées dans les microprocesseurs ou des processeurs spécialisées pour le
graphisme ou les télécommunications.

D ——

Figure 5.3: Ou rencontrer les machines & étrats
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5.2 Le graphe d’états

5.2.1 Comment représenter graphiquement le comportement d’'une ma-
chine a états?

Dans une machine a états donnée, la loi d’évolution de I'état n’est évidemment pas aléa-
toire, pas plus que celle qui détermine la valeur des sorties. Ces lois sont soigneusement choisies
par le créateur de la machine afin que celle-ci remplisse une fonction précise. La conception
d’une machine a états, pour peu que sa complexité dépasse celle des cas d’école qui nous ser-
viront d’exemples, est une tiche délicate. Le graphe d’états est I'un des outils les plus utilisés
pour la spécification de la machine a états (entrées, sorties, fonctionnement souhaité).

Le graphe d’états, comme son nom l'indique, représente graphiquement les états d’une
machine a états. Chaque état est dessiné sous la forme d’une bulle contenant son nom. On
comprend immédiatement que cet outil ne sera pas d’'un grand secours lorsque le nombre
d’états de la machine dépassera quelques dizaines. Prenons I'exemple d’'une machine a laver
ol on considere 5 états comme illustré dans la figure 5.4.

Prélavage Lavage

Essorage Ringage

Figure 5.4: Graphe d'état au départ

On compléte le graphe en figurant les transitions possibles par des fleches entre les états.
On appelle état source I'état de départ d’une transition et état destination 'état d’arrivée. La
transition 7'0 a Prélavage pour état source et Lavage pour état destination. Certaines transitions
ont le méme état pour source et pour destination. Cela signifie que la machine peut rester
dans le méme état pendant au moins 2 périodes successives. La transition 7'1 est de cette sorte
comme illustré dans la figure 5.5.

Muni de toutes les transitions possibles comme représenté dans la figure 5.6, le graphe
constitue une représentation assez dense de I'évolution possible de la machine au cours du
temps. A tout instant la machine est dans I'un des états représentés ; Cest ce que nous appelle-
rons I'état courant de la machine. A chaque front montant de I'horloge, la machine emprunte
I'une des transitions possibles a partir de son état courant. Elle change alors d’état. Retenez
bien cette conséquence du fait que notre machine est synchrone sur front montant de ’hor-
loge : elle reste dans un état donné (une bulle du graphe) pendant le temps qui sépare deux
fronts montants de 'horloge. Les transitions (les fleches du graphe), en revanche, sont quasi-
instantanées puisqu’elles correspondent aux fronts montants de ’horloge.
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TO
Prélavage

Figure 5.5: Graphe d'état avec quelques transitions

Pour comprendre notre graphe nous devons préciser les lois d’évolution des variables in-
ternes en fonction des entrées. Supposons que les entrées de notre machine soient au nombre
de trois :

e M : variable booléenne qui traduit la position du bouton Marche/Arrét du lave-linge.

e P :variable booléenne qui indique si le programme de lavage sélectionné par 'utilisateur

comporte ou non une phase de prélavage.

e C:valeur en minutes d’'un chronomeétre qui est remis a zéro automatiquement au début

de chaque étape de lavage.

Les durées des différentes étapes de lavage sont fixées par le constructeur :

e prélavage : 10 minutes

e lavage : 30 minutes

e ringage : 10 minutes

e cssorage : 5 minutes

A partir de ces informations nous pouvons faire figurer sur le graphe les conditions lo-
giques associées a chaque transition. Ainsi le graphe de la figure 5.6, spécifie completement
le fonctionnement de la machine. On sait par exemple que lorsque la machine est dans I'état
Arrét elle y reste tant que M n’est pas vrai au moment d’un front montant de 'horloge. Dés
que M est vrai au moment d’un front montant de 'horloge la machine change d’état : elle
passe dans I'état Prélavage si P est vrai et dans 'état Lavage si P est faux. Il est important de
comprendre que la valeur des entrées de la machine n’a d’importance qu'au moment précis des
fronts montants de 'horloge. C’est une conséquence du fait que notre machine est synchrone
sur front montant de I'horloge.

Notre machine a états possede des entrées mais nous n'avons pas encore étudié les sorties.
Or un circuit électronique sans sorties n'est que de peu d’utilité. Il existe deux sortes de ma-
chines 2 états : celles dont les sorties ne dépendent que de Iétat courant (ce sont les machines
dites de Moore) et celles dont les sorties dépendent de I'état courant et des entrées (ce sont
les machines dites de Mealy). Nous allons nous concentrer sur les machines de Moore. Le
programmateur de notre lave-linge est une machine de Moore dont les sorties ne dépendent
que de Iétat courant. Nous supposerons que ses sorties sont trois signaux booléens, X, Y et Z
destinés a piloter les différents moteurs du lave-linge. Les spécifications précisent leur valeur
pour chaque état que peut prendre la machine. Nous pouvons encore compléter le graphe
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C<10 C>/10 C<30

C<5 C>10 C<10

Figure 5.6: Graphe d'étatr avec les transitions étiquetées par les valeurs des entrées

d’états afin d’y faire figurer cette information. Le graphe est alors achevé comme illustré dans
la figure 5.7. Il est équivalent aux spécifications du programmateur tout en étant plus dense
quune description en langage naturel.

C<10 C>10 C<30

Prelavage

Lavage
XYZ=110

XYZ=111

Arrét
XYZ=000

Essorage
XYZ=101

C<5 C>1 C<10

Figure 5.7: Graphe d'état final

5.2.2 Comment vérifier cette représentation a I’aide de quelques regles
simples ?

Les spécifications sont généralement écrite en langage naturel. La traduction des spécifica-
tions en graphe d’état est donc entiérement manuelle et les risques d’erreurs sont nombreux.
Si une erreur venait a se glisser dans le graphe elle se retrouverait dans le circuit électronique
final, ce qui est inacceptable : un lave-linge qui “oublie” de rincer n'est pas tres satisfaisant,
sans parler des risques plus graves comme ceux liés aux centrales nucléaires ou aux avions de

ligne.
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Il faut donc vérifier le graphe avant de poursuivre la réalisation de la machine. Comme
pour toute bonne spécification, le graphe doit vérifier deux propriétés fondamentales :

1. il doit étre compler
2. il doit étre non contradictoire

1) “Graphe complet” signifie qu’il y a toujours une transition possible. Le comportement
est toujours défini : a chaque front montant d’horloge, quel que soit I'état dans lequel se trouve
la machine et quelles que soient les valeurs des entrées, I'état suivant existe. Une au moins
des conditions associées aux transitions doit étre vraie. On peut traduire cette propriété sous
forme d’équation booléenne en écrivant que le OU logique de toutes les conditions associées
aux transitions partant d’un état quelconque est toujours vrai : soient C'1, C'2, ..., (', ..., Cn
ces conditions, alors :

Par exemple, pour le programmateur de notre lave-linge, les transitions partant de 'état
Arrér sont au nombre de trois comme indiqué en pointillé sur la figure 5.8

C<1O C>/10 C<30

Prélavage

Lavage
XYZ=110

XYZ=111

Essorage
XYZ=101

Ringage

XYZ=100

C<5 C>10 C<10
Figure 5.8: Graphe détat final

Et les conditions associées sont :

M,M.P,M.P

Le OU logique de ces trois conditions vérifie donc :

M+MP+MP=M+M(P+P)=M+M=1

Létat Arrér respecte donc la premiere régle. A titre d’exercice vous pouvez vérifier que cest
également le cas pour les quatre autres états.

2) “Non contradictoire”. La deuxieme regle signifie qu’a tout front montant d’horloge une
seule transition est possible. Si plus d’une transition a sa condition associée vraie, le graphe est
contradictoire (deux actions incompatibles sont simultanément possibles). Le respect de cette
regle est plus difficile a vérifier : le OU logique de tous les ET logiques de deux conditions
associées aux transitions différentes partant d’'un méme état quelconque est toujours faux :

St Y4 CiCi =0
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En reprenant I'état Arrér du programmateur de lave-linge comme exemple :

MMP+MMP+MPMP=0+0+0=0

Létat Arrér respecte donc également la deuxieme regle. Si elle est aussi vérifiée par les
autres états alors nous sommes en présence d’'un véritable graphe de machine a états compler
et sans contradiction. Malheureusement cela ne prouve pas que le graphe est conforme a la
spécification. Il faut encore vérifier que la fonctionnalité est la méme dans les deux descriptions.
Il nexiste pas d’outils de vérification ou de formules logiques permettant de le faire. Vous
pouvez par exemple parcourir le graphe état par état et, pour chacun d’eux, comparer la partie
de spécification qui le concerne avec les conditions associées aux transitions sortantes. Toute
méthode est bonne si elle permet d’éviter des erreurs a ce stade du travail de conception.

5.3 La composition d’'une machine a états

5.3.1 Le calcul de I’état futur

En logique séquentielle synchrone, I'état courant est modifié a chaque front montant de
'horloge. Entre deux fronts montants de 'horloge (pendant une période d’horloge) il reste
stable, ce qui donne le temps aux circuits combinatoires qui composent la machine de calculer
le prochain état et les sorties. Il existe donc, entre autres, un circuit combinatoire chargé de
calculer le prochain état, que nous appellerons aussi état futur, a partir de 'état courant et des
entrées de la machine. Ce circuit (nommé P1 sur le schéma de la figure 5.9) est en général le
plus difficile & concevoir. Ses entrées sont :

e Détat courant qui est mémorisé dans le registre d’état (RE sur le schéma).

e Les entrées de la machine.

Entrées

-

Etat courant

Horloge

Ertat futur

Figure 5.9: Calcul de I¥état futur

Sa sortie est I’état futur.

Dés que les entrées changent de valeur ou dés que I'état courant est modifié, le circuit P1
commence a calculer Iétat futur. Ce calcul n’est pas instantané (voir le TD 8 sur le temps de
propagation dans les portes CMOS). Pour que la machine puisse fonctionner correctement
il faut que les entrées de ce circuit restent stables pendant une durée suffisante pour que sa
sortie puisse, elle aussi, s'établir et se stabiliser avant le front montant de I'horloge suivant.
Sinon la valeur échantillonnée par le registre d’état ne sera pas la bonne et le déroulement des
opérations sera perturbé.
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5.3.2 Le registre d’état

Il est composé de plusieurs bascules D (la question de leur nombre exact est traitée dans
le paragraphe 5.4). Lhorloge est la méme pour toutes : cest 'horloge générale du circuit
électronique dont fait partie la machine. Son entrée est la sortie du circuit P1, Cest 'état futur.
Sa sortie, I’état courant, sert d’entrée a2 P1 mais aussi au circuit destiné a calculer les sorties.

Une machine a état est un dispositif avec rétroaction : I'état courant conditionne les états
futurs. Dans un tel dispositif la question des conditions initiales se pose. En d’autres termes,
pour que le fonctionnement soit celui souhaité des la mise sous tension, il faut introduire un
moyen de forcer un état de départ. Il en va de méme pour le microprocesseur qui constitue
'unité de calcul de votre ordinateur. Comme nous I'avons vu dans le paragraphe 5.1 il contient
un grand nombre de machines a états qui le commandent et le contrdlent. Si, lorsque vous
allumez votre ordinateur ’état de ces machines n’est pas forcé a une valeur connue et choisie par
les concepteurs, la séquence de démarrage risque d’étre fortement perturbée. C’est pourquoi
toute machine a état dispose d’'une entrée d’initialisation Reset grice a laquelle Iétat des
machines est forcé lors de la mise sous tension.

Il existe deux méthodes pour forcer Iétat initial avec le Reset :

1. Le reset synchrone. Il est pris en compte uniquement sur le front montant de I'horloge.
Il agit donc de la méme fagon que les entrées “normales” de la machine. Son influence
est prioritaire sur les autres. Le circuit P1 possede donc ce signal comme entrée supplé-
mentaire. Lorsque cette entrée est active (elle peut étre active lorsqu’elle vaut 0 ou bien
1, cest une convention a définir) I'état futur que calcule P1 est I'état initial. Au front
montant d’horloge suivant la machine passe donc dans cet état. Dans I'exemple de notre
programmateur de lave-linge il semble judicieux de choisir Ar7ér comme état initial. Le
graphe doit étre modifié comme indiqué dans la figure 5.10 pour tenir compte du reset
synchrone.

(C<10).R (C510)R (C<30).R

Lavage
XYZ-1T1
P).R u
M+R R

Prélavage
XYZ=110

Essorage
XYZ=101

(C<5).R (C>10).R (C<10).R

Figure 5.10: Graphe d’état avec Reset synchrone

2. Le reset asynchrone. Il utilise les entrées Ser et Reser des bascules D (voir le chapitre 4)
du registre d’état pour forcer Iétat initial. On branche I'entrée Reset sur 'entrée ser des
bascules si on désire forcer un 1, ou sur 'entrée Reser des bascules si on désire forcer
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un 0. Les entrées de la partie P1 ne sont pas modifiées. Le graphe d’état non plus si
ce n'est 'indication de I'état de départ par le Reset comme indiqué dans la figure 5.11.
Cette solution est donc plus simple & concevoir que la précédente, donne des tailles (en
nombre de composants) plus faibles pour des vitesses de fonctionnement plus élevées.
Clest pourquoi on la préférera lorsqu’elle n’entre pas en conflit avec d’autres contraintes.

C<10 C>10 C<30

Prélavage
XYZ=110

Arrét
XYZ=000

Reset

Essorage
XYZ-=10T

C<5 C>10 C<10

Figure 5.11: Graphe d'état avec Reset Asynchrone

5.3.3 Le calcul des sorties

La troisi¢me et derniere partie d’'une machine a états est le circuit combinatoire de calcul
des sorties (P2 sur le schéma de la figure 5.12). Dans une machine de Moore, ses entrées
sont I'état courant et ses sorties sont les sorties de la machine. Dés que 'état courant change,
aprés un front montant d’horloge, ce circuit commence a calculer les sorties caractéristiques
du nouvel état. Comme pour le circuit P1 il faut absolument qu’il dispose d’assez de temps
pour le faire avant le front montant d’horloge suivant.

RE Sorties
7 h
Etat futur i

Horloge

- Etat courant

Figure 5.12: Calcul des sorties
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5.4 Le codage des états

5.4.1 Comment représenter les différents états sous forme de mots bi-
naires ?

Jusqu'ici nous avons identifié les différents états par leur nom (Arrée, Prélavage, etc.). Lélec-
tronique numérique ne manipule pas de tels symboles. Lalphabet y est nettement plus restreint
puisqu’il se compose des seuls 0 et 1 de I'algebre de Boole. Pour chaque état d’'une machine
il va donc falloir trouver un nom unique exprimé dans cet alphabet. Nous avons vu dans les
paragraphes 5.1 et 5.3 que les machines a états synchrones mémorisent I'état courant dans des
bascules D du type de celles du chapitre 4. Chacune de ses bascules contiendra a tout moment
un caractere (0 ou 1) du nom de I’état courant.

A la différence des noms d’états exprimés en langage naturel ceux exprimés dans I'alpha-
bet binaire auront tous le méme nombre de caractéres. La raison en est simple : pour pouvoir
mémoriser n’importe quel état dans les bascules D du circuit le nombre de bascules doit étre
au moins égal a la taille du nom le plus long. Si ces bascules ne servent pas toutes a un instant
donné on ne peut en tirer aucun profit ni pour réduire la taille du circuit, ni pour augmenter
sa vitesse. Lélectronique a ceci de contraignant que le matériel inutilisé cotte aussi cher que le
matériel utilisé. Nous allons continuer a exploiter 'exemple du programmateur de lave-linge.
Commengons par déterminer le nombre de symboles binaires (bits) nécessaires pour représen-
ter les cinq états. Contrairement a ce que 'on pourrait penser ce choix n'est pas trivial. Nous
pouvons d’ores et déja constater que trois bits au moins sont nécessaires. En effet, deux bits
permettent, au maximum, la représentation de quatre situations différentes seulement. Trois
bits permettent de représenter huit mots différents. On peut également éliminer les solutions
a plus de cinq bits car elles sont forcément redondantes (il existe toujours au moins un bit
inutile que 'on peut retirer en conservant cinq mots différents). Restent les solutions a trois,
quatre ou cinq bits.

On appelle codage la représentation en mots binaires des noms des états. La table 5.1
propose un exemple de codage a trois, quatre, cing et six bits pour notre exemple.

Etat Trois bits | Quatre bits | Cing bits | Six bits
Arrét 100 0001 11110 110001
Prélavage 000 0110 10100 101010
Lavage 001 1111 01100 110111
Ringage 010 0000 01101 010110
Essorage 111 1011 01110 010111

Table 5.1: Exemples de codage des états

5.4.2 En quoi le codage choisi influe-t-il sur la taille de la machine a
états ?

La partie combinatoire de la machine qui calcule I'état futur en fonction des entrées et de
I’état courant est tres largement influencée par le codage des états. Donc sa taille (en nombre
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de composants utilisés) en dépend également. Elle possede Ne + Nb entrées et Nb sorties
(Ne est le nombre d’entrées de la machine et Nb le nombre de bits choisi pour coder les états
comme illustré dans la figure 5.13).

N’
Entrées D& Lﬁ‘\‘) Ns Sorties
Horloge 74‘—>

Figure 5.13: Schéma d’une machine i érats avec le nombre de bits nécessaires

Le nombre de fonctions booléennes calculées est donc égal a Nb et chacune de ces fonc-
tions possede Ne + Nb entrées. On pourrait en conclure qu’il faut coder les états avec le
moins de bits possibles pour que cette partie combinatoire soit la plus petite possible. Mais
il n’en est rien. On peut facilement trouver des exemples qui prouvent le contraire. Pour s'en
convaincre il suffit de remarquer qu'une fonction booléenne de quatre variables peut étre plus
simple qu'une autre de deux variables :

F(A07 A17 AZ: AS) = AO
est plus simple que :
G(Ap, A1) = Ap® Ay

Il se pourrait que notre exemple soit une illustration de ce phénomene et que cinq fonc-
tions booléennes simples vaillent mieux que trois complexes.

La partie combinatoire qui calcule les sorties en fonctions de I'état courant possede Nb
entrées et Ns sorties (ol IVs est le nombre de sorties de la machine). Elle calcule donc N's
fonctions booléenne de N'b entrées. La encore, méfions nous des évidences ; la solution qui se
traduit par une taille minimum n’utilise pas nécessairement un codage des états sur un nombre
de bits minimum.

La seule certitude que I'on ait concerne le registre d’état. Sa taille est directement liée au
nombre de bits du codage d’états. Comme on le voit, le probleme n’est pas simple. Il I'est
d’autant moins qu’une solution optimale au sens de la taille pour la partie combinatoire de la
machine qui calcule I'état futur a peu de chances d’étre également la meilleure pour la partie
combinatoire qui calcule les sorties.

5.4.3 Quelles méthodes permettent de choisir le meilleur codage pos-
sible ?

Il faut, avant de répondre a cette question, déterminer ce que I'on entend par meilleur. La
taille est un critére de sélection mais il n'est pas le seul. On peut également s'intéresser a la
vitesse de fonctionnement, a la consommation ou la simplicité de conception. Selon I'objectif
fixé les stratégies de codage seront différentes. Parmi celles-ci nous allons en citer trois :

1. Le codage adjacent : il utilise un nombre de bits minimum (trois bits pour 'exemple
de la figure 5.14) et se caractérise par le fait que le passage d’'un état 2 un autre ne
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modifie qu'un seul bit du registre d’état, un peu a la mani¢re d’'un code de Gray. Il
n'est pas toujours possible de trouver un tel codage. Pour notre programmateur, par
exemple, il n'existe pas de codage adjacent. On peut cependant essayer de s'en approcher
en réduisant autant que faire se peut le nombre de transitions modifiant plus d’un bit
du registre d’état. Ici, seule la transition de I'état Prélavage, codé 001 a I'état Lavage,
codé 010, ne respecte pas la contrainte.

001
Prélavage

100
<JEssomge

Figure 5.14: Graphe avec codage adjacent

Lintérét d’un tel codage n'est pas systématique. Il donne cependant souvent de bons
résultats en taille et en vitesse pour la partie combinatoire qui calcule Iétat futur. Elle
se trouve en quelque sorte simplifiée par la faible agitation des bits représentant I'état.

. Le codage « one-hot » : il utilise un nombre de bits égal au nombre d’états (cing bits

pour 'exemple de la figure 5.15). Chaque état est représenté par un mot binaire dont
tous les bits sauf un valent 0. Ce codage donne souvent les machines les plus simples a
concevoir. Il est également parfois intéressant en vitesse et en surface malgré le handicap
di 2 la taille du registre d’état.

00010
Prélavage

00100
Lavage

10000
Essorage

01000
Ringage

Figure 5.15: Graphe avec codage “one-hot”

3. Le codage aléaroire : il consiste a coder les états sur un nombre de bits minimum sans

aucune autre préoccupation que d’éviter que deux états aient le méme code. Les résultats
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en terme de surface, vitesse ou difficulté de conception sont imprévisibles mais peuvent
parfois étre meilleurs que ceux produits par les deux autres stratégies.

Pour ce probleme précis de 'optimisation du codage des états les outils logiciels de type
synthétiseurs logiques peuvent aider le concepteur pour trouver un « bon » codage.

5.5 La conception d’'une machine a états

Considérons I'exemple du programmateur du lave-linge (voir le paragraphe 5.2). Le graphe
d’érat final représenté dans la figure 5.8 fait apparaitre un minuteur qui fournit en entrée
de notre machine a états trois signaux C5, C10 et C30, tous trois booléens, qui indiquent
respectivement si la valeur 5 minutes, 10 minutes ou 30 minutes est atteinte.

Ces minuteurs sont aussi des machines a états dont I'état change a chaque cycle d’horloge.
Ils auraient pu étre incorporés au graphe principal, mais en considérant un fréquence d’horloge
de 1 seconde, le graphe aurait été muni de plus de 3300 états (Smn + 2fois 10mn + 30mn)*
60 s . Le chapitre 5.5.2 étudie la conception de ces minuteurs.

Les machines a états peuvent donc étre factorisables. Cet exemple montre un exemple de
machines a états imbriquées de fagon a en simplifier leur conception. Commengons par conce-
voir la machine a états principale dont le graphe a été étudié préalablement.

5.5.1 machine a états principale

Linterface de la machine avec le monde extérieur est spécifié dans la table 5.2.

Nom | Mode Description
H | Entrée Horloge
R | Entrée Reset actif a 0 , initialise a 'état Arrét
Entrée Position du bouton Marche/Arrét
P Entrée Existence d’une phase de prélavage
C5 | Entrée Chronometre supérieur ou égal & 5 minutes
C10 | Entrée Chronometre supérieur ou égal a 10 minutes
C30 | Entrée Chronometre supérieur ou égal a 30 minutes
X Sortie Vaut 0 dans Iétat Arrét, 1 dans les autres
Y Sortie | Vaut 1 dans les états Prélavage et Lavage, 0 dans les autres
Z | Sortie | Vaut 1 dans les états Lavage et Essorage, 0 dans les autres

Table 5.2: Spécification de l'interface

La premicre chose a faire est le graphe d’état qui a déja écé étudié au paragraphe 5.2 et
vérifié pour ne pas étre incomplet ni contradictoire. La figure 5.8 illustre le graphe considéré.
Dans un deuxi¢me temps le codage des états doit étre choisi. Considérons le codage représenté
dans la table 5.3.

Le codage des états choisi est indiqué en haut de chaque bulle du graphe représenté en

figure5.16.
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Etat Codage

Arrét 000
Prélavage 001
Lavage 010

Ringage 110

Essorage 100

Table 5.3: Codage des érats

C10 C10 C30

001 010
Prélavage Lavage
XYZ=110 XYZ=1T1

000

Arrét
XYZ=000

C30

100 110
Essorage Ringage
XYZ-101 XYZ2100

C5 €10 Cl10

Figure 5.16: Graphe avec codage choisi pour la conception

Il faut maintenant écablir la table de vérité des différentes fonctions booléennes calculées
A 'intérieur de la machine.

Commencons par la partie combinatoire qui calcule Iétat futur a partir de Iétat courant
et des entrées, que nous appellerons P1. Nous noterons les trois bits de I'état futur EF2, EF1
et EFO avec la convention que EF2 est le bit de gauche, EF1 le bit du milieu et EFO le bit de
droite du code de I’état. De méme les trois bits de I'état courant seront notés EC2, EC1 et
ECO. Cette table de vérité s'appelle également table d’évolution (ou de transition) car elle décrit
I’évolution de la machine au cours du temps. Elle donne pour chaque état courant possible
et pour chaque combinaison possible des entrées la valeur prise par I'état futur. Lorsque la
valeur d’une entrée est X cela signifie qu’elle est indifférente. La table 5.4 représente la table
d’évolution de la machine a états.

En utilisant les méthodes et principes exposés dans le chapitre 2, on en déduit des équations
non simplifiées des trois fonctions booléennes EF2, EF1 et EF0 que calcule P1 :

EF, = (ECy+ EC,).(ECy+ C30).(ECy.EC,.C5)
EFy, = (EC,+ ECy).(EC, + C10).(ECy.EC,.C10) + (ECy + EC, + ECy).M.P
EFy = (ECy+ EC, + ECy).M.P + EC,.C'10
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Etat courant Entrées Etat futur
EC2 | EC1 | ECO || M| P | C5 | C10 | C30 || EF2 | EF1 | EFO
0 0 0 0 | X | X X X 0 0 0
0 0 0 11| X X X 0 0 1
0 0 0 10| X X X 0 1 0
0 0 1 X | X| X 0 X 0 0 1
0 0 1 X | X| X 1 X 0 1 0
0 1 0 X | X| X X 0 0 1 0
0 1 0 X | X| X X 1 1 1 0
1 1 0 X | X| X 0 X 1 1 0
1 1 0 X | X| X 1 X 1 0 0
1 0 0 X |X| 0 X X 1 0 0
1 0 0 X[ X| 1 X X 0 0 0

Table 5.4: Table d'évolution

Aprés simplification et toujours en utilisant les méthodes du chapitre 2 :

EF, = EC,.030+ EC,.(EC, + C5)
EF, = EC,.C10+ EC,.EC,.C10+ EC5.EC,.ECy.M.P
EF, = EC,.EC,.ECy.M.P+ EC,.C10

La réalisation en portes logiques de ces trois équations ne pose pas de probleme particulier.
Il peut cependant étre intéressant d’affiner I'étude dans le but de réduire la complexité de
Pensemble. On peut par exemple remarquer que le terme : ECy. EC,.ECy. M se retrouve
dans les équations de EF et E'Fj Il est possible de partager certaines portes entre plusieurs

fonctions logiques et réaliser des économies de matériel.

5.5.2 Machine a états du minuteur

Chaque minuteur dispose en entrée d’un signal de commande GO correspondant a une
sortie de la machine 2 états principale.

Linterface du minuteur avec le monde extérieur est spécifié dans la table 5.5. C,, représente
C5, C10 ou C30.

Le graphe d’état de la machine a état est cyclique et reflete 'avancement de la machine
quand le signal GO est actif. Le graphe est illustré dans la figure 5.17.

Ce graphe correspond 4 la fonction d’un compteur binaire piloté par le signal GO, et dont
la sortie est comparée au temps d’attente du minuteur. Létat N est le seul état ot la sortie est
active et ou il n'y a pas de condition pour aller a I'état suivant. Autrement dit il sagit d’'un
compteur modulo N+1 si GO est toujours actif.

Plutdt que d’utiliser une méthode systematique de synthese de machines a états, qui dé-
boucherait sur un grand nombre d’états (300 états pour obtenir 5mn avec une horloge d’1s
de période), il suffit de considérer la structure d’'un compteur binaire (cf chapitre 4 suivi d’'un
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Nom | Mode Description
H | Entrée Horloge
R | Entrée Reset actif 2 0, initialise a I'état Arrét
GO | Entrée Commande venant de la machine a état principale
actif 2 1 pour autoriser la sortie, sinon force la sortie 2 0
C, | Sortie Vaut 1 dés que le temps est atteint

Table 5.5: Spécification de linterface

GO

sortie=1

Figure 5.17: Graphe avec codage choisi pour la conception

comparateur (cf chapitre 2). Ce compteur est mis a 0 (correspondant a I'état Arréz = 0) par GO
et le codage des états est tel que les sorties du compteur correspondent aux bits codant I'état.
La figure 5.18 représente la structure du minuteur. Le signal R agit sur le Reset asynchrone
des bascules. Il aurait pu étre supprimé du fait que GO effectue un Reset synchrone.

'

C
GO = |
H

Snln
R — |

Figure 5.18: Schéma d’un minuteur

Plutdt que d’utiliser 3 minuteurs, il est possible d’avoir un seul minuteur en utilisant en
entrée le temps d’attente. Dans ce cas I'interface avec I'extérieur dispose de 2 signaux sup-
plémentaires SEL1 et SELO permettant de programmer le minuteur comme indiqué dans le
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tableau 5.6. La spécification de la machine a état principale doit donc changer légérement afin

de:
e Sortir SEL1, SELO et GO plutdt que 3 signaux GO séparés
e Avoir en entrée un seul signal C' — x a la place de C5, C10 et C30

SEL1 | SELO || Mode de programmation

0 0 Smn
1 X 10mn
0 1 30mn

Table 5.6: Spécification de la programmation du minuteur

Bien entendu les sorties de la machine a états principale doivent étre modifiées en consé-
quence. Il existe toutefois un probleme dans la machine a état principale car il n’ y a pas d’état
permettant de remettre le signal GO 4 0, par exemple entre 'état Lavage et I'état Ringage pour
programmer le minuteur de C10 a C30.

Une solution consiste a rajouter des états dans la machine a état principale, de facon a
mettre le signal GO 4 0. Par exemple il y aurait 'état Lavage-bis tout de suite apres Lavage,
identique a Lavage mais avec GO a 0.

Une autre solution, certainement plus optimale en temps de développement, consiste a
générer un signal de remise a zéro, RAZ, du minuteur lorsqu’il y a eu un changement sur les
entrées SEL1 ou SELO. Au vu de la séquence nécessaire (C10 — C30 — C10 — C5), il sufhit
de détecter le changement uniquement sur SEL1 car SELO ne change pas sur les transitions.
Pour ce faire il suffit de comparer I'ancienne valeur de SEL1 avec la nouvelle et de mettre &
zéro le minuteur si les 2 valeurs sont différentes. La figure 5.19 illustre le schéma du minuteur
générique gérant automatiquement les changements de programmation.

'

GO =
H Smn
R (T> 10mn | nfyl |

30mn

SEL1

o e

RAZ

Figure 5.19: Schéma d’un minuteur générique avec RAZ automatique
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Chapitre 6

Des machines a états aux processeurs

6.1 Introduction

6.1.1 Objectifs

Le but de ces deux lecons est de :

o vérifier que les principes des machines a états sont bien assimilés,

e introduire la notion de microprocesseur, a partir d’exemples simples et progressifs,

e concevoir un microprocesseur simple, d’architecture RISC, que vous réaliserez physi-
quement lors du prochain TP.

Pour cela, nous allons procéder par étapes, et le construire petit a petit...

6.1.2 Introduction

Les processeurs ne sont rien d’autre que des machines a calculer programmables. Imaginez
que vous étes comptable, et que vous avez a effectuer une série d’opérations qu’on vous a
gentiment inscrites sur une feuille de papier. Voici un exemple d’instructions qu’on peut vous
avoir donné :

1. faire 112 + 3
2. faire4 +5
3. faire 2 + 16
4. ...

Un exemple un peu plus compliqué serait :

1. faire 112 + 2
2. faire “résultat précédent” * 5

3. ...

ou bien

97
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o XN N

112+ 3

résultat précédent - 4

si le résultat est nul, passer a 'étape 6, sinon continuer
3%4

résultat précédent + 9

ouvrir la fenétre

résultat de 'étape 2 - 15

passer a I'étape 12

Un microprocesseur est un dispositif électronique qui pourrait faire ce travail a votre place,

pourvu qu'on lui donne la feuille de papier (et de I'énergie).

6.1.3 Instructions et données

Le texte d’une série d’opérations comme ci-dessus est appelé programme. En d’autres termes,

un programme de microprocesseur est juste une liste d’opérations a effectuer. Dans notre cas,

ott le microprocesseur est simple ', les instructions resteront simples. Si le processeur est plus

complexe, incluant des périphériques multiples (gestionnaire de mémoire, entrées-sorties, ...),
les instructions peuvent devenir complexes, comme c’est le cas dans les processeurs CISC 2,
Dans les suites d’ opérations ci-dessus, on distingue deux types d’objets :

les données :

— d’abord les opérandes proprement dits (“3”, “4”, “1127, ...),

— et les opérandes implicites (“résultat précédent”, “résultat de 'étape 27, ...) ;
les instructions :

pour nous ce sont principalement les opérations arithmétiques (“+7, “—”, “x”, “/”...),
— il y a aussi des tests (“si le résultat précédent est nul...”),

— et des sauts (“passer a I'étape 127), souvent conditionnés par un test (“alors passer a

étape 67),
. . . . 7’ . <« . A »

— ainsi que des instructions spéciales (“ouvrir la fenétre”).

Dans notre cas, une instruction de ce genre pourrait étre “mettre en marche le buzzer”,
ou “allumer la LED numéro 10”...

Notez que ces suites d’opérations sont numérotées : elles ont un ordre. Dans le premier
exemple, I'ordre n’a pas tellement d’importance, mais il en a une dans le deuxiéme et le troi-

¢ 7

sieme quand on parle de “résultat précédent”, d’“étape 67, ...

6.1.4 de la feuille a I’électronique

Passons du comptable et de la feuille de papier aux composants électroniques.
La feuille de papier a un réle de mémorisation :

Cest sur elle qu'est écrite la suite des opérations a effectuer,

1. et plus généralement pour tous les processeurs dits RISC
2. “Complex Instruction Set”, par opposition & RISC : “Reduced Instruction Set”
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o Clest probablement aussi sur elle que seront écrits les résultats.

Nous la modéliserons par une mémoire vive, une RAM. Vous avez déja vu ce genre de
composant lors du TD sur les bascules et la mémorisation (11). Cest cette RAM qui stockera
les instructions 2 effectuer, les données, ainsi que les résultats que le microprocesseur va cal-
culer. Le microprocesseur sera donc relié a cette RAM, et ira lire les instructions a effectuer,
selon le principe suivant :

aller lire la premiére ligne (instructions et données associées)
faire ce qui est indiqué
aller lire la ligne suivante (instructions et données associées)

faire ce qui est indiqué

MRS N

revenir a I'étape 3 (etc. jusqu’a ce que mort sensuive...)

Premiére remarque : le microprocesseur doit lire les lignes une par une. 1l doit donc main-
tenir un compteur de ligne interne qui indique la ligne courante (ou la prochaine ligne a lire,
comme cela nous arrangera).

Deuxi¢me remarque : le processeur est un dispositif électronique qui ne comprend que des
suites de bits. Il faudra donc coder les instructions sur un nombre de bit suffisant pour coder
toutes les instructions dont nous aurons besoin. Les données naturelles (les nombres) seront
codées de facon normale (en complément a 2, par ex.), et il faudra trouver un moyen de coder
les données implicites.

Troisi¢éme remarque : dans notre architecture, la RAM stockera les données et les instruc-
tions de facon indifférente. Il est possible d’utiliser deux RAM différentes, ou des zones dis-
tinctes, mais vous verrez cela en détail dans le module ARSE!

6.1.5 Interlude rappel : fonctionnement de la RAM
Le schéma de la RAM est donné en figure 6.1.

WRITE—™

ADDRESS[T ()] ee—
RAM

o[7 ;D_- —-(:]{? 0]

Figure 6.1: Symbole de la RAM

La RAM possede trois bus :

e un bus d’adresses, ADDRESS[7 : 0] indiquant 'emplacement en mémoire de la
donnée a laquelle on accede,

e un bus de données d’entrée, D[7 : 0], pour les données qu'on écrit en RAM,

e un bus de données de sortie, Q[7 : 0], pour les données qu'on va lire en RAM,



100 CHAPITRE 6. DES MACHINES A ETATS AUX PROCESSEURS

ainsi que

e un signal de contréle sur 1 bit, W RITE, indiquant si on est entrain de faire une lecture
dans la RAM (W RITE = 0), ou une écriture (W RITFE = 1).

Le fonctionnement de la RAM est le suivant :

e la RAM sorten permanence sur ()[] la donnée stockée a I'adresse présente sur ADRESSE]|]
(Si on n'a pas envie de l'utiliser, on I'ignore),

o si WRITFE estactif (1), la valeur présente sur D] est écrite dans la mémoire a I'adresse
présente sur ADRESSE],

o si WRITF est inactif (0), D]| est ignoré.

e Pendant que W RITE est actif, le bus @[] prend comme valeur le contenu de la case
pointée par I'adresse. Cela va donc étre la copie de D[], mais avec du retard.

Pour les chronogrammes, on se reportera a la figure 6.2

ADDRESS X 110 p 4 &7 b4
D 4 22 ) 4
Q W Y, e 4 22 ) 4
WRITE I L
. A A
Y A
lzcturs en ad=110 gorilure de 22 en ad=87

Figure 6.2: Exemple d'accés & la RAM

Nous connecterons notre microprocesseur (automate) a2 une RAM pouvant stocker 256
mots de 8 bits chacun :

o 8 bits : les lignes de données D[] seront un bus 8 bits

® 256 mots : il nous faudra donc 8 lignes d’adresse (pour coder une adresse allant de 0 a

255)

Larchitecture globale, que nous utiliserons en TP est donc la suivante (voir figure 6.3 :

® notre microprocesseur

o la RAM, reliée au processeur par ses 2 bus de données, son bus d’adresse et la ligne de

WRITE

o un buzzer qui servira 4 jouer de la musique

CLK WRITE
ADDRESS][T :0]

RESET
Frocesseur RAN

Of7 .0
Buzzer | ]

Figure 6.3: Schéma global

7 0]




6.2. ETAPE I : AUTOMATE LINEAIRE BASIQUE

6.2 Etape 1 : automate linéaire basique

Dans cette premiére étape, nous n’implémenterons que les instructions et données du
premier exemple. Le processeur est donc relié & une mémoire vive (RAM) stockant 256 mots

de 8 bits.

6.2.1 Organisation de la mémoire

On suppose que le programme (opérations a effectuer) ainsi que les données sont déja

chargées dans la mémoire, et qu’ils respectent le format suivant :

Le “X” indique que la RAM contient & cet endroit [a une valeur quelconque. Clest au
microprocesseur d’aller y écrire le résultat correct. Aprés avoir lancé le microprocesseur, le
contenu de la RAM sera le suivant (on indique en gras les endroits de la RAM qui ont changg) :

adresse type du mot stocké exemple
0 instruction ADD
1 donnée (premier opérande) 3
2 donnée (deuxieéme opérande)
3 donnée (résultat)
4 instruction SUB
5 donnée (premier opérande) 12
6 donnée (deuxi¢me opérande) 8
7 donnée (résultat) X

adresse type du mot stocké exemple
0 instruction ADD
1 donnée (premier opérande) 3
2 donnée (deuxieme opérande)
3 donnée (résultat)
4 instruction SUB
5 donnée (premier opérande) 12
6 donnée (deuxieme opérande) 8
7 donnée (résultat)

Nous en déduisons ce que doit faire le microprocesseur :

le microprocesseur doit commencer son exécution a I'adresse 0 de la mémoire,
on part donc du principe qu'on aura toujours une instruction a I'adresse 0 de la mé-

moire,

et qu'on aura toujours en mémoire une instruction, puis l'opérande 1, puis 'opérande

2, puis un octet pour stocker le résultat
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6.2.2 Les instructions

Elles seront (pour 'instant) au nombre de deux :

code (binaire sur 8 bits) | instruction

00000100 ADD
00000110 SUB

Ces opérations arithmétiques opérent sur des nombres de 8 bits, représentant des entiers
non signés. Les instructions étant stockées en RAM, il est nécessaire de les coder. Comme
la RAM stocke des mots de 8 bits, ¢a nous donne 256 instructions possibles, ce qui est lar-
gement suffisant pour un processeur basique... Le code choisi ci-dessus pour I'addition et la
soustraction est parfaitement arbitraire : il correspond a celui qui sera implémenté en TP.

6.2.3 Fonctionnement de ’automate

Vul'organisation de la RAM qui a été choisie, le fonctionnement de 'automate est simple :
a chaque coup d’horloge, il va chercher successivement une instruction, puis le premier opé-
rande, puis le deuxieme opérande, calcule le résultat et le stocke. Puis il recommence a I'adresse

suivante.
En détail :

1. Premier coup d’horloge : le microprocesseur présente I'adresse “0” a la RAM.
La RAM lui présente donc sur son bus de sortie le contenu de 'adresse 0, qui est la
premicre instruction.

2. Deuxi¢me coup d’horloge : le microprocesseur incrémente 'adresse qu’il présente a la
RAM (“17).
La RAM lui présente donc sur son bus de sortie le contenu de I'adresse 1, qui est le
premier opérande.

3. Troisitme coup d’horloge : le microprocesseur incrémente I'adresse qu’il présente a la
RAM (“27).
La RAM lui présente donc sur son bus de sortie le contenu de I'adresse 2, qui est la
deuxiéme opérande.
A ce moment-13, le microprocesseur dispose de toutes les données nécessaires au calcul :
Pinstruction, et les deux opérandes. Il peut donc calculer le résultat.

4. Quatritme coup d’horloge : le microprocesseur incrémente I'adresse qu’il présente a la
RAM (“37).
Parallélement, il présente sur le bus de donnée en entrée de la RAM le résultat qu'il
vient de calculer.
Parallelement, il passe la ligne WRITE de la RAM a I'état haut, pour dire a la mémoire
qu’il désire effectuer une écriture.
Le résultat du calcul est donc & ce moment-1a écrit a 'adresse “3” de la mémoire.

5. Cinqui¢me coup d’horloge : le microprocesseur incrémente I'adresse qu’il présente a la
RAM (“4”).
La RAM lui présente donc sur son bus de sortie le contenu de I'adresse 4, qui est la
deuxi¢me instruction.

6. etc...
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Question 1 : concevoir l'architecture de cet automate.

On ne demande pas une représentation de toutes les portes logique de 'automate, mais
juste une représentation de haut niveau : vous disposez de registres, de boites combinatoires
dont vous ne donnerez que les équations, de multiplexeurs, de compteurs, etc.

Réponse 1 : elle se trouve en section 6.7

6.3 Etape 2 : automate avec accumulateur

6.3.1 Chainage des opérations

Larchitecture actuelle ne permet pas de chainer les calculs (exemple : 3 + 4 + 5). Pour
pouvoir le faire, il y a plusieurs possibilités. ..

Question 2 : lesquelles?

Réponse 2 : elle se trouve en section 6.8

6.3.2 DPaccumulateur

Nous allons doter notre processeur d’'un registre interne sur 8 bits, que nous appellerons
accumulateur. Toutes les opérations arithmétiques 2 deux opérandes s’effectueront entre I'ac-
cumulateur et une donnée en RAM. Plus précisément : pour effectuer “3 + 4” et stocker le
résultat en RAM, le processeur effectuera les instructions suivantes :

1. chargement de 3 dans I'accumulateur

2. addition de 'accumulateur avec un opérande en RAM (“4”)
3. stockage du contenu de 'accumulateur en RAM

Pour effectuer “3 +4 + 57 :

1. chargement de 3 dans I'accumulateur

2. addition de 'accumulateur avec un opérande en RAM (“4”)
3. addition de 'accumulateur avec un opérande en RAM (“5”)
4. stockage du contenu de 'accumulateur en RAM

On ajoute donc deux instructions a notre processeur :

® Joad : chargement de 'accumulateur a partir de la RAM

o store : stockage du contenu de I'accumulateur dans la RAM

Parallélement, les instructions d’addition et de soustraction n’ont plus besoin que d’un
seul opérande - le deuxi¢me opérande est dans I'accumulateur.

De plus, tant qu'on y est, nous allons ajouter trois instructions de manipulation de bits :
AND, OR et XOR (cf. le tableau 6.1), qui comme 'addition, opérent sur le contenu de
laccumulateur et un opérande en RAM.

Le nouveau jeu d’instruction devient donc :

Question 3 : quel est 'impact de ces spécifications sur la facon de stocker le programme en

RAM?
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code (binaire 8 bits) | instruction | effet

00000001 XOR Effectue un XOR bit 4 bit entre le contenu de I’ac-
cumulateur et une donnée en RAM ; le résultat est

stocké dans 'accumulateur

00000010 AND Effectue un ET bit 4 bit entre le contenu de I'ac-
cumulateur et une donnée en RAM ; le résultat est

stocké dans 'accumulateur

00000011 OR Effectue un OU bit a bit entre le contenu de I’ac-
cumulateur et une donnée en RAM ; le résultat est
stocké dans 'accumulateur

00000100 ADD Additionne le contenu de 'accumulateur 4 une
donnée en RAM ; le résultat est stocké dans I’ac-
cumulateur

00000110 SUB Soustrait du contenu de 'accumulateur une don-
née en RAM ; le résultat est stocké dans 'accumu-
lateur

00001010 LDA Charge dans 'accumulateur une donnée en RAM

00001011 STA Stocke en RAM le contenu de 'accumulateur

Table 6.1: Nouveau jeu d'instructions

Question 4 : concevoir la nouvelle architecture du processeur. Quels sont les avantages en
terme de vitesse par rapport a l'architecture précédente ?

Réponses 3 et 4 : elles se trouvent en section 6.9

6.4 Etape 3 : automate avec accumulateur et indirection

6.4.1 Indirection

Imaginez qu’on souhaite séparer le code des données, pour :

e faire tourner un méme code sur des données différentes (sans le dupliquer pour chaque
groupe de donnée...)

e faire tourner différents codes sur des mémes données (sans dupliquer les groupes de
données...)

e faire tourner un code sur des données qui ne sont pas connues avant I'exécution du
programme (du genre, le début du programme demande a l'utilisateur d’entrer des va-
leurs...)

Pour le moment, notre processeur ne sait pas faire : on doit connaitre les données au

moment du pré-chargement de la RAM avec le code...

Il faudrait disposer d’instructions de manipulation du contenu de la RAM a des endroits

arbitraires (on ne modifierait que des données, hein, pas le code...) Cela permettrait d’aller
modifier les zones ou se trouvent les opérandes. Mais c’est peut-étre un peu compliqué d’avoir
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a modifier plein de zones éparses.

Pour étre plus propre, on pourrait séparer le code des données. On aurait, en RAM, une
zone avec les instructions et une zone avec les données. Il suffirait juste d’aller modifier la zone
des données, et d’exécuter le code générique qui saurait, pour chaque instruction, ot trouver
les bons opérandes.

Pour cela, on modifie (toutes) les instructions de la fagcon suivante : au lieu d’avoir en
RAM deux octets, un pour l'instruction et I'autre pour I'opérande, on aura plut6t un pour
Pinstruction et 'autre pour I'adresse de I'opérande.

Par exemple, pour effectuer “3+4, 3 — 1” on pourra avoir une organisation du genre (voir
tableau 6.2 :

adresse | type du mot stocké | exemple zone
0 instruction LDA
1 adresse de 'opérande 100
2 instruction ADD
3 adresse de 'opérande 101
4 instruction STA
5 adresse de 'opérande 103
6 instruction LDA zone de code
7 adresse de 'opérande 100
8 instruction SUB
9 adresse de 'opérande 102
10 instruction STA
11 adresse de 'opérande 104
100 donnée 3
101 donnée 4
102 donnée 1 zone de données
103 donnée X
104 donnée X

Table 6.2: Organisation de la mémoire, avant exécution du programme

Apres 'exécution du code, on aura ceci en RAM (voir tableau 6.3 :
Remarque : d’habitude on sépare méme la zone de données en deux, celles qui sont
connues a I'écriture du programme, et les autres (celles qui sont modifiées par le programme)...

Question 5 : proposer une modification de I'automate pour que les instructions travaillent
avec des adresses d’opérandes...
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adresse | type du mot stocké | exemple zone
0 instruction LDA
1 adresse de 'opérande 100
2 instruction ADD
3 adresse de 'opérande 101
4 instruction STA
5 adresse de 'opérande 103
6 instruction LDA zone de code
7 adresse de 'opérande 100
8 instruction SUB
9 adresse de 'opérande 102
10 instruction STA
11 adresse de 'opérande 104
100 donnée 3
101 donnée 4
102 donnée 1 zone de données
103 donnée 7
104 donnée 2

Table 6.3: Organisation de la mémoire, aprés exécution du programme

Réponse 5 : elle se trouve en section 6.10

6.5 Etape 4 : processeur RISC

Larchitecture actuelle ne sait effectuer que des calculs linéaires (suite fixe d’instructions),
sur des données potentiellement inconnues (mais dont 'adressage de stockage est connue).

Nous allons maintenant lui ajouter des instructions de saut conditionnels (et, tant qu'on
y est, inconditionnels).

6.5.1 Flags

Pour cela, chaque opération (logique ou arithmétique) va positionner deux signaux qui
seront mémorisés pour 'instruction suivante, qui ne doivent étre modifiés que si on modifie
I'accumulateur :

e C (comme Carry) :

— mis a 1 si 'opération courante est une opération arithmétique et donne lieu a une
retenue,
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— mis 4 0 si l'opération courante est une opération arithmétique et ne donne pas lieu a
une retenue,
— mis a 0 si on fait un load
e / (comme zéro) :
— mis a 1 si on charge 0 dans 'accumulateur
— mis 2 0 dans tous les autres cas.

Question 6 : les implémenter, et rajouter deux opérations ADDC et SUBC, prenant en
compte la retenue C de 'opération précédente (pour implémenter des additions / soustractions
sur des grands nombres par exemple).

Réponse 6 : elle se trouve en section 6.11

6.5.2 Sauts

Pour implémenter les sauts, on définit trois instructions supplémentaires :

e /MP : saut inconditionnel.
Lexécution de cette instruction fait sauter I'exécution du programme directement a une
adresse donnée (passée comme opérande).

e /NC :sautsi C est nul.
Idem 4 JMP, mais seulement si C est nul. Sinon, équivalent &8 NOP (on continue a
'adresse suivante)

e /NZ :sautsi Z est nul.
Idem & JMP, mais seulement si Z est nul. Sinon, équivalent 3 NOP (on continue a
'adresse suivante)

Question 7 : modifier I'architecture du processeur pour implémenter les sauts.

Réponse 7 : elle se trouve en section 6.12

Tant qu'on y est, pour disposer de pauses, on définit I'instruction NOB qui ne fait rien.
Question 8 : comment 'implémenter de facon simple ?

Réponse 8 : elle se trouve en section 6.13

On ajoute aussi deux instructions, de rotation de bits (vers la droite ou vers la gauche) :

e ROL : ACCJ[7 :0] devient ACC[6 :0], ACCJ[7]

e ROR : ACCI7 :0] devient ACC[0], ACC[7 :1]

De plus, pour tester ce processeur lors du TP, on ajoute un port de sortie : Cest un ensemble
de broches dont on veut pouvoir piloter Iétat (passer certaines d’entre elles a I'état haut ou
bas). Pour nous, il s’agit de piloter un buzzer, donc une seule sortie suffira.

Le jeu d'instruction devient donc (tableau 6.4) :

Remarques :

e AD est le deuxiéme octet (en RAM) de l'instruction

e (AD) est la valeur en RAM stockée a 'adresse AD
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binaire | instr. effet explication

00000000 | NOP ne fait rien!

00000001 | XOR Acc = Acc XOR (AD) effectue un XOR bit a bit entre 'accumu-
lateur et une donnée en RAM, le résultat
est stocké dans 'accumulateur

00000010 | AND | Acc=Acc AND (AD) effectue un ET bit 4 bit entre 'accumu-
lateur et une donnée en RAM, le résultat
est stocké dans 'accumulateur

00000011 | OR Acc = Acc OR (AD) effectue un OU bit 2 bit entre 'accumu-
lateur et une donnée en RAM, le résultat
est stocké dans 'accumulateur

00000100 | ADD Acc = Acc + (AD) additionne 'accumulateur 4 une donnée
en RAM, le résultat est stocké dans I'ac-
cumulateur

00000101 | ADC Acc = Acc + (AD) + C additionne 'accumulateur 4 une donnée
en RAM et 2 la carry C, le résultat est
stocké dans 'accumulateur

00000110 | SUB Acc = Acc - (AD) soustrait du contenu de 'accumulateur
une donnée en RAM, le résultat est sto-
cké dans Paccumulateur

00000111 | SBC Acc = Acc- (AD) - C soustrait du contenu de 'accumulateur
une donnée en RAM et la carry C, le ré-
sultat est stocké dans I'accumulateur

00001000 | ROL | Acc = {Acc[6 :0], Acc[7]} | effectue une rotation vers la gauche des
bits de 'accumulateur

00001001 | ROR | Acc = {Acc[0], Acc[7 :1] } | effectue une rotation vers la droite des
bits de 'accumulateur

00001010 | LDA Acc = (AD) charge dans 'accumulateur une donnée
en RAM

00001011 | STA (AD) = Acc stocke le contenu de 'accumulateur en
RAM

00001100 | OUT BZ = (AD)[0] Sortsur la broche BZ le bit de poids faible
de la donnée en RAM, stockée a I'adresse
opérande

00001101 | JMP PC=AD saute A 'adresse opérande

00001110 | JNC PC =AD i C=0 saute A I'adresse opérande si C est nul

00001111 | JNZ PC=ADsi Z=0 saute A 'adresse opérande si Z est nul

Table 6.4: Nouveau jeu d'instructions
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Question 9 : finir le processeur...

Réponse 9 : elle se trouve en section 6.14

6.6 Etape 5 : optimisations

Question : Certaines opérations peuvent s’exécuter en moins de cycles. Lesquelles, en com-
bien de cycles ? Modifier le processeur de fagon a optimiser son temps de fonctionnement.

Question : partant du principe que certaines opérations n’'ont pas besoin d’opérande (NOD,

ROT, ROR), pourquoi ne pas réduire la taille du code en RAM ?

Question : on veut non seulement augmenter le nombre de sorties, disons a 16, mais aussi
a pouvoir utiliser certaines d’entre elles non pas comme des sorties mais comme des entrées.
Et ce, de fagon dynamique : au cours du programme, une broche peut devenir un sortie, puis
une entrée, puis une sortie etc. Comment I'implémenter ?

Question : comment modifier le processeur pour supporter une taille mémoire de 1024
mots (10 bits) ?

6.7 Réponsel

La premiére réponse est tres détaillée. Les autre réponses seront plus succinctes.

6.7.1 Les adresses

Pour effectuer un calcul, 'automate doit disposer de trois informations :

e linstruction ('opération)

e lopérande 1

e lopérande 2

Il doit en disposer en méme temps. Mais elles sont stockées en RAM, et ne peuvent étre lues
que 'une apres lautre. Il faudra donc prévoir un moyen de stockage de ces trois informations
a l'intérieur du processeur pour pouvoir effectuer le calcul.

Vu lorganisation de la mémoire, il semble logique de lire ces trois informations de la fagon
la plus simple possible, c’est a dire :

e tout d’abord l'instruction,

o puis l'opérande 1,

o puis l'opérande 2,
ce qui correspond a un parcours linéaire de la mémoire.

De plus, le stockage du résultat s'effectue dans la RAM a I'adresse suivant celle de I'opé-
rande 2. On peut donc doter 'automate d’un compteur qu’on appellera compteur dadresse ou
PC (Program Counter), qui donnera 'adresse de la RAM 4 laquelle on est en train d’accéder
(que ce soit en lecture ou en écriture). Ce compteur sera incrémenté a chaque coup d’horloge,
et pilotera directement le bus d’adresse de la RAM.
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6.7.2 Les données

Vu ce qui vient d’étre dit, 'automate a un fonctionnement linéaire - 'ordre des actions
effectuées est toujours le méme :

1. aller chercher une instruction

2. aller chercher le premier opérande
3. aller chercher la deuxi¢me opérande
4. stocker le résultat du calcul

On peut donc le concevoir comme une machine a quatre états, dont le fonctionnement
est circulaire : état 1 — état 2 — état 3 — état 4 — érat 1 — érat 2 — ...

Frat 1

e le compteur est en train de présenter 4 la RAM une adresse correspondant 4 une ins-
truction.
Le processeur récupere sur le bus Q[7 :0] la contenu de la RAM a cette adresse, Cest a
dire l'instruction a effectuer.

o il faut stocker cette instruction pour plus tard (quand on effectuera 'opération deman-
dée).
On ajoute donc a 'automate un registre sur 8 bits disposant d’un enable (8 bascules
DFFE en parallele).
Lentrée de ce registre est reliée au bus Q[7 :0] (sortie de la RAM)
Le signal d’enable de ce registre est mis a 'état haut seulement pendant Iétat 1 -->
stockage de I'instruction dans le registre

Etat 2
e le compteur est en train de présenter a la RAM une adresse correspondant aux premier
opérande.
le processeur récupere sur le bus Q[7 :0] la contenu de la RAM a cette adresse, C’est a
dire l'opérande 1...
e il faut stocker cet opérande, donc, on ajoute un registre 8 bits avec enable, relié a la
sortie de la RAM (Q[7 :0]).

enable est mis a Iétat haut seulement pendant I'état 2.

Ftat 3
o le compteur est en train de présenter & la RAM une adresse correspondant aux deuxi¢me
opérande.
le processeur récupére sur le bus Q[7 :0] la contenu de la RAM 2 cette adresse, cest a
dire l'opérande 2...

e comme d’habitude on stocke cet opérande dans un registre 8 bits, dont I'enable est

piloté a I'état haut seulement pendant ce cycle-ci.

Remarque : on peut se dire que ce n’est pas la peine de stocker cet opérande, car on dispose
dés a présent de toutes les données pour effectuer le calcul : I'instruction dans un registre,
I'opérande dans un autre registre, et le deuxi¢me opérande sur le bus Q[7 :0]. Mais il faudrait
alors stocker le résultat dans un registre 8 bits, car on ne fait son stockage en RAM qu'au
prochain cycle...Alors qu’ici, le calcul et le stockage seront faits ensemble au prochain cycle
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(donc pas besoin de stocker le résultat dans un registre). Au total, dans les deux approches, le
nombre de registres est le méme, et ce ne sont que des considérations de chemin critique qui
permettront de déterminer la meilleure des deux méthodes. ..

Ftat 4

o le compteur est en train de présenter a la RAM une adresse correspondant au résultat a
stocker.

e lautomate dispose dans ses trois registres de toutes les données pour effectuer le calcul.
Il suffit d’ajouter une fonction combinatoire pure, pour produire le résultat.
La sortie de cette fonction combinatoire sera reliée au bus d’entrée de la RAM.
Léquation de cette fonction seradu genre : D[7:0] = (si INSTRUCTION="00000100"
: OP_1[7:0] + OP_2[7:0], sinon OP_1[7:0] - OP_2[7:0])
Une telle fonction combinatoire a été réalisée au TP numéro 2...(ALU)

o Parallélement, 'automate doit piloter le signal WRITE de la RAM a Iétat haut, pour
dire 3 la RAM de stocker a I'adresse courante la sortie de la fonction de calcul.

On obtient donc l'architecture suivante pour notre processeur :
e En rouge : le compteur d’adresse courante
e En bleu : les trois registres 8 bits, les signaux load sont les enable
e En noir rond : la fonction combinatoire de calcul proprement dite (ALU)
e En noir carré : la machine a état qui séquence tout ¢a...
La machine a états (CTRL) est présentée en figure 6.4, et son graphe d’états en figure 6.5

+1 ~— ADDRESS[7 :0]
LOAD |
Q[7:0]
LpaD_OF1
i 1 Op 1
i LpAD_OP2, | | I_/"" i
: Op?2 _.l_.“ + /- /}I——h D[7 :0]
LOAD_|
LOAD_OF1
CTRL | LosD_oPz
*» WRITE

Figure 6.4: Architecture de la premiére version

Elle a quatre état, parcourus de fagon circulaire, sans condition sur les transitions.

Elle dispose de 4 sorties, chacune d’entre elles a I'état haut dans un seul état de la machine.
Un codage one-hot est donc tres approprié.

Limplémentation en registre a déja été vue (registres les uns a la suite des autres), et ne
sera pas détaillée ici. Les sorties des registres donnent directement les sorties de la machine a
état...
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Figure 6.5: Graphe détats de la premiére version

6.8 Réponse 2

Plusieurs possibilités, leur nombre est limité seulement par votre imagination. Voici quelques
exemples :

o Garder le résultat de chaque opération en mémoire, et définir une nouvelle addition qui
opére sur un opérande en RAM et le résultat qu'on a gardé.
Linconvénient est qu'on rajoute une instruction pour chaque type d’opération, que
cette nouvelle opération, ne nécessitant qu’'un seul opérande en RAM pourra étre effec-
tuée en 3 cycles au lieu de 4, et que ¢a risque de compliquer la machine a état si on veut
Ioptimiser (certaines opération en 3 cycles, d’autres en 4)...
Définir des opérations de manipulation de la RAM, et grice a elles recopier le résultat
en RAM a l'endroit d’une des deux opérandes de la prochaine instruction. C’est bien
compliqué...
Définir une nouvelle addition qui opére sur un opérande a 'endroit habituel en RAM,
et sur un autre opérande situé a 'adresse (instruction - 1)...
Utiliser la premiére solution, mais pour simplifier les choses (et par cohérence) sup-
primer les opérations sur deux opérandes en RAM. Toutes les opérations (a deux opé-
randes) se feront entre un opérande en RAM, et un gardé dans un registre interne au
processeur. Et pour rendre cela possible, on définit deux nouvelles instructions : charge-
ment de ce registre a partir d'une donnée en RAM, et stockage du contenu de ce registre

en RAM. C’est 'objet de la suite!

6.9 Réponses 3 et 4

Toutes les opérations ne nécessitent plus qu'un seul opérande :

e pour le LDA, cest normal, cest la donnée 2 amener a 'accumulateur

e pour le S7A, aucun opérande. Par contre, en RAM, 2 la suite de instruction §74, il
doit y avoir un emplacement libre pour stocker le contenu de 'accumulateur

e pour les opérations a deux opérandes, 'un est en RAM, l'autre est implicite, Cest le
contenu de 'accumulateur
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Le contenu de la RAM se présentera donc maintenant ainsi :

adresse | type du mot stocké | exemple | effet

0 instruction LDA

1 donnée 3 I'accumulateur contient maintenant 3

2 instruction ADD

3 donnée 4 I'accumulateur contient maintenant 7

4 instruction SUB

5 donnée 1 I'accumulateur contient maintenant 6

6 instruction STA

7 donnée X apres I'exécution du programme cet emplacement

en RAM contiendra “6”

On remarque donc qu’une adresse sur deux contient une instruction, une sur deux contient
une donnée (soit opérande, soit stockage du contenu de I'accumulateur)...

6.9.1 Les adresses

Comme précédemment, les adresses de la RAM sont parcourues de fagon successives. On
garde donc le compteur d’adresse incrémenté a chaque cycle d’horloge.

6.9.2 Les données

Pour effectuer les calculs, le processeur n’a besoin maintenant de connaitre que deux in-
formations : I'instruction et 'opérande. On garde donc le registre d’instruction (8 bits) qui
stocke I'instruction a effectuer pendant qu'on va chercher 'opérande en RAM.

Par contre, auparavant on parcourait 4 emplacements en RAM pour chaque instruction,
d’ol un contrdleur a 4 états. Maintenant on ne parcourt plus que 2 emplacements en RAM,
donc un contrdleur a 2 états devrait convenir...

A chaque instruction, le processeur effectuera ceci :

Pour une opération normale :

1. aller chercher I'instruction en RAM, la stocker dans le registre d’instruction

2. aller lire Popérande en RAM, effectuer le calcul et stocker le résultat dans 'accumulateur
(opération)

Pour un load :

1. aller chercher l'instruction en RAM, la stocker dans le registre d’instruction
2. aller lire 'opérande en RAM, et le stocker dans 'accumulateur (opération)
Pour un store :

1. aller chercher l'instruction en RAM, la stocker dans le registre d’instruction
2. écrire le contenu de 'accumulateur en RAM a I'adresse courante

Chaque instruction est donc traitée de fagon tres similaire :
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1. un cycle de récupération de I'instruction (dans lequel 'enable du registre d’instruction
est mis a I’état haut).

2. un cycle de traitement de l'instruction
Y

6.9.3 DPaccumulateur

Lors du second cycle, 'accumulateur peut subir trois traitements différents :

e pour une opération (ADD, SUB, AND, XOR, OR), 'accumulateur se voit modifié

et chargé avec le résultat de I'opération

e pour un load, 'accumulateur est modifié aussi, et chargé avec la donnée sortant de la

RAM

® pour un store par contre, 'accumulateur nest pas modifié...

En entrée de 'accumulateur on mettra donc un multiplexeur qui présentera soit le résultat
de l'opération en cours (si on exécute une opération standard), soit le contenu de la RAM (si
on exécute un load). De plus, dans ces deux cas, le signal enable de 'accumulateur sera mis a
Pétat haut (pour autoriser sa modification) dans 'état 2 (quand on accede a la partie donnée
de la RAM) Dans le cas d’un store, on laisse 'enable de 'accumulateur a Iétat bas pour ne pas
le modifier.

En d’autre termes, 'enable de 'accumulateur a pour équation : LOAD_ACC = (Instruc-
tion <> STORE) ET (Etat = état 2)

Le pilotage du multiplexeur en entrée de 'accumulateur aura pour équation quelque chose

du genre : ACC = (si Instruction == LOAD alors Q[7:0], si Instruction
== opération alors ALU(ACC, Q[7:0]), si Instruction == STORE alors
peu importe..). Ce qui se simplifie en ACC = (si Instruction == LOAD alors

Q[7:0], sinon ALU(ACC, Q[7:0]))

La sortie de 'accumulateur est branchée 2 la fois :

o sur le bus d’entrée de la RAM (pour le cas ot on fait un store)

e sur 'ALU (qui implémente, selon l'instruction a effectuer, 'addition, la soustraction, le

XOR, etc...)

Enfin la génération du signal d’écriture en RAM est simple : il est mis & I'état haut quand
Pinstruction est un STORE, et qu’on est dans I'état 2. Le contenu de 'accumulateur est pré-
senté sur I'entrée de la RAM (cf. ci dessus), 'adresse courante est sur le bus d’adresse de la
RAM, la RAM est donc mise a jour avec la bonne valeur...

6.9.4 Bilan

On a donc les éléments suivants :

e compteur d’adresse (PC)

e registre d’instruction

e accumulateur avec multiplexeur en entrée

e un controleur, machine & état générantles signaux LOAD_I, LOAD_ACC,W RITE
et le contrdle du multiplexeur

Remarque : les signaux générés par la machine a état ne dépendent pas seulement de I'état

courant, mais aussi de I'instruction a exécuter. C’est donc une machine de Mealy...
Larchitecture globale est donc celle représentée sur la figure 6.6, et son graphe d’états en

figure 6.7
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Figure 6.6: Architecture de la deuxiéme version
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Figure 6.7: Graphe d’états de la deuxiéme version

avec

e SEL ACC = (I[7:0] == LOAD)

e LOAD ACC = (I[7:0] <> STORE) ET (Etat = état 2)
e WRITE = (I[7:0] == STORE) ET (Etat = état 2)

6.9.5 Performances

Pour une opération :

e avant : 4 cycles

e maintenant : 6 cycles (2 + 2 + 2)

Pour deux opérations chainées :

e avant : 8 cycles (4 + 4. Enfin, plus exactement, on ne savait pas faire...)
e maintenant : 8 cycles (2 + 2 + 2 + 2)

Pour trois opérations chainées :

e avant: 12 cycles (4 + 4 + 4. Méme remarque)

e maintenant : 10 cycles
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Bref, pour n opérations :

e avant : 4n cycles

e maintenant : 2n+4 cycles si peut les enchainer, 6n sinon.

On a donc tout intérét & enchainer les calculs. Ce qui est #7¢s souvent le cas en pratique...

6.10 Réponse5

Lautomate doit maintenant pour chaque instruction
e aller chercher l'instruction (la stocker dans le registre d’instruction)
o aller chercher I'adresse de 'opérande (le stocker, dans un registre dit "d’adresse”)
o aller chercher 'opérande proprement dit, en lisant la RAM a I'adresse stockée au cycle
précédent.
On a donc une machine qui posséde un état de plus (celui ot on va lire en RAM l'opérande
proprement dit).

6.10.1 Les adresses

Maintenant, on n’accéde plus a la RAM de fagon successive. Dans 'exemple de programme
donné, les adresses présentées a la RAM seront celles-ci :

1. 0

103

SN T T
M —

-]

—

—

Les adresses de code sont globalement linéaires (0, 1, 2, 3, ...), celles des données ne le
sont pas (elles sont arbitraires). Il faut donc présenter sur le bus d’adresse RAM

e soit le compteur d’adresse pendant les deux premiers cycles (et on 'incrémente a chaque

fois)

e soit le contenu du registre d’adresse (adresse de 'opérande a aller chercher) pendant le

troisiéme cycle (et ici le compteur d’adresse ne doit pas étre incrémenté)
donc : multiplexeur...

De plus, le compteur d’adresse doit étre piloté par un signal INCR_PC : il n’est incrémenté
que si INCR_PC est a 'état haut.

Le registre d’adresse est chargé au cycle numéro 2. Son contenu n'est utile quau cycle
numéro 3. Il n'est donc pas nécessaire de le piloter avec un enable...Il peut rester tout le
temps actif : son contenu sera indéterminé pendant les cycles 1 et 2, mais ce n’est pas grave, il
n'est pas utilisé pendant ces cycles 1. ..

Larchitecture globale est donc celle représentée sur la figure 6.8, et son graphe d’états en

figure 6.9
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Figure 6.9: Graphe d'états de la troisiéme version

C’est 12 aussi une machine de Mealy, et les équations sont :

e SEL ACC = (I[7:0] == LOAD)
e LOAD ACC = (I[7:0] <> STORE) ET (Etat = Ex)
e WRITE = (I[7:0] == STORE) ET (Etat = Ex)

6.11 Réponse 6

6.11.1 Flags

La génération de C et Z est combinatoire et peut étre effectuée par TALU.

117

Il suffit juste de rajouter deux registres 1 bits pour stocker ces deux signaux, pilotés par le
méme enable que 'accumulateur (LOAD_ACC, qu'on appellera maintenant LOAD_AzcC). On
considérera donc que Z et C font partie de 'accumulateur (qui devient donc un registre sur

10 bits : 8 de donnée, 1 pour Z, un pour C).
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6.11.2 ADDC/SUBC

11 suffit de faire entrer C sur la retenue entrante de I’addition ou de la soustraction...

6.12 Réponse 7

Pour implémenter les sauts, il suffit de se donner la possibilité de remplacer le contenu de
PC par la valeur lue en RAM.

PC devient donc un peu plus complexe. Cest globalement un compteur, mais il

e est incrémenté si son signal de commande INCR_PC= 1

e est chargé avec une nouvelle valeur si un signal de chargement LOAD_PcC= 1

e si LOAD_PCet INCR_PCvalent 1, cest LOAD_PCqui prime...

Ceci peut étre implémenté comme sur la figure 6.10.

LOwD_PC
LoD PCoor INCE PO

B |

PC

v

Figure 6.10: /mplémentation du PC

Pour simplifier les schémas, lorsque nous parlerons de PC, ce sera de ce bloc-ci.

Il faut maintenant générer le signal LOAD_PC. Ce signal sera aussi généré par la machine a
états CTRL. Le PC doit étre remplacé lorsqu’on exécute un saut, et que la condition du saut
est vérifiée. La nouvelle valeur est présente sur le bus de sortie de la RAM pendant le cycle 2.

On aura donc une équation du style : LOAD_PC = si (I[7:0] == JMP ou I[7:0]
== JNC et C == 0 ou I[7:0] == JNZ et Z == 0) et (état = etat 2),
alors 1, sinon O.

Larchitecture globale est donc celle représentée sur la figure 6.11, avec une machine a état

CTRL a peine modifiée (méme graphe d’état) représentée figure 6.14.

e SEL_ACC = (I[7:0] == LOAD)

e LOAD ACC = (I[7:0] <> (STORE ou saut)) ET (Etat = Ex)

e WRITE = (I[7:0] == STORE) ET (Etat = Ex)

e LOAD PC = si (I[7:0] == JMP ou I[7:0] == JNC et C == 0 ou I[7:0]
== JNZ et 2 == 0) et (état = AF), alors 1, sinon O

6.13 Réponse 8

Linstruction NOP ne fait rien. Elle n’a pas besoin d’opérande, et pourrait donc étre stockée
sur un seul octet (au lieu de deux pour les autres).

Mais cela compliquerait la gestion de la machine a états pour générer les signaux LOAD_PCet
INCR_PC. De plus, ¢a pourrait poser d’autres problémes (cf. les optimisations).
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Figure 6.12: Graphe détats de la quatriéme version

On peut donc accepter de perdre un octet de mémoire, et ne rien changer a 'organisation
de la mémoire. Linstruction NOP sera accompagnée d’un opérande qui ne servira a rien...
Une instruction sera toujours exécutée en trois cycles. La seule modification de la machine a
état sera I'équation suivante : LOAD_ACC = (I[7:0] <> (STORE ou saut ou NOP))
ET (Etat = Ex)

6.14 Réponse9
6.14.1 ROL/ROR

ces opérations sont combinatoires et seront donc implémentées dans 'ALU.

Remarque : comme le NOD, elles ne nécessitent pas d’opérande. De méme, pour garder
une cohérence (nous optimiserons ¢a plus tard), on garde un codage des instructions sur deux
octets. Pour ROR et ROL, le deuxi¢me octet n’a pas de signification...
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6.14.2 Sortie BZ

On ajoute un registre 1 bit, piloté par un signal d’enable appelé LOAD_Bz.

o lentrée de ce registre est le bus de sortie de la RAM

e sa sortie est connectée a la broche de sortie buzzer du processeur...

LOAD_BZsera généré par la machine a état, selon I'équation suivante : LOAD_BZ = (I[7:0]
== OUT) et (état = EX)...

Larchitecture globale est donc celle représentée sur la figure 6.13, avec une machine a état

CTRL représentée figure 6.14.

LOAD BI .
. BZ —= BZ
= SEL_ADR I
INCR_PC
LOAD PC PC P70
ADDRESS[7 :0]
AD|T0]
Addr !
0AD)
St | 1701
Q7 0] »
LDAD_AZE
Acc O[7 :0]
Z
C
| LoaD EZ
L LoaD_PC
7 — [MCR P
A CTRL |—sel aom
- —— LOAD_AZC
— — LOAD_I
— * WRITE

Figure 6.13: Architecture de la version finale
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/ SEL _ .ﬁ.DR-[I \
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Figure 6.14: Graphe d’états de la version finale

Les équation sont laissées en exercice au lecteur!..
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Remarque : le signal SEL_AcC ne sort pas de CTRL sur le schéma : il peut étre inclus,
avec le multiplexeur qu'il pilote, dans TALU...
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Chapitre 7

Du transistor a la logique CMOS

7.1 Introduction

7.1.1 Objectifs
Il s’agit :

o de comprendre les principes de la construction de portes en structure “logique complé-
mentaire” 4 partir de transistors NMOS et PMOS,

o de savoir évaluer les principales performances électriques de ce type de cellules,

e de savoir construire un modéle de performances utilisable au niveau fonctionnel, c’est a
dire 2 un niveau ol le nombre de cellules appréhendées est supérieur a plusieurs dizaines,

o de connaitre, pour ces différents niveaux d’analyse, les ordres de grandeurs caractéris-
tiques.

7.1.2 Présentation

En utilisant nos connaissances du transistor MOS, nous élaborerons un modele de type
interrupteur commandé, qui permet de construire des portes logiques et de comprendre les
principes et les caractéristiques de la logique complémentaire. Nous étudierons un modeéle
linéaire du temps de propagation le long d’'un chemin logique. Enfin nous évoquerons le
principe et l'utilisation d’une bibliothéque de cellules.

7.2 Modzé¢le en interrupteur

7.2.1 Modélisation

Nous transformons le modele électrique du transistor (transconductance non linéaire),
rappelé au chapitre 7.5, en un interrupteur commandé uniquement par la tension de grille
V. Ainsi nous faisons correspondre :

o i état bloqué du transistor I'état ouvert de 'interrupteur que nous notons “O”,

o 4 ['état passant du transistor I'état fermé de I'interrupteur que nous notons “F”,

Du fait de la connexion systématique des substrats, nous omettrons souvent de le dessiner

(voir 7.5).

123
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dipole d’entrée niveau logique sur la grille

0 1

modele en interrupteur

transistor
du dipéle de sortie

NMOS O F

T{ Lo |

Table 7.1: Modeéle en interrupteur

transistor NMOS

o Lorsque la tension de grille Vg est 2”17 il suffit d’avoir :
Ve < Vp — VTN
(Vp tension du drain) pour que la condition de conduction :
VG’SN > VTN
soit respectée et que I'interrupteur équivalent soit fermé, ce que nous notons ”F
o Lorsque la tension de grille Vi; est 2 ”0” la condition de blocage est remplie :
VGSN =0V < VTN

Pinterrupteur équivalent est ouvert, ce que nous notons "O”

»

transistor PMOS

o Lorsque la tension de grille Viz est 2 717, la condition de blocage est remplie :
VG’SP =0V > VTp

linterrupteur équivalent est ouvert : “O”

o Lorsque la tension de grille Vg est 2 707 il suffit d’avoir :
Vg > _VTP
pour que la condition de conduction :
VGSP < VTP
soit respectée et que l'interrupteur équivalent soit fermé (passant) : "F”
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7.2.2 Quelques montages simples

Dans les tableaux suivants les lettres minuscules : a, b, désignent les variables logiques
d’entrée et les lettres majuscules : A, B les extrémités de la branche.

Nous notons F lorsqu'un transistor est passant (interrupteur équivalent fermé), O s’il est
bloqué (interrupteur équivalent ouvert). Fi4p désigne la fonction logique associée a I'état de
la branche située entre les points A et B. Son état est noté comme celui des transistors. La
valeur logique de la fonction Flyp est obtenue en sommant les produits des états des entrées
produisant la fermeture de la branche AB (en gras dans les tableaux suivants). Létat ”1” de
I'entrée a est noté a. Létat ”0” de Pentrée a est noté @ (a_barre, a).

Montages séries

Pour qu'une branche constituée de 2 interrupteurs en série soit passante, il faut que les 2
interrupteurs soient fermés en méme temps (fonction logique £7" notée ”.” Si 'un au moins
est ouvert, la branche est ouverte.

Entrées | Transistors | Branche
i al| b | Ty, | TN, Fap
Al Gl oo]o]| o
o—[m o] 1| O F O
B 1|0 F O O
1|1 F F F

Table 7.2: NMOS. Fap =a-b

Entrées | Transistors | Branche
g al| b |Tp, | Th, Fap
Al oo [k | & F
e=d[m o] 1| F | O o)
B 1( 0 O F O
1] 1 @) @) @)

S

Table 7.3: PMOS. Fap =@ -b=a+

Montages paralléles

Pour qu'une branche constituée de 2 interrupteurs en paralléle soit passante, il suffit qu'un
interrupteur au moins soit fermé (fonction logique OU notée ”+” Si les deux sont ouverts, la



126 CHAPITRE 7. DU TRANSISTOR A LA LOGIQUE CMOS

branche est ouverte.

Entrées | Transistors | Branche
f a| b | Ty, | Tn, | Fas
a«‘ E e }»h ol 0| O] O (@)
0 1 O F F
" 1| 0| F |O F
1 1 F F F

Table 7.4: NMOS. Fap =a-b+a-b+a-b=a~+b

Entrées | Transistors | Branche
o a| b |Tp, | Tp Fug
. *d E T )(}b 0] 0 F F F
0| 1 F O F
B 11 0 O F F
1] 1 @) (@) (@)

Table 7.5: PMOS. Fap =a-b+a-b+a-b=a-b

Chaque transistor NMOS TNx peut évidemment étre remplacé par un réseau de tran-
sistors NMOS. De méme chaque transistor PMOS TPx peut étre remplacé par un réseau de
transistors PMOS... et ainsi de suite, pour constituer deux réseaux duaux complexes.

7.3 Lalogique complémentaire CMOS

7.3.1 Introduction

Reprenons le schéma du circuit "Résistance Transistor Logique” (figure 7.1). Remplacons
la transconductance idéale du transistor NMOS par interrupteur équivalent Ty . Identifions
ses 2 états d’équilibre (on dit aussi états statiques).

Nous avons vu que la grille d’un transistor NMOS ou PMOS, est isolée. Ainsi la com-
mande de l'interrupteur équivalent au transistor est-elle isolée de I'interrupteur lui méme. Les
équations de ce circuit sont :

L4 VDD:VR—F‘@:R‘IR‘F‘/S

[ ] ]DD == ]R = ]T

e Lorsque 'entrée vaut "0, I'interrupteur Ty est ouvert. Aucun courant ne circule dans

labranchedesortie: Ipp = Ir =Ir =0=Vpp =V, =717
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transistor

A alimentation
C W00
T sortie

. g
entres
WG

Figure 7.1: Circuit Résistance Transistor Logique

e Lorsque l'entrée vaut ”17, linterrupteur Ty est fermé : Vy; = 0 = 70" = Vpp =
R- ]Rma:v
Ce type de circuit est un inverseur logique. En régime statique, a 'état bas (70" en sortie) il
consomme du courant, et 'on a cherché un moyen pour éviter toute consommation en régime
statique. La logique complémentaire, est une des solutions efficaces a ce probleme.

7.3.2 Notion de complémentarité

Le mot complémentaire veut dire que 'on dispose, autour de I'équipotentielle de sortie,
non plus d’une branche passive (R) et d’une branche active (Ty), mais de deux branches
actives duales, c’est dire conduisant 'une a la stricte exclusion de I'autre, et pour des signaux de
commande complémentaires. Un méme signal commande au moins une paire d’interrupteurs
complémentaires.

Exemple de 'inverseur

La porte la plus simple de lalogique complémentaire est 'inverseur. Chacune des 2 branches
est constituée d’un seul transistor. Le symbole et le montage de I'inverseur CMOS sont repré-
sentés dans la figure 7.2.

VDD WDD
A
5
gl b
Ve Vs = Ve d s
| >O_ d
g o
5

Figure 7.2: [inverseur CMOS

Analysons son fonctionnement.

e Linterrupteur Ty est le modéle du transistor NMOS (entrée = ”1” et il est fermé, entrée
= 70" et il est ouvert).

e Linterrupteur Tp est le modele du transistor PMOS (entrée = ”0” et il est fermé, entrée
="1” et il est ouvert).

o Lentrée V. est commune aux deux grilles, celle de 7' en parallele avec celle de T'p.



128 CHAPITRE 7. DU TRANSISTOR A LA LOGIQUE CMOS

A alimentation A alimentation
Kyalnl DD
entrée sorie entrée sortie
lTN W ="1" ="1" TN W

Yes="T"

Figure 7.3: Régime statique : les 2 états statiques de ['inverseur

e Lorsque la branche N est fermée, la branche P est ouverte : la sortie est reliée a 07,
électriquement : la masse (OV).

e Lorsque la branche N est ouverte, la branche P est fermée : la sortie est reliée 2 717,
électriquement : Vpp.

Consommation

En régime statique, c’est & dire pour chacun des deux états stables, aucun chemin électrique
n'existe entre Vpp et la masse, aucun courant n'est donc consommaé.

Pour analyser ce qui se passe en régime transitoire, ce qui sera fait plus précisément dans
le chapitre « Performances de la logique CMOS »(7), rappelons-nous que :

1. la tension d’entrée V. n'a pas un temps de transition (2 la montée comme 2 la descente)
nul. Ainsi pendant un certain temps : lorsque Vpy < V. < Vpp — Vp,, les deux tran-
sistors sont passant. Un courant dit de court-circuit, délivré par 'alimentation, traverse
les deux transistors passants vers la masse.

2. la charge de cette porte logique, est essentiellement constituée d’une capacité Cr, re-
g glq
présentant 'ensemble des capacités parasites connectées sur 'équipotentielle de sortie.
La charge (de “0” 4 “1”, soit de OV a4 Vpp) et la décharge (de “1” 4 “0”, soit de Vpp
g g
a 0V) du noeud de sortie, nécessite un courant, donc une consommation dynamique
(voir schéma 7.4).

YDD

Figure 7.4: ['inverseur CMOS et sa charge capacitive

Durant le régime transitoire, I'alimentation va :

e soit charger, de OV a Vpp, la capacité Cp au travers de interrupteur fermé Tp équi-
valent au transistor PMOS passant,

e soit décharger, de Vpp a 0V, la capacité O au travers de interrupteur fermé Ty équi-
valent au transistor NMOS passant.
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En conclusion, la consommation statique de I'inverseur CMOS est nulle. La consomma-
tion transitoire (dynamique) est due au courant de court-circuit et a la (dé)charge de la capacité

Cr.

7.3.3 Porte complexe
Constitution du circuit

Dans 'exemple de l'inverseur, la branche N et la branche P ne sont constituées que d’un
interrupteur chacune. Pour réaliser une fonction plus complexe, nous allons remplacer chaque
branche par un réseau de plusieurs interrupteurs de méme type, comme illustré dans la figure
7.5. Les regles globales sont les mémes que pour linverseur, mais chaque branche N et P,
sera constituée d’un réseau d’interrupteurs, montés en paralléle ou en série (voir le paragraphe
7.2.2), tous reliés deux a deux (au moins) par leur grille, et respectant la condition de conduc-
tion d’une branche a 'exclusion de celle de I'autre.

1 (voD)

€i

(i)

Figure 7.5: Schéma de principe de la logique complétaire

Principes et fontionnalité

En logique complémentaire, un circuit est constitué de deux réseaux duaux :

e un réseau N, constitué exclusivement de transistors NMOS, branché entre la sortie et
le moins de 'alimentation” (en général la masse) qui correspond au ”0” logique,

e un réseau P, constitué exclusivement de transistors PMOS, branché entre la sortie et le
”plus de 'alimentation” (Vpp) qui correspond au ”1” logique,

Pour étre duaux les deux réseaux doivent satisfaire les principes suivants :

o ¢étre commandés par les mémes entrées e;, chaque entrée e; commandant au moins une
paire d’interrupteurs (un N et un P),

e quelque soit I'état des entrées ei, un seul réseau doit étre passant a la fois.
I est toléré toutefois que les deux branches soient ouvertes en méme temps.

+1 +1

ei =M L’ t\s=1 e —y wHiﬂ—_\\S:Z

—

J
ey

/"l-l-l
H
e lh

Figure 7.6: Schéma du fonctionnement de la logique complémentaire
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La fonction de sortie F est générée par :

o la fermeture du réseau N, pour obtenir F = 70" soit F (F_barre!F),

o la fermeture du réseau P, pour obtenir F = 717 soit F,

e louverture simultanée des 2 branches engendre F = Z soit I'état électrique haute impé-
dance. En électronique numérique ce troisi¢me état sert a
— mémoriser Iétat précédent,
— ne pas influer sur une équipotentielle lorsque une autre sortie logique est censée y

apporter son signal.

Pourquoi des PMOS en haut et des NMOS en bas?

NMOS déchargeant la capacité C, | NMOS chargeant la capacité C,,

Table 7.6: Charge/décharge d’une capacité par un NMOS

Nous savons que le temps de transition (charge ou décharge) est inversement propor-
tionnel a I'intensité du courant traversant la capacité. Dans les cas des 2 montages étudiés ce
courant est égal a celui qui traverse le dipdle de sortie du transistor : Ipg.

Dans les conditions de la logique complémentaire le transistor NMOS décharge la capacité
(' du noeud de sortie (cf. “montage du transistor MN17).

e A létat initial :

— Ve=0V etV = Vpp : Cy est chargée au maximum,
— Vs = Ve =0 < Vpy,, (latension de seuil pour Vgp = 0V) : le transistor MN1 est
bloqué. Ipg est nul : C,, reste chargée & Vpp.

e La commande de décharge arrive :

- ‘/e - VDD)
— Vs = Ve = Vpp > Vig,, : le transistor MN1 est passant saturé. /pg est maximum :
C,, se décharge,

Dans le second montage, le transistor MN2, n’est pas dans les conditions de la logique com-
plémentaire, en effet il est branché en lieu et place de ce qui devrait étre le réseau .
e A Iétat initial :
— Ve=0V et V; =0V : C, est déchargée au maximum,
— Vs = Ve =0 < Vpy,, (latension de seuil pour Vgp = 0V) : le transistor MN1 est
bloqué. Ipg est nul : C,, reste déchargée a OV.
e La commande de charge arrive :
- Ve ="Vbp,
— Vas = Ve = Vpp > Vi, : le transistor MN1 est passant saturé. Ipg est maximum :
C,, se charge, V; augmente, d’oli deux conséquences :
1. Latension Vg diminue puisque : Vs = V. — Vgp = V. — V;. Si Vizg diminue
Ips diminue,
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2. Latension Vgp = V;augmente, ainsi Vry > Vyg, . OrIpg o< (Vigs — VTN)2 .

Premiére conclusion : MN1 “dispose” d’une intensité de courant beaucoup plus impor-
tante pour décharger C, que MN2 pour charger C,,. Ainsi le temps transition du premier
montage sera t il toujours plut petit que celui du second (MN1 et MN2 ayant les mémes
dimensions et les mémes parametres technologiques).

Nous pouvons mener une démonstration semblable pour un transistor PMOS : excellent
exercice pour se prouver que ces notions sont correctement assimilées !

Seconde conclusion : de méme que pour la consommation statique, la disposition d’un
circuit en logique complémentaire CMOS semble optimale pour les temps de transitions.

7.3.4 Exemple d’analyse d’une porte logique

Sur la figure 7.7, nous avons représenté les schémas :

o du circuit en transistors de la porte logique & analyser,

e son modele en interrupteurs,

o la table de vérité extraite du modéle en interrupteurs de la porte, ot figure en gras, I'état
des entrées représenté sur le schéma du modéele.

entrées | réseaux | sortie
VDD el» bl N S
0/0[{0 O| F 1
ad aAq )C}b | a b 0/0|1]O| F 1
[ . : A 0|1|0|/O|F| 1
—[ —] b r 0|1|1|F|O] 0
[ ol L 1. ":/b 110/0/O|F| 1
1/0(1|F|O 0
o «» 110 F|O 0
1{1|1|F|O 0

circuit 4 transistors modele en interrupteurs table de vérité

Table 7.7: Analyse d’une porte logique

Les étapes de I'analyse, suivent évidemment les principes de la logique complémentaire

CMOS.

Méthode de la table de vérité

o Pour chaque état logique de chaque variable d’entrée, nous en déduisons I'état de chacun
des deux réseaux (N et P) puis celui de la sortie,

o Lexhaustivité de I'analyse est garantie,

e Nous vérifions qu'un méme jeu de valeurs logiques d’entrée n’entraine pas a la fois la
conduction des deux réseaux,
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e Nous écrivons I'équation de S en faisant la somme logique des valeurs logiques d’entrée
entrainant S = 1.

S]]

en remarquantque a-b=a-b+a-b-7,il vient:

S a-b+a-b-7+a-b-T
— a-b+a-b-F+a-b-T+a-b-T
a-b+7-(@a-b+a-b+a-b)

soit S=a-b+7-(a+b)
Appliquons de Morgan, nous obtenons S = a - b+ 7 - (a + b), que nous pouvons aussi
écrire de la maniére suivante :

S=a-b+r-(a+b)

Méthode de I’analyse par réseau

Nous analysons la conduction de chaque réseau (N et P) en fonction des valeurs logiques
d’entrée, en appliquant les regles déja vues (voir table 7.8).

DD

Réseau P

a

o

11 L

b Réseau N

Table 7.8: Analyse d'une porte logique

Le réseau N comprend deux branches en paralléle :
e labranche de gauche, sur le schéma, est passante pour la fonction des entrées: Ny = a-b
e celle de droite est passante pour : Ny = 7 - (a + b)
Le réseau N conduit pour la fonction: N = Ny + No =a-b+71- (a+ b)
La fonction réalisée par le réseau N estdonc: S =N =a-b+71- (a+b)
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Le réseau P comprend deux branches en paralléle :
e labranche de gauche, sur le schéma, est passante pour la fonction des entrées: P, = @-b
o celle de droite est passante pour: P, =T - (6 + 5)
Le réseau P conduit pour la fonction: P=P, + P, =@ - b+7- (6 + I_))
Apreés calcul nous obtenons: S=P=a-b+7- (@+b) =a-b+7r-(a+b)
Enfin nous vérifions la conduction exclusive de chacun des deux réseaux : N = P

7.3.5 Exemples de synthese d’une porte logique
La porte et-non a 2 entrées (nand2)

La fonction nand2 est égale a : Spana2 = a-b

e La fonction N,4nq2 qui représente I'état du réseau N, vaut Npand2 = Snand2 = @ - b
Cette fonction correspond a deux transistor NMOS en série.

e La fonction P,4n42 qui représente 'état du réseau B, vaut Ponge = Snand2 = a-b=
a+b
Cette fonction correspond a deux transistor PMOS en paralléle.

e Par construction, si les calculs logiques ne sont pas erronés, la réalisation satisfait la
dualité des deux réseaux.

La porte ou-non a 2 entrées (nor2)

La fonction nor2 est égale a: Syor0 = a + b
e La fonction N9 qui représente I'état du réseau N, vaut N,,p00 = Spora = a + b
Cette fonction correspond a deux transistor NMOS en paralléle.

e Lafonction P2 qui représente I'état du réseau P, vaut Ppr0 = Sporeo =a+b=1a-b
Cette fonction correspond a deux transistor PMOS en série.

o Par construction, si les calculs logiques ne sont pas erronés, la réalisation satisfait la
dualité des deux réseaux.

Nous obtenons les schémas de la table 7.9.

Comment obtenir des fonctions non complémentées 2

Ainsi que nous 'avons vu au chapitre Principes et fonctionnalité (7.3.3), si nous ne dispo-
sons que des entrées logiques naturelles (les e; et aucune €;), nous ne pouvons réaliser que des
fonctions complémentées des entrées naturelles : F'(e;). Pour réaliser les fonctions logiques
ET2 (and2) et OU2 (or2) nous pouvons utiliser les solutions suivantes (table 7.10) :

Nous pouvons aborder les exercices du TD “Synthese en transistors de portes CMOS”
(chapitre 13).

7.4 Vitesse de traitement d’un circuit intégré numérique CMOS

Les circuits intégrés numériques sont constitués de différents opérateurs de traitement
(opérateurs arithmétiques, opérateurs de controle...). La nécessité de synchroniser ces opéra-
teurs entre eux pour permettre des échanges de données conduit a ce que la vitesse de traite-
ment «potentielle» du circuit est directement liée a la vitesse de traitement de 'opérateur le
plus lent.
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VDD
3 | a4l b
a. ash
o —f
o] .
ov
synthese d’une porte NAND2
VDD
2
d —— b _d
8|+ a+h
b s —| b
oV
synthése d’une porte NOR2

Table 7.9: Schémas en transistors d’une porte NAND2 et d’une porte NOR2

a.b a.b a.b

syntheése d’une porte AND2

a a &
a+hb a+h _ a+b
b b b
synthése d’une porte OR2

Table 7.10: Synthése de fonctions non complémentées a l'aide de portes en logique complémentaire

Siun circuit doit contenir, par exemple, un opérateur d’addition, la connaissance du temps
de calcul d’une addition est un indicateur nécessaire au concepteur pour déterminer les per-
formances du circuit. Les techniques de réalisation de circuits intégrés numériques les plus
couramment employées reposent sur ’hypothése forte qu'il n’est possible de démarrer un nou-
veau calcul dans un opérateur que lorsque ses sorties se sont stabilisées. Le temps de traitement
d’un opérateur combinatoire est donc le temps nécessaire & la stabilisation des sorties de ['opératenr
aprés la mise en place des entrées.
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7.4.1 Notion de chemin critique

Un opérateur combinatoire est lui-méme constitué d’un assemblage de portes logiques
simples ; son temps de traitement est directement lié 4 la propagation des signaux booléens
dans les différentes portes logiques.

Considérons de nouveau 'exemple d’un additionneur combinatoire 4 bits. Un tel opéra-
teur est une fonction a 8 entrées et 5 sorties. Entre chaque entrée et chaque sortie de I'addi-
tionneur, les signaux booléens peuvent se propager par une multitude de chemins différents
traversants les différentes portes logiques. Pour déterminer la vitesse de calcul de notre addi-
tionneur, il suffit de déterminer parmi ces chemins celui qui correspond au temps de traversée
le plus long. Ce chemin sera appelé chemin critique de I'opérateur.

A3B3 A2Bz  A1B1  A0Bo
|
il
|

|

+ |- - [ + |- 4
r 1 ¥ 1 1

53 52 1 S0

Figure 7.7: Quelques chemins de propagation...

Si nous pouvons déterminer pour chaque porte traversée le long de notre chemin critique
le temps mis par le signal pour transiter de I'entrée a la sortie de la porte (temps de propagation
de la porte) alors nous pouvons déterminer de maniére simple le temps du chemin critique en
accumulant les différents temps de propagation individuels.

7.4.2 Notion de temps de propagation

La définition du temps de propagation d’une porte doit permettre par simple additivité
de déterminer le temps de propagation d’une chaine de portes. La définition la plus simple
consiste & mesurer le temps écoulé entre un changement d’état de I'entrée d’une porte et le
changement d’état de la sortie en prenant pour référence les instants de passage des différents
signaux a mi-chemin de la tension d’alimentation VDD, comme cela est représenté sur la

figure 7.8.

Vdd
Vdd/2

Vdd|--
Vddi2

Figure 7.8: Temps de propagation dans une porte

Une porte CMOS a plusieurs entrées n'est pas caractérisée par un unique temps de pro-
pagation. Prenons I'exemple d'un NAND a 2 entrées A et B. Nous pouvons distinguer par
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exemple :
e Le temps de propagation de A vers la sortie pour une transition montante de la sortie
(tpma)
e Le temps de propagation de B vers la sortie pour une transition montante de la sortie
(tpmp)
o Le temps de propagation de A vers la sortie pour une transition descendante de la sortie
(tpd.a)
o Le temps de propagation de B vers la sortie pour une transition descendante de la sortie
(tpdp)
Il n’y a pas de raison pour que ces différentes valeurs soient identiques, mais pour des raisons
de simplification nous considérerons un pire cas en appelant temps de propagation de la porte
la valeur maximum parmi ces différentes données (¢p).

7.4.3 Mode¢le du temps de propagation d’une porte CMOS

De fagon générale, le temps de propagation d’une porte peut se décomposer en deux
termes.

Le premier terme représente le temps minimum nécessaire a la porte pour établir sa sortie
et ce indépendamment de tout contexte externe. Ce terme appelé temps de propagation a vide
ou temps de propagation intrinséque de la porte est significatif de la complexité de la fonction
logique réalisée par la porte. On peut comprendre intuitivement que le temps de propagation a
vide d’un inverseur (tp0;xy) soit plus faible que celui d’un ou-exclusif a 2 entrées (tpOorEx)
compte tenu de la différence de complexité des équation booléennes.

Le deuxieme terme représente la facilité avec laquelle la porte transmet I'état de sa sortie aux
différentes portes qui lui sont connectées. Pour évaluer I'impact de la connection de I'entrée
d’une porte sur la sortie d’une porte précédente, il faut étudier la constitution de 'entrée d’une
porte CMOS. La figure 7.9 présente un NAND a deux entrées en logique CMOS. Lentrée
A de la porte est connectée aux grilles d’'un transistor NMOS et d’un transistor PMOS.

Figure 7.9: Capacité d'entrée de l'entrée A d'une porte NAND

Compte tenu de la technologie de fabrication du transistor MOS, ces grilles se comportent
comme des capacités parasites dont une électrode est la grille elle méme et I'autre électrode est
répartie entre la source, le drain et le substrat des transistors. I/ est possible de faire hypothése
simplificatrice quune capacité parasite unique est connectée entre lentrée A et la masse. Cette
capacité sera nommeée capacité d’entrée de la porte sur 'entrée A (C'E4,, , ). On détermine
de la méme maniere une capacité d’entrée sur I'entrée B.
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En regle générale, les capacités d'entrée des différentes entrées d'une porte logique sont différentes
et dépendent de la taille et du nombre de transistors dont les grilles sont connectées a ces
entrées.

Maintenant que nous avons identifié la nature physique de 'entrée d’une porte CMOS,
il est facile d’imaginer I'effet de sa connection sur la sortie d’'une porte. La figure ci-dessous
présente in inverseur dont la sortie est connectée sur 'entrée A de notre porte NAND. Les
transistors PMOS et NMOS de l'inverseur vont devoir alternativement fournir les courants
de charge et de décharge de la capacité CE4, ,,,, pendant les transitions montantes et des-
cendantes de la sortie de I'inverseur. Cette capacité C'Ey,, ,,, sera appelée plus tard capacité
dutilisation de la porte.

k)iramdecharge
0
A Cc
! bl
Coumant de dechamge |

Figure 7.10: Charge et décharge de la capacité d'entrée CE g d'un NAND

Le temps nécessaire a cette charge est d’'une part proportionnel a la valeur de cette capacité
et d’autre part dépendant des caractéristiques des transistors constituant I'inverseur. Dans la
pratique cela ce traduit par un accroissement du temps de propagation de 'inverseur par un
terme de forme dtp;yy -CE 4, 4 p OV dtp estla dépendance capacitive du temps de propagation
de l'inverseur. Le temps total de propagation de I'inverseur est donc :

tprinvy = tp0rnv + dtpiny - CEay ann

En résumé, pour une porte CMOS quelconque, I’établissement du temps de propa-
gation d’une porte CMOS nécessite la connaissance de trois termes :

o 1p0 : temps de propagation & vide de la porte, ne dépend que de la structure phy-
sique de la porte

o dtp : dépendance capacitive de la porte ne dépend que des caractéristiques phy-
siques de la porte. Le terme dtp est équivalent a une résistance

o Cy : capacité d’utilisation ne dépend que des caractéristiques des entrées des portes
connectées en sortie de la porte

Lexpression du temps de propagation de la porte chargée par Cy; est alors :
tp = tp0 + dtp * Cy (7.1)

7.4.4 Temps de propagation dans un assemblage de portes logiques.

Nous allons illustrer sur un exemple le calcul des temps de propagation dans divers chemins
d’un assemblage de portes logiques. La figure 7.11 est une fonction logique a 3 entrées (T,
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U, V) et 2 sorties Y,Z. Nous supposons que les sorties Y et Z sont connectées 3 2 capacités

d’utilisation CUY et CU Z.

Figure 7.11: Temps de propagation dans un assemblage de portes

Nous pouvons compter six chemins (TY,UY,VY,TZ,UZ,VZ) dans cette structure et dé-
terminer pour chacun d’eux le temps de propagation total. Exprimons, par exemple, le temps
de propagation le long du chemin TZ. Le signal se propage, sur ce chemin, en traversant tout
d’abord la porte NANDI1. La sortie de cette porte est connectée d’'une part a 'entrée de I'in-
verseur INV2 et d’autre part a 'entrée A de la porte NAND2. La porte NANDI est donc
chargée par les deux capacités d’utilisation connectées en paralléle C Ernyo et CE 4, anDo-

Léquation du temps de propagation a travers la porte NANDI1 est donc :

tpnanpt = tpOnanp1 + dtpyanpr - (CErnve + CEay anp2)

Le signal traverse ensuite la porte NAND2 chargée par la capacité CUZ. Le temps de
propagation s’exprime de maniere tres simple sous la forme :

tonanp2 = tPONanD2 + dtpyanpe - CUZ

Le temps total le long du chemin TZ est égal a la somme de tpyanp1 et de tpyan D2,
Soit :

tprz = tpONaNp1+dtpyanp1- (CErnve + CEAyanp2) FtPpONanp2+dtpnanpe-CUZ

Nous pourrions évidemment calculer de la méme facon les temps de propagation suivant
les différents chemins et déterminer ainsi le chemin critique de I'opérateur.

7.5 Rappels du modéle électrique

7.5.1 Connexions et tensions appliquées

o Les caissons, faiblement dopés N, constituent le suBstrat (B) des PMOS et leur est
commun,

Il est polarisé a la tension la plus positive du circuit Vpp.

o Le substrat, faiblement dopé P, constitue le suBstrat (B) des NMOS et leur est commun,
Il est polarisé a la tension la plus négative du circuit Vgg, (Vgs = 0V, comme sur le
schéma, parfois Vgg = —Vpp).

e La tension du drain (D) des transistors NMOS est toujours supérieure a celle de leur
source (S),

e La tension du drain (D) des transistors PMOS est toujours inférieure a celle de leur
source (§),
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NMOS PMOS

Fﬁ?‘%ms@m s ‘@“’D
i Vz o g

o ) p A

Table 7.11: Connexions des transistors CMOS

e La tension de seuil d'un NMOS : 40,2V < Vpy < 42V

e La tension de seuil d'un PMOS : —0,2V > Vpp > -2V

o Latension dela grille (Vi;) de tous les transistors est une tension d’entrée de type logique
a 2 états correspondant 4 deux niveaux électriques statiques :

VG = VDD ="1"et VG =0V ="0

7.5.2 Rappels du modéle électrique et des symboles
Voir les deux tableaux 7.12 et 7.13.
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Transistor NMOS
D D D
Symboles G%E: G#E: GA{ES
Conditions Régime Courant
VGS S VTN VVDS blqué [DS = O
Vi
Ips =2-K, - (VGS_VTN_%S) - Vbs
1 w
Vbs < Vps.., quadratique K, = ENON : C:)a:f
Vas > Vrn
et Vps,.. = Vas — Vrw
Vs 2 Vps,., saturé IpS.n = Kn - (Vas — Vow)
_ 1
Vas = Vpp Vps = 0 ohmique Rps,y = 2 Ky (Voo — Vi)
Ips = (Vas, Vbs)
A
Ios J saturé VG5 =VDD
Ros,,*
IDSgqt /‘

/

[

VDS Vps©

Table 7.12: Courant et résistance équivalente du NMOS
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Transistor PMOS
5 5 5
Symboles GA{EB GA{EB Gd[:
D D D
Conditions Régime Courant
Vas > Vip VVbs bloqué Ips =0
7
Ips=—2-K, (VGS — Vip — %S) Vbs
1 %74
Vbs > Vps.., quadratique K, = §NOP : C(/)xf
Vas < Vrp
et Vps.. = Vas — Vrp
VDS < VDSsat saturé [Dssat = —Kp . (VGS — VTp)2
Vpg ~ 0 i R = L
Vas = —Vbp DS & ohmique DSop = T3 K, (—Vop — Vip)
Ips = (Vas, Vbs)
Ips
IDS g5t /‘“ ..Vns
WDS o
VG6s = - VDD Ros,.!
saturé /

Table 7.13: Courant et résistance équivalente du PMOS
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Chapitre 8

Performances de la logique

complémentaire CMOS

8.1 Introduction

La réalisation de systemes électroniques de traitements numériques efficaces suppose le
respect d’un certain nombre de contraintes liées a des aspects tres divers. Nous allons limiter
notre étude aux trois parametres suivants :

e Le colit de production;

o La vitesse de traitement ;

e La consommation.

Ces trois paramétres ne sont évidemment pas décorrélés, 'augmentation d’une vitesse de
traitement se fait souvent au prix d’'une consommation et d’'un cotit de production accru.

Parfois certain criteres sont impératifs : si nous considérons, par exemple, une application
de traitement numérique pour une transmission d’images de télévision, les calculs doivent
étre effectués a la volée sans possibilité d’interrompre le flux de données. Nous disons dans ce
cas que le systeme doit avoir la puissance de calcul (ou vitesse de traitement) nécessaire pour
respecter le temps réel. De maniére moins impérative, si nous considérons une application de
bureautique sur un ordinateur personnel, il suffit que le systéme ait une puissance de calcul
suffisante pour garantir un certain confort a l'utilisateur.

De méme, il est aisément concevable que les besoins en terme de modération de la consom-
mation d’un systéme alimenté par batterie soient différents de ceux d’un systéme connectable
au réseau électrique.

Les ingénieurs réalisant des circuits intégrés numériques sont constamment confrontés au
probléeme de 'évaluation de ces parameétres. Nous allons montrer, dans ce chapitre, quelques
méthodes simples d’évaluation basées notamment sur notre connaissance de la technologie de
fabrication des circuits intégrés.

8.2 Coiitde production d’un circuit intégré numérique CMOS

Le cotit de production d’un circuit intégré est étroitement lié a 'aire du silicium nécessaire
a sa réalisation. En effet, plus le circuit est de taille importante, plus le rendement de fabrica-
tion est faible. Le rendement de fabrication représente le rapport entre le nombre de circuits
fonctionnels produits et le nombre total de circuits produits. La probabilité d’avoir un défaut
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dans un circuit augmentant avec sa taille, le concepteur a tout intérét & minimiser la surface
de silicium nécessaire A la réalisation de 'application qui I'intéresse. Evidemment cette surface
dépend du nombre de transistors utilisés pour réaliser 'application et de la surface de chacun
de ces transistors.

En électronique numérique intégrée, les transistors utilisés étant de taille relativement stan-
dard (sauf fonctions exceptionnelles), on peut considérer que le nombre de transistors est un
bon représentant de la surface du circuit intégré. On caractérise d’ailleurs les technologies
CMOS numériques par le nombre de transistors qu'elles sont capables d’intégrer. En 2004,
les densités d’intégration des technologies les plus avancées étaient de 'ordre de 1 500 000
transistors par mm?.

Par conséquent, en passant du niveau de I'application au niveau de la porte logique, mi-
nimiser le nombre de transistors nécessaires a la réalisation de portes logiques contribue a
minimiser I'aire globale d’un circuit.

8.3 Estimation de la vitesse de la logique CMOS

8.3.1 Expression du temps de propagation d’un inverseur CMOS

Nous voulons exprimer le temps de propagation en descente z,; de I'inverseur INV'; de la
figure 8.1 & partir de la connaissance du transistor MOS dont les caractéristiques électriques
sont rappelées au chapitre 7.5. Compte tenu de la complexité des phénomenes mis en jeu, la
mise au point d’'un modele analytique du temps de propagation d'une porte CMOS (méme
aussi simple qu’un inverseur) n’est guere envisageable. Aussi nous contenterons-nous d’en faire
une estimation a partir d’'un grand nombre d’hypothéses simplificatrices.

INV

S s

[ Con —

/7177 /7177

Figure 8.1: Etude de cas de Uinverseur CMOS.

Nous modélisons 'ensemble des effets parasites pouvant perturber le fonctionnement de
cet inverseur par une unique capacité C,,, connectée entre la sortie Sy et la masse. Les phéno-
menes électriques observés a la suite d’une transition montante du signal d’entrée £} sont les
suivants :

o bloquage du transistor PMOS et débloquage du transistor NMOS;

e donc la décharge de la capacité C,,, a travers le transistor NMOS ;

e donc transition descendante du signal de sortie .

Une vision réaliste des évolutions des signaux £; et S au cours du temps est reproduite
en figure 8.2.
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* Vg1 + Vs
s
—_—
3.0 -
2.0 ~
1.0 -
0.0 \g | o
I I I I I I \
1 2 3 4 5 6 7 8e-9s

Figure 8.2: Simulation électrique de l'inverseur CMOS.

Nous supposons que le signal d’entrée £ passe en un temps trés bref de I'état « 0 » a I'état
«1». Ce temps sera considéré comme suffisamment bref pour ne pas influer sur le temps de
propagation de I'inverseur. En exploitant la définition du temps de propagation proposée dans
le chapitre 7.4.2, nous distinguons trois instants comme illustré dans la figure 8.3 :

e «07 »: instant de passage du signal d’entrée £; 2 V;/2;

e «0" »: instant d’arrivée du signal d’entrée 1 2 V5

® «t,y» : instant de passage du signal de sortie §; a V]2

Figure 8.3: Conditions de mesures des transitions des signaux.

Le tableau 8.1 résume les valeurs des différentes tensions aux bornes des transistors de
Pinverseur /NV jau début (instant 07) et 4 la fin (instant z,4) de la propagation du signal de
sortie Sj.

La tension Vj, garde la valeur 0 durant toute la transition de la sortie. Le transistor PMOS
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<

Instant « 07 » Instant « 2, »

Transistor NMOS | Vi, = Viu | Vi = Via | Vo = Vs | Viw = Vaa/2

Transistor PMOS |V, =0 Vipy =10 Ve =0 Vip = —Vaa /2

Table 8.1: Tensions aux bornes de transistors pour les instants 0" et bd-

reste donc bien bloqué pendant toute la transition de la sortie : il n'est traversé par aucun
courant (/, = 0).

La tension Vi,
NMOS est donc passant, le courant qui le traverse peut étre évalué a I'aide de la figure 8.4 qui

garde la valeur V;; durant toute la transition de la sortie. Le transistor
représente la caractéristique Iy, = f(Vin) pour Vi, = V.

a L4 V]2 Vi

4.0e-4

| | | |
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5V

Vdrn

Figure 8.4: Evolution du courant drain-source du transistor NMOS durant la transition descendante.

A linstant 07, le courant est maximal et correspond au courant de saturation du transistor
NMOS. Ensuite, la décharge de la capacité C,,, entraine une baisse de la tension Vy, qui se
traduit par une diminution du courant fourni par le transistor. La figure 8.4 montre cependant
clairement que lorsque la sortie S; de I'inverseur atteint V;;/2 le courant Iy, du transistor n’a
que faiblement évolué : on peut, en premicere approximation, considérer que le courant fourni
par le transistor est constant pendant toute la durée z,,.

Le courant de décharge de la capacité parasite C,,, pendant Uintervalle de temps [0, 1,,] est
donc égal au courant de saturation du transistor NMOS pour Vi, = Vg :

[C'pm = Kn : (Vdd - ‘/tn)Q

Le courant de décharge étant constant nous en déduisons directement la valeur de z,, :
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AV Viaa/2
- = Cpar
1 Kn : (Vdd — V:‘,n)2

En négligeant V,, devant V,; puis en introduisant la résistance R, du transistor NMOS

tpd = Cpar

z . . bl . ’ ’ . .
en régime ohmique, 'expression précédente se simplifie en :

o Cpar
2- Kn : (Vdd - ‘/tn>

tpd = C(par X RdSOn

8.3.2 Mode¢le du temps de propagation de 'inverseur CMOS

Notre objectif est, ici, d’affiner le modéle du temps de propagation en examinant l'origine
des capacités parasites contribuant a la valeur de C,,,. De maniére générale, nous pouvons
distinguer trois types de capacités :

1. Les capacités internes propres a 'inverseur INV'; ;

2. Les capacités dues aux liaisons entre I'inverseur /NV'; et les différentes portes logiques
connectées a sa sortie ;

3. Les capacités d’entrées des portes logiques connectées a la sortie S; de I'inverseur.

Leffet des capacités internes a la porte sera assimilé a celui d’'une unique capacité C; appelée
capacité de sortie de 'inverseur et connectée entre la sortie §; et la masse. Leffet des capacités
de liaison et des capacités d’entrées des portes connectées  la sortie de 'inverseur sera assimilé
a une unique capacité C, appelée capacité d'utilisation de I'inverseur. Ainsi I'expression de 2,
peut étre réorganisée de la fagon suivante :

tpd = (Cs + Cu) X RdSOn

Soit

tpd = tp[)d + dtpd X Cu avec dtpd = Rdso,L et tpOd = dtpd X CS

Nous retrouvons, appliquée au cas spécifique d’une transition descendante, la formulation
du temps de propagation proposée dans le chapitre 7.4.3. Pour cela nous avons introduit le
temps de propagation en descente i vide de Uinverseur #,9, ainsi que la dépendance capacitive du
temps de propagation en descente dyy,.

Le raisonnement effectué pour une transition descendante de la sortie peut étre appliqué
a la transition montante. Dans ce cas, seul le transistor PMOS est actif, les capacités parasites
restant identiques, la seule différence provient de la valeur de la résistance en régime ohmique
du transistor PMOS qui n’est pas forcément identique a celle du transistor NMOS.

tpm = tpom + dipm X Cy avec dipm = Rysy, €t tpom = dipm X C

8.3.3 Schéma synthétique de I'inverseur

La figure 8.5 propose un schéma synthétique de I'inverseur basé sur un interrupteur, deux
résistances de valeurs respectives R, et Ry, et enfin les capacités C,vy et Cyyy . Suivant la
valeur de la tension d’entrée, I'interrupteur bascule d’un état a I'autre provoquant la charge
ou la décharge du noeud de sortie. L'état représenté correspond a une entrée égale 3 « 0». La
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f Via

Rd:()/z
0 E \ s |1
—_— .
- s
n./
Ceny Cany
Rd:On

| |
Figure 8.5: Schéma synthétique de Uinverseur CMOS.

figure 8.6 illustre la mise en série de deux inverseurs. La sortie du premier inverseur (a I'état
« 1 ») présente une capacité parasite C,,, totale égale 4 la somme de la capacité de sortie Cyyy
du premier inverseur et de la capacité d’entrée C,/vy du deuxiéme inverseur. Le temps de
propagation en montée z,,, du premier inverseur est donc z,,, = (Cyy + Cinv ) Rigp-

f Via

f Via

RdrOp Rd;l]p
. ~
o| E \ s |1 E . s
K ’ o°
Canv Cany Can Ci,
Rflen RdsOn

e

Figure 8.6: Deux inverseurs en série.

P

8.3.4 Schéma synthétique d’'une porte CMOS quelconque

Lextrapolation a une porte CMOS quelconque se fait en suivant les principes suivants :

e Ilyaautant de « capacités d’entrée » qu'il y a d’entrées dans la porte. Lestimation d’une
capacité d’entrée se fait en sommant les capacités des grilles des transistors connectés a
cette entrée.

e On peut grossierement estimer la « capacité de sortie » en ne considérant que les ca-
pacités parasites connectées au noeud de sortie de la porte. Les capacités des naeuds
intermédiaires seront négligées.
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e On peut établir un équivalent a la résistance Ry des transistors de I'inverseur en consi-
dérant le pire cas de mise en série des transistors et en faisant la somme des différentes
résistances pour ce pire cas.

Prenons 'exemple d’'une porte NAND (figure 8.7) & deux entrées utilisant des transistors

identiques a ceux de l'inverseur :

o les capacités d’entrées sur les entrées A et B sont identiques a celle de 'inverseur (C, v ) 5

o la capacité de sortie est supérieure a celle de l'inverseur (Cyyy), car deux transistors
PMOS et un transistor NMOS sont connectés au nceud de sortie ;

e dans le pire cas, la résistance équivalente a la descente est égale & deux fois celle de
I'inverseur (2 X Ryp,) ;

e dans le pire cas, la résistance équivalente a la montée est égale a celle de l'inverseur

(Rd:0p) .

? Vid

Ra!cOp

A‘# #ﬁ B Ce =Ce[NV

- 4 @
Ca=Convv_ | o
A‘{ T C:>C.r1NV77
2'Rd$()n T
ey /777 /S

Figure 8.7: Schéma synthétique d’une porte NAND.

8.3.5 Notion de bibliotheque de cellules précaractérisées

Les sociétés de fonderies de silicium, ou « fondeurs », qui produisent des circuits intégrés
numériques, proposent a leurs clients, des bibliothéques de portes logiques dites précaractéri-
sées. Les ingénieurs de ces sociétés développent, dessinent et simulent le comportement et les
performances de chacune des portes logiques de la bibliotheque. Ils fournissent a leurs clients
des tables de caractéristiques permettant a ces derniers de concevoir des circuits intégrés et pré-
dire leurs performances sans avoir a explorer des niveaux de détail allant jusqu’au transistor.
Le tableau 8.2 propose un exemple simple d’une telle bibliotheque dont les caractéristiques
globales sont les suivantes :

o les transistors NMOS des différentes portes sont tous de dimensions identiques ;

o les transistors PMOS des différentes portes sont tous de dimensions identiques ;

e les portes sont réalisées en utilisant exclusivement les principes de construction exposés

dans le chapitre 7.

Nous pouvons faire les constatations suivantes :

e les temps de propagation s'expriment en dixiémes de nano-secondes ;

e les capacités s'expriment en dizaines de femto-farads (107! farads) ;
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Fonction Equation booléenne C,; Lo dy,

(fF) (ns) (ns/pF)
Inverseur Yy =A C,="70 0,06 1
Nand 2 3 entrées | Y = ABC Vie {A,B,C}C,=70]042 |3
Nand 4 6 entrées | Y = ABCDEF Vie {A---F}C, =70 | 1,56 |6
Nora2entrées | Y =A+ B Vi e {A,B}C, =170 0,16 |2
NoraGentrées | Y =A+B+C+D+E+F |Vie{A---F}C,=70 |09 |6
nMaj a3 entrées | Y = AB+ BC + AC C,y= Cp =140 0,25 2

Cc =170

Table 8.2: Une bibliothéque précaractérisée.

e les dépendances temporelles s'expriment en nano-secondes par pico-farad (équivalentes
A des k) ;

e linverseur, porte booléenne la plus simple que 'on puisse imaginer est a la fois intrin-
sequement la plus rapide (z,9) et la moins dépendante de I'environnement extérieur
(dy).

De plus, conformément au modeéle proposé dans le chapitre 8.3.4, la porte NAND a 6
entrées est la porte ayant les performances les moins bonnes. En effet, dans le pire cas, la
décharge du noeud de sortie se fait a travers 6 transistors NMOS connectés en série. De plus 6
transistors PMOS étant connectés en paralléle sur la sortie, la capacité de sortie est tres élevée
ce qui donne un ¢,y catastrophique (20 fois plus grand que celui de I'inverseur). Cet exemple
montre une des limitations de la construction de portes en logique CMOS. En général, on
préfere limiter la bibliotheéque a des portes 4 4 ou 5 entrées maximum, quitte & créer des
assemblages de portes pour réaliser des fonctions booléennes complexes.

Enfin, les capacités d’entrées C,; des portes simples de type NAND ou NOR sont iden-
tiques a celles d’un inverseur, car chaque entrée de ce type de porte est connectée a un couple
de transistors NMOS et PMOS comme dans le cas de I'inverseur. Ceci n’est pas un cas général,
I'exemple de la porte nMAJ montre qu'il peut y avoir différentes valeurs de capacités d’entrée
suivant la maniére dont la logique est réalisée.

8.3.6 Influence du dimensionnement des transistors sur les caractéris-
tiques de 'inverseur

Dans le paragraphe précédent, nous avons examiné les caractéristiques de portes CMOS
constitués de transistors NMOS (ou PMOS) de dimensions standardisées. Il est possible d’op-
timiser le comportement temporel des portes en jouant sur les dimensions des transistors qui
les composent. Nous n’étudierons ici que le cas simple de I'inverseur.

Nous avons vu que le temps de propagation est proportionnel a la résistance Ry, des
transistors en régime ohmique. En ce qui concerne le transistor NMOS, cette résistance a
pour expression :

1

Rds n
’ MONCE)XVLV—:(Vdd — Vi)
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A I’évidence, nous pouvons augmenter les performances de 'inverseur en diminuant la
longueur Z, du transistor NMOS ou en augmentant sa largeur W,. En regle générale, tous
les transistors sont dimensionnés avec la longueur de grille minimale Z,,;, autorisée par la
technologie. C’est pour cette raison qu'une technologie est souvent qualifiée par cette longueur
de grille minimale : on parle, par exemple, d’une technologie « 0,09 microns ». Donc en réalité,
seul le parametre W, peut servir de variable d’ajustement.

Retenons que les transistors sont le plus souvent dimensionnés avec une longueur de grille mini-
male L,,;,.

Retenons que la dépendance capacitive dyyyy est inversement proportionnelle i la largeur W,

du transistor NMOS.

Retenons que la dépendance capacitive d,,,,;yy est inversement proportionnelle & la largeur W,
du transistor PMOS.

Cependant, 'augmentation de la largeur des transistors a pour conséquence 'augmenta-
tion de la valeur de la capacité parasite a charger. En effet, la capacité C; est la résultante des
capacités parasites propres aux transistors composant 'inverseur, toutes proportionnelles a la
largeur des transistors.

Retenons que la capacité de sortie Cyyy de Uinverseur est la somme de deux termes, l'un érant
proportionnel & la largeur W, du transistor NMOS, [autre étant proportionnel a la largeur W,
du transistor PMOS.

Un raisonnement identique peut étre fait pour la capacité d’entrée de l'inverseur. Cette
capacité ne dépend que des capacités de grille Cy, et Cyy, des deux transistors :

Retenons que la capacité d'entrée C,yy de Uinverseur est la somme de deux termes, ['un érant
proportionnel & la largeur W, du transistor NMOS, [autre étant proportionnel a la largeur W,
du transistor PMOS.

Ces résultats partiels, permettent de déterminer une régle générale de dimensionnement
des transistors d’'un inverseur : disposant d’un inverseur donné de caractéristiques (C,ny,
Loivys dypivy) connues, la multiplication des largeurs W), et W, des deux transistors NMOS
et PMOS par un méme coeflicient o modifie les caractéristiques de 'inverseur de la fagon
suivante :

o la capacité d’entrée de 'inverseur C, ;- est multipliée par o ;

e la dépendance capacitive de I'inverseur d,,;vy est divisée par a5

e le temps de propagation a vide #,o;vy reste inchangé.

Le dernier résultat est d( aux effets contraires des augmentations de capacités internes et
de diminution des résistances.

8.4 Consommation des circuits intégrés CMOS

8.4.1 Consommation d’une porte CMOS

Rappelons (voir chapitre 7.3.2) que la consommation statique (la porte étant dans 'un de
ses deux états d’équilibre) d’une porte logique complémentaire CMOS, est NULLE. Nous
nous intéressons, dans ce qui suit, a la consommation dynamique, est-a-dire a la consomma-
tion nécessaire au passage de la porte CMOS d’un état d’équilibre & un autre. Si nous faisons
Phypothese que les deux réseaux NMOS et PMOS d’une méme porte logique ne sont ja-
mais simultanément actifs (passants) alors la consommation d’une porte CMOS se résume a
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Iénergie nécessaire pour charger les différentes capacités parasites connectées sur la sortie de
la porte :

e pendant une transition montante de la sortie de la porte, 'alimentation fournit le cou-
rant qui, au travers du réseau de transistor PMOS, charge la capacité connectée au nceud
de sortie;

e pendant une transition descendante de la sortie, la capacité de sortie est déchargée a
travers le réseau NMOS.

Comme l'illustre la figure 8.8, 'énergie fournie par 'alimentation est dissipée par effet Joule
dans les réseau de transistors PMOS (respectivement NMOS) pendant les transitions mon-
tantes (respectivement descendantes) de la sortie de la porte.

V Vi

@,

s S
LCW ﬁ;ﬁ#cﬁ”
P Vi

Transition montante Transition descendante

2

Figure 8.8: Dissipation de I'énergie dans une porte CMOS.

La puissance instantanée fournie par I'alimentation V;,; pendant la charge de la capacité
C,ar sexprime de la fagon suivante :

dV;
dt
Dénergie totale fournie par 'alimentation s'obtient en intégrant la puissance pendant la
durée totale de la transition :

Py, (t) = Vaale,,, = VaaCpar

dV, Vid
Edt = Cparvdd ] d‘/s = Cpar‘/de

De maniére similaire, 'énergie potentielle stockée dans la capacité apres la charge est :

EVdd = / Vddear
0

dV,

[e'e) Vaa V2
ECpar = /0 ‘/Zsopar_sdt = C’par/0 ‘/sd‘/s = C1pa7‘ dd

dt 2

Ces résultats montrent que seule la moitié de I'énergie fournie par I'alimentation est sto-
ckée dans la capacité. Lautre moitié est dissipée par effet Joule dans le réseau de transistors
PMOS. Remarquons que cette énergie dissipée est indépendante de la résistance équivalente
des transistors qui composent le réseau PMOS.

Une étude similaire pour la décharge montre que I'énergie potentielle stockée dans la ca-
pacité est entierement dissipée par effet Joule dans le réseau de transistors NMOS.
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En résumé, chaque transition de la sortie d’une porte CMOS se traduit par une dissipation de
Coar V.14?/2 dans la porte CMOS, o1 Cour est la capacité parasite totale chargée par la porte et Vy,
est la tension dalimentation de la porte.

Connaissant I'énergie par transition, il est possible d’en déduire la consommation moyenne
d’une porte logique. Pour cela,nous devons introduire le rythme moyen £, de changement
d’état de la porte que nous nommerons fréquence de transitions :

b FranCou Vi

orte —
P 2

8.4.2 Extrapolation a un circuit intégré CMOS

La formule décrivant la consommation d’une porte CMOS peut étre extrapolée au niveau
d’un circuit intégré complet. La grande majorité des circuits intégrés numériques sont des
circuits dit « séquentiels » et « synchrones ». Leur principe de fonctionnement est basé sur le
cadencement des opérations de calcul par une horloge externe dont la fréquence est nommée
F),. La fréquence de transitions F,,,,; des portes CMOS qui composent un circuit est évidem-
ment étroitement corrélée a la fréquence d’horloge du circuit, elle reste cependant plus faible
que cette derniére car elle dépend de la nature des fonctions logiques exécutées par les portes
et des différentes corrélations entre les signaux booléens internes au circuit. Pour tenir compte
de cela, on introduit 7, taux dactivité moyen des portes du circuit intégré, qui représente la
probabilité de transition des portes a chaque période de 'horloge F,. Lensemble des capacités
parasites du circuit peut étre alors aggloméré en un seul terme C,,,yconduisant a 'expression
de la consommation du circuit intégré :

Pcircuit == lectF’hcftoml‘/dd2

8.5 Evolution technologique et conclusions

Nous avons évalué de maniere simple trois critéres permettant d’évaluer les performances
des circuits intégrés CMOS. Les résultats obtenus montrent a I'évidence que certains compro-
mis doivent étre faits.

Le temps de propagation des portes est inversement proportionnel a la tension d’alimenta-
tion, on peut en déduire un peu rapidement qu’il sufhit d’augmenter la tension d’alimentation
Vi pour augmenter les performances des circuits. Cependant, nous devons constater que
la consommation des circuits varie comme le carré de la tension d’alimentation donc toute
augmentation de celle-ci diminue le rendement d’utilisation de la technologie...

C’est pourquoi, les travaux d’amélioration de la technologie ont porté sur la diminution
des capacités, termes présents en facteur  la fois dans I'expression des temps de propagation
et de la consommation. Le moyen le plus simple de réduire les capacités est la réduction des
géométries des transistors qui permet de gagner en méme temps sur la surface des circuits
intégrés. Les moyens technologiques et financiers mis en jeu par les fonderies de silicium sont
essentiellement tournés vers cette réduction des dimensions des transistors.

Nous allons maintenant évaluer 'impact des réductions de dimension a partir des formules
établies dans les paragraphes précédents. Le principe généralement employé d’une génération
technologique 4 une autre est d’accompagner les réductions géométriques de modifications
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des dopages et tensions d’alimentations pour conserver les caractéristiques fonctionnelles des
transistors. En résumé les différents paramétres suivants sont touchés :

o division d’un facteur 3 de la largeur W des transistors ;

e division d’un facteur 3 de la longueur L des transistors ;

e division d’un facteur 3 de I'épaisseur d’oxyde de grille 7, des transistors;;

e division d’un facteur 3 de la tension de seuil V,des transistors ;

e division d’un facteur 3 de la tension d’alimentation V,du circuit.
A fonctionnalité identique, le changement de génération technologique permet de réaliser des circuits
de surface 3* fois plus petite!

La résistance équivalente des transistors devient :

—_

Rdso (ﬁ) =

ol 3C, ) E T

Donc la résistance équivalente des transistors ne varie pas.
Si, par simplification, nous réduisons les effets parasites des transistors aux capacités de
grille alors ces capacités de charge deviennent :

C’par
s

Donc les capacités parasites sont divisées d’un facteur 5. En conséquence, les temps de pro-
pagation des portes (produit RC) sont divisés d’un facteur j3 :

Cpar(B) = (W/B)(L/B)(BCq,) =

A fonctionnalité identique, le changement de génération technologique permet de réaliser des
circuits de surface 3% fois plus petite, ayant une vitesse de fonctionnement 3 plus élevée !
Cependant Iénergie dissipée par une porte pendant une transition devient :

Cpar ( Vad )2 E

B orte
Eparte(ﬁ) = & 9 & = 23

Donc I'énergie est divisée par un facteur 3° ce qui est extrapolable au circuit.

Sinous profitons de 'augmentation de vitesse des portes logiques pour augmenter la vitesse
d’horloge du circuit alors la puissance consommée par le circuit devient :

Ecircui P circut
Pcircuit(ﬂ) = TaCt (BFh) 63 t = 52 t

A Jonctionnalité identique, le changement de génération technologique permet de réaliser des
circuits de surface 3 fois plus petite, ayant une vitesse de fonctionnement (3 plus élevée et dont la

consommation est 32 fois moins élevée !

Supposons maintenant que nous profitions de la réduction de taille des transistors pour
réaliser un circuit plus complexe. A surface identique, nous pouvons multiplier par 32 le
nombre de transistors dans le circuit et donc multiplier par 32 la capacité parasite totale a
charger :
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Le changement de génération technologique permet de réaliser des circuits 2 fois plus complexes,
Jfonctionnant a une vitesse [3 fois plus élevée et ayant une consommation identique aux circuits de
la génération précédente.

Pour conclure, n’oublions pas que ces lois d’évolution sont basées sur des hypothéses sim-
plifiées ne tenant pas compte de facteurs importants tels, par exemple, les capacités parasites
liées au connections métalliques entre transistors ou les courants de fuite ou de court-circuits
des transistors. Cela dit le formules obtenues dans ce chapitre donnent une premiere approche
théorique a qui s'intéresse aux évolutions a venir de 'industrie du semi-conducteur.
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Chapitre 9

TD - Fonctions de base

Ce TD traite de la logique combinatoire et comprend les exercices suivants :
1. 9.1 : Simplification algébrique d’équations.

2. 9.2 : Simplification d’équations par tableau de Karnaugh.

3. 9.5 : Décodage.

4. 9.6 : Génération de fonctions.

9.1 Simplification algébrique
On considére qu'une équation booléenne est simplifiée si le nombre d’apparition des va-
riables dans 'équation est le plus petit possible.

1. En utilisant les propriétés et théoremes de I'algebre de Boole, simplifiez 'expression :

S=(a+b+ec)-(a+d-e+f)+(d+e)-a-c+a-b

9.2 Simplification par tableau de Karnaugh

La méthode de Karnaugh permet de simplifier les fonctions logiques ayant peu de va-
riables, a partir de la table de vérité de la fonction.

1. Simplifiez les deux fonctions F' et GG suivantes (cf. Tab. 9.1 et 9.2) apres avoir transformé
leur table de vérité en tableau de Karnaugh.

9.3 Fonction F

e Les entrées sont a, b, ¢, d, e.
e Une variable d’entrée 3 « X » indique qu’elle peut étre 2 0 ou a 1.

9.4 Fonction G

o Les entrées sont a, b, c et d,
e ; indique la valeur de la combinaison (ou minterme) en notation décimale,
o le « —» indique que G peut prendre indifféremment la valeur 0 ou 1.

159



160 CHAPITRE 9. TD - FONCTIONS DE BASE

r
O X | X | X |X]|O
1100 [X[X]|O0
1101 1]0]X |1
110111 X]0
1117007100
111 ]70]0 ] 11
11101 ]X |1
1111 1{07]0¢(1
111110110
111111, X]0

Table 9.1: 1able de vérité de la fonction F.

i G
00010]010] 1
1J0]0]0 |11
210070(1|0( —
3(0]0]1[1]0
4 101 1]010] —
50110 ]1]| —
6 |O0[1]1]0]| —
701111
8 (1]0]0(0

9 (1]0]0]1]1
101{0]1]0] 1
111(0]1[1O0
1211(1]0[0Y 0
131 (1]0]1( 1
14(1]1]1(0]0
w1111 1

Table 9.2: 1able de vérité de la fonction G.

9.5 Décodage

Le décodeur est un circuit combinatoire a 'entrée duquel est appliqué un code binaire
de n bits. Ce circuit possede IV sorties (avec N = 2", en général). A chaque valeur du code
d’entrée, il y a une seule sortie a I'état haut, toutes les autres sont a I'état bas. Les entrées d'un
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décodeur sont souvent appelées adresses, car elles expriment en binaire le numéro décimal de la
sortie activée. Les décodeurs peuvent étre utilisés pour 'adressage de mémoires et la génération
de fonctions logiques.

Décodeur BCD

Le BCD («binary coded decimal ») est un code de 4 bits dont seules les 10 premiéres combi-
naisons de 0 2 9 sont employées. Les combinaisons restantes de 10 & 15 ne sont jamais utilisées.
Un décodeur BCD est donc un décodeur qui a 4 entrées et 10 sorties.

1. Réalisez ce décodeur en considérant que si I'une des 6 combinaisons non autorisées est
a 'entrée, toutes les sorties sont a I’état inactif « O ».

Décodeur de grande capacité

Si le nombre IV est tres élevé, on peut imaginer réaliser le décodage en cascadant des
décodeurs de tailles moins importantes.

1. Par exemple essayez de concevoir un décodeur binaire 5 entrées / 32 sorties a partir de
2 décodeurs binaires 4 entrées / 16 sorties.

2. Quelle doit étre la modification 4 apporter au décodeur 4 entrées / 16 sorties pour créer
facilement le décodeur 5 entrées?

3. Concevez un décodeur binaire 8 entrées / 256 sorties en utilisant le décodeur 4 entrées
/ 16 sorties précédemment modifié.

9.6 Génération de fonctions

Un transcodeur ou convertisseur est un circuit combinatoire a x entrées et y sorties. A
chaque code d’entrée de  bits correspond un code de sortie ¥ bits. Les décodeurs que nous
avons étudiés dans 'exercice précédent sont donc des cas particuliers de transcodeurs.

On désire réaliser la fonction de transcodage d’'un code BCD vers un code « 2 parmi 5 ».
Dans le code « 2 parmi 5 », il y a toujours deux bits & « 1 » et 3 bits & « 0 ». La table de vérité
est indiquée ci-dessous dans la Tab. 9.3.

e ; indique la valeur de la combinaison (ou minterme) en décimal,

e les entrées sont a, b, ¢, d, e,

e les sorties sont [y F3 Fy F Fy,

® sii > 9 l'état des sorties est indifférent.

1. Réalisez la fonction a 'aide :
(a) D’un décodeur BCD et quelques portes.
(b) De multiplexeurs.

Pour cela écrivez I'équation logique d’'un multiplexeur 16 entrées (et donc 4 entrées de
sélection) et comparez a 'expression d’une fonction logique quelconque a 4 entrées.
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Fy

£y

Fy

Fy

Fy

1
0
0

1
1

1

1

0[01]0

0]0

0/0]0]0

0]01]0

0j(0|1]0

1
1

0
1
2

8
9

Table 9.3: Table de vérité de la fonction de conversion BCD — « 2 parmi 5 ».



Chapitre 10

TD - Opérateurs arithmétiques

Le but de ce TD est d’approfondir la représentation en complément a 2 (Exercice 10.1),
ainsi que l'arithmétique des nombres binaires (Exercice 10.2 sur I'addition, 10.3 sur la sous-
traction et comparaison, 10.4 sur la multiplication).

10.1 Représentation en complément a 2

1. Donner la représentation en CA2 des nombres suivants : -8, +8, -30, -52, +15.

2. Soit B un nombre codé en CA2 sur n bits: (b,,—1, by—2, - -+, b1, by). Comment obtient-
on la valeur de B 4 partir de sa représentation lorsqu’il est positif ? lorsqu’il est négatif?
3. Donner la représentation en CA2 des nombres +15, -12 :
e sur 5 bits,
e sur 7 bits.
4. D’une fagon générale, comment peut-on étendre la représentation d’'un nombre codé
en CA2 sur n bits, a une représentation sur p bits, avec p plus grand que n?

10.2 Addition en complément a 2

1. Quel est 'intervalle de variation d’'un nombre codé en CA2 sur n bits?

2. Soient A et B deux nombres codés en CA2 sur n bits et S' la somme de ces 2 nombres.
Quel est 'intervalle de variation de S'? En déduire le nombre de bits nécessaires a son
codage.

3. Réaliser en binaire les additions suivantes : 30 + 8, 30 + (-8), (-30) + 8, (-30) + (-8).

10.3 Soustraction et comparaison

On désire réaliser un opérateur capable d’effectuer la comparaison de 2 nombres positifs
A et B codés sur 4 bits. La sortie S' de 'opérateur vaut « 1 » si A est strictement inférieur 3 B,
« 0 » sinon :

e S=1siA< B,

e S=0siA>BoudA=B.

1. Proposer une solution a I'aide d’un soustracteur.
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2. Une autre solution appelée « comparaison MSB en téte » consiste & comparer bit a bit
les nombres A et B en commengant par les bits de poids forts. Lalgorithme utilisé est

le suivant :
S=1 SI (a3 < bg)
ou ((&3 = b3 ET (CLQ < bg )
ou ((ag = bg) ET (CLQ bs) ET ((11 < bl))
ou ((CLg = b3) ET (as = by) ET (a1 = bl) ET (CLO < bo))

e Construire 'opérateur élémentaire a 2 entrées a; et b; dont les sorties I; (Inférieur)

et B; (Egal) vérifient :
Ii = 1sia2- <bi,

I, = Osinon.

Ei = 1si a; = bi,
E; = 0sinon.
e En utilisant lopérateur construit précédemment, proposer le schéma complet du

comparateur.
e Comment peut-on généraliser simplement ce comparateur a n bits?

10.4 Multiplication

1. Réaliser a la main l'opération : 1001 x 1100 (9 x 12).

2. Proposer le schéma d’un multiplieur de 2 nombres positifs de 4 bits. On dispose pour
cela d’additionneurs 4 bits.

3. Comment faut-il modifier ce schéma pour permettre la multiplication de 2 nombres en
complément a 2?



Chapitre 11

TD - Utilisation des bascules

Le TD comprend des exercices portant sur la mise en oeuvre de bascules dans des appli-
cations courantes de I'électronique :

e 11.1 Mise en pipeline d’une fonction combinatoire

e 11.2 Changement de format série <+ Parallele

e 11.3 Calcul de parité.

11.1 Mise en pipeline d’une fonction combinatoire

La fonction électronique a étudier est illustrée par la figure 11.1. Il s’agit de traiter un flot
continu de données arrivant a un certain rythme. La fréquence d’arrivée des données, et donc
de traitement, doit étre la plus grande possible.

3ns 2ns 4ns u too=1nS

I~
_._._.é

n - INeoT ! A
H e .mﬁ‘m;.r.. 5 y
SEL — INPUT 5

| 2. MULTPLENER

Raz ol

oF
N DI s W g =
S S ’_ Ct;-N

Figure 11.1: Circuit a étudier

11.1.1 Analyse de la fonction
1. Quelles sont les roles respectifs des entrées SEL, RAZ et INV?

2. On considére que toutes les entrées sont issues de bascules ayant un temps de propa-
gation t., de 1 ns et que les temps de prépositionnement ¢4, et t5, des bascules sont
négligeables.

Quelle est la fréquence d’échantillonnage maximum f,,,, de la fonction ?
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11.1.2 Augmentation de la fréquence de fonctionnement avec un étage
de pipeline

Une barri¢re de registre est rajoutée comme indiqué dans la figure 11.2. Le nouvel étage
de pipeline ainsi généré permet d’augmenter la fréquence de fonctionnement.

ans ns teco=1ns
I )

I
A ot

B —le—— 8 [ T—
Bl CoHe s w2
| 2 MULTIFLEXER — —l—
RAL [t -y ]
CLAM
WG
OFF
s e 5
[ m—- - a
CLAM
. a
[ 1O e S

Figure 11.2: Circuit a étudier avec pipeline

1. Quelle est la nouvelle fréquence maximum f;,,4, de fonctionnement?

2. Quels sont le retard et la latence du signal de sortie ?

11.1.3 Optimisation en performances

1. Rajoutez un étage de pipeline permettant d’obtenir la meilleure fréquence possible.

2. Quelle est la nouvelle valeur de la fréquence f,4: ?

11.1.4 Compromis performances/surface

La table 11.1 indique la surface des portes logiques. Lunité est la surface de la porte ET.

ET | MUX | XOR | DFF
1 2 2 6

Table 11.1: Surface des éléments

1. Calculez la surface pour les 3 cas étudiés ci-dessus. Analysez le rapport entre surface et
fréquence maximale de fonctionnement.

2. Quelle conclusion peut-on en tirer?

11.2 Changement de format série <> Parall¢le

Cet exercice a pour but de concevoir une fonction de changement de format d’'une donnée
arrivant en série et sortant en paralléle, et vice-versa. La structure de registre a décalage sera
utilisée a cette fin.
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11.2.1 Conversion série — parallele

1. Concevez le composant D-EN dont le symbole est représenté par la figure 11.3 et ayant
les spécifications indiquées dans la table 11.2.

D Q
__EN

H

Figure 11.3: Bascule D-EN

EN=0 Gel de la sortie Q

EN=1 | bascule D avec entrées sur D et sortie sur Q

Table 11.2: Spécifications de D-EN

2. A l'aide du composant D-EN, concevez un convertisseur série=>paralléle SER-PAR
dont l'entrée D arrive sur 1 bit au rythme de 'horloge H et les sortie S sortent sur

4 bits. Le symbole est représenté par la figure 11.4 et les spécifications sont indiquées
dans la table 11.3.

—D SH—
—— DATA_OK

—H

Figure 11.4: Composant SER-PAR

DATA_OK=0 Gel de la sortie S
DATA_OK-=1 | La sortie S prend les 4 derniers bits de D

Table 11.3: Spécifications de SER-PAR

11.2.2 Conversion paralléle — série

1. Concevez le composant D-EN-LD dont le symbole est représenté par la figure 11.5 et
ayant les spécifications indiquées dans la table 11.4.

DI Q
D2

EN

LD

H

Figure 11.5: Bascule D-EN-LD

2. ATaide du composant D-EN-LD, concevez un convertisseur parallele=>série PAR-SER
avec les entrées sur 4 bits et une sortie sur 1 bit changeant au rythme de ’horloge H.

Le symbole est représenté par la figure 11.6 et les spécifications indiquées dans la table
11.5.
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EN=0 gel de la sortie Q

EN=1 et LD =0 | bascule D avec entrée sur D1 et sortie sur Q

EN=1 et LD =1 | bascule D avec entrée sur D2 et sortie sur Q

Table 11.4: Spécifications de D-EN-LD

D S—
DATA_OK
EN

H

HEES

Figure 11.6: Composant PAR-SER

EN=0 Gel de la sortie S
EN=1 et DATA_OK=0 | la sortie S sort d’'une fagon cyclique les 4 bits de D enregistrées
EN=1 et DATA_OK=1 Les entrées D sont enregistrées

Table 11.5: Spécifications de PAR-SER

11.3 Calcul de parité.

La parité d’'un mot de n bits est vraie si le nombre de bits & 1 est pair. On se propose de
réaliser ce calcul sur une donnée de 8 bits.

11.3.1 Calcul de parité sur un mot parallele

1. Concevez un circuit calculant la parité d’'un mot de 8 bits en paralléle, a partir exclusi-
vement de portes XOR et ayant un temps de propagation minimal.

11.3.2 Calcul de parité sur un mot série

Les bits du mot arrivent maintenant en série et d’'une maniére synchrone avec une horloge
CLK. Le signal DEB est actif juste avant le premier bit. Le chronogramme de la donnée et de
DEB est donné en figure 11.7.

CLK J\_l\_l\_l\_f
DEBA| L

DATA X X X do X d1 X dz X a3 ) da X ds X ds ¥ d7 X X

Figure 11.7: Chronogramme des entrées du calculateur

Comme les bits arrivent séquentiellement, on peut utiliser une structure simple calculant
la parité bit apres bit et stockant le résultat dans une bascule D. La bascule doit étre initialisée
a l'aide du signal DEB et contient le résultat au bout des 8 bits.

1. Donnez I'équation de I'entrée D de la bascule par rapport a8 DATA, DEB et la sortie de
la bascule.
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2. Déduisez la structure du circuit séquentiel correspondant.
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Chapitre 12

TD - Synthese et utilisation des machines
a états synchrones

Ce TD comprend 2 exercices, permettant de reprendre et de mettre en oeuvre les notions
abordées dans la lecon sur les machines a états 5. Nous traiterons deux problémes :

e Ftude et conception d’un contrdleur de bus simple.

e Prise en compte du probléme de I'équité.

Remarque : Vous pouvez, si vous le souhaitez, réaliser et intégrer les controleurs étudiés
lors de ce TD sur des circuits logiques programmables dans les salles de TP du département

(A406-7).

12.1 Qu’est-ce qu'un bus de communication ?

Lorsque, au sein d’un syst¢me complexe, plusieurs dispositifs électroniques doivent com-
muniquer entre eux on peut imaginer de relier chaque élément a tous les autres. Cette situation,
illustrée par la figure 12.1, est probablement la premiére qui vient a I'esprit. C’est aussi la plus
puissante car elle permet un nombre trés important de communications simultanées.

Figure 12.1: Liaisons point & point

Malheureusement elle est aussi trés coliteuse car le nombre de connexions nécessaires est
trés important. Il suffit d’imaginer pour s’en convaincre que les arcs du schéma ci-dessus véhi-
culent des informations codées sur 32 bits. En outre elle n'offre pas une grande flexibilité car
il n’est pas possible d’ajouter des éléments a notre réseau (le nombre d’entrées et de sorties de
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chaque élément est fixé A la construction). Ce systéme n'est pas tres plug and play. Cest dom-
mage car le plug and play est justement trés a la mode. Une autre solution, plus raisonnable et
aussi plus courante, est le bus central comme illustré dans la figure 12.2

R

>

Bus central

Figure 12.2: Bus central

Les possibilités d’échanges sont limitées mais chaque élément peut tout de méme commu-
niquer avec n’importe quel autre et le nombre de connexions est considérablement réduit. Il
est en outre théoriquement possible d’ajouter a I'infini de nouveaux éléments au systéme. La
gestion d’une telle organisation des communications nous servira de théme tout au long de ce

TD.

12.2 Le contréleur de bus simple.

Nous nous proposons de concevoir un controleur de bus de communication. Le systéme
au sein duquel notre contréleur doit s'intégrer comporte un arbitre de bus et un nombre in-
déterminé mais potentiellement trés grand de points d’acces au bus. Chaque point d’acces est
composé d’un contrdleur et d’un client. La figure 12.3 représente le systéme de communica-
tion complet :

Bus

||
Client A Controleur A Client B ControleurB | | ________

Point d’acces A

Point d’acces B

0 I

Arbitre

Figure 12.3: Systéme de communication

Larbitre est chargé de répartir la ressource de communication (le bus) entre les différents
points d’acces. En effet, le syst¢tme n’admet pas que plusieurs points d’accés émettent simul-
tanément des informations sur le bus. Si cela se produisait il y aurait conflit et perte d’infor-
mations. La présence d’un arbitre est donc nécessaire. C’est lui qui autorise successivement les
points d’acces a écrire sur le bus en leur attribuant un ”jeton”. Le point d’acces possesseur du
jeton peut écrire sur le bus. Les autres ne peuvent que lire. Lorsque le point d’acces a terminé
sa transaction il rend le jeton a l'arbitre qui peut alors lattribuer & un autre point d’acces.
Labsence de conflit est garantie par 'unicité du jeton.
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Les clients sont les utilisateurs du bus. Lorsqu’un client désire écrire sur le bus il en informe
son controleur associé et attend que celui-ci obtienne le jeton et lui donne le feu vert.

Les controéleurs servent d’interface entre 'arbitre et leur client. C’est 'un de ces controleurs
que nous allons concevoir. Ses entrées - sorties sont décrites dans le schéma illustré en figure
12.4 et la table 12.1. A Iexception de 'horloge et du signal de 7eser toutes les entrées - sorties
sont actives a '1’.

Lo

Clk  Rst

Ack

Client Gnt Controleur

Req

Tok  Pss

Arbitre

Figure 12.4: Contréleur de communication

12.2.1 Le graphe d’états.
1. Dessinez un chronogramme représentant une ou plusieurs transactions complétes entre
un contrdleur, son client et 'arbitre.
2. Le controleur est une machine a états de Moore. Imaginez et dessinez son graphe.
3. Vérifiez la cohérence du graphe en appliquant les méthodes du chapitre 2 de la lecon 6.

4. Vérifiez que les spécifications du contrdleur sont respectées par votre graphe.

12.2.2 Une optimisation possible.

Les échanges entre I'arbitre et le contréleur (signaux TOK et PSS) présentent 'inconvé-
nient de ralentir inutilement les opérations et donc de gaspiller des cycles d’utilisation du bus.
En effet, un cycle est perdu lorsqu’un contréleur se voit proposer le jeton alors qu’il n’en a pas
l'usage. Le chronogramme de la figure illustre 12.5 ce phénomene :

Clk
T | L
PssA ’—‘ _-
TokB -

\__/
Cycle perdu

Figure 12.5: [llustration de la perte d’un cycle

TOKA et TOKB sont les signaux TOK destinés 4 deux contrdleurs, A et B. PSSA est le
signal PSS émis par le contréleur A et indiquant qu’il rend le jeton que l'arbitre vient de lui
confier et dont il n'a pas 'usage. On voit que arbitre, lui aussi synchrone sur front montant
de CLK, ne peut pas proposer immédiatement le jeton a un autre controleur.
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Nom | Direction | Description

CLK | Entrée | Horloge pour la synchronisation du contrdleur

RST Entrée Signal de reset asynchrone, actif 4 ’0’. Lorsque ce signal est a
état bas (C0’) le controleur est entiérement réinitialisé.

TOK | Entrée | Cesignal provientdel'arbitre et indique que le contréleur peut
disposer du bus. 1l signifie donc que l'arbitre offre le jeton au
controleur. Il n’est actif que pendant une période d’horloge. Si
le contréleur n’a pas besoin du jeton il le rend (voir le signal
PSS). Sinon il le garde jusqu'a ce qu’il n’en ait plus l'utilité.

REQ | Entrée | Ce signal est émis par le client et indique que ce dernier de-
mande a disposer du bus. Le client maintient ce signal jusqu'a
la fin de sa transaction sur le bus. Il ne le relache que lorsqu’il
n’a plus besoin du bus.

ACK | Entrée | Ce signal provient du client et indique que le client a pris le
bus et commence sa transaction. Il n’est actif que pendant une

période d’horloge.

PSS Sortie | Ce signal est destiné a l'arbitre et I'informe que le contréleur
rend le bus, soit parce que I'arbitre le lui a proposé alors qu’il
nen a pas besoin, soit parce que la transaction du client est
terminée. Il signifie donc que le controleur rend le jeton a l'ar-
bitre qui pourra ensuite en disposer et 'attribuer & un autre
controleur, voire au méme. Il nest actif que pendant une pé-

riode d’horloge.

GNT | Sortie | Ce signal est destiné au client et I'informe qu’il peut disposer
du bus. Il est maintenu tant que le client n’a pas répondu (par

le signal ACK) qu’il a pris le bus.

Table 12.1: Spécification du contrélenr

Pour améliorer les performances du syst¢éme nous voudrions obtenir le chronogramme
illustré en figure 12.6 :

ae | LT LT LT LT
TokA -
PssA -
TokB ’—‘

Figure 12.6: Chmnogmmme optimisé

1. Proposez des modifications du contrdleur permettant d’obtenir ce nouveau comporte-
ment.

2. Discutez leurs mérites respectifs.

3. Le contrdleur est-il toujours une machine a états ? Pourquoi ?
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12.2.3 Réalisation.
1. Décrivez sous forme de schéma la structure du contrdleur optimisé. Vous ne détaillerez
pas les parties combinatoires.

2. Décrivez, sous forme fonctionnelle symbolique, le comportement des parties combina-
toires. Un exemple de description fonctionnelle symbolique est illustré en figure 12.7 :

Case(State) is
when WAIT : if(Tok == ’1’) then
Next_state = GRANT;

else

Next_state = WAIT;

Next_state

Figure 12.7: Description fonctionnelle symbolique

12.3 Le probléeme de I’équité.

12.3.1 Le contréleur équitable.

Le contrdleur que nous venons de concevoir n'est pas entiérement satisfaisant car il n'est
pas équitable. En d’autres termes, il ne garantit pas qu'un client n’accaparera pas le bus au
détriment des autres. Il ne garantit méme pas qu'un client, aprés avoir obtenu I'acces au bus,
l'utilisera effectivement puis le relachera. Il est en effet possible qu'un client ne réponde jamais
au signal GNT de son controleur (ce qu'il est sensé faire a 'aide du signal ACK). Le systeme
complet serait alors bloqué par un “mauvais” client qui monopolise une ressource dont il n’a
pas I'usage. Pour remédier & cet inconvénient il faut & nouveau modifier le contréleur.

1. Imaginez des solutions afin de rendre équitable le controleur optimisé du premier exer-
cice.

2. Décrivez, sans entrer dans les détails, la structure de ce nouveau contrdleur. Vous sépa-
rerez les registres et les parties combinatoires. Vous donnerez une description fonction-
nelle symbolique des parties combinatoires et vous expliciterez le comportement des
registres.

12.3.2 DLarbitre équitable.

1. Pour obtenir que I'ensemble du systeme soit équitable, la modification du contréleur
seul ne suffit pas. Larbitre doit, lui aussi, adopter un comportement particulier. Pour-
quoi? Donnez un exemple de comportement non équitable possible de I'arbitre et ses
conséquences.

Imaginez et décrivez des comportements possibles de I'arbitre équitable.

3. Comme précédemment, décrivez la structure de I'arbitre équitable.
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Chapitre 13

TD - Analyse et synthese en portes
logiques

13.1 Introduction

Le TD comprend 4 exercices portant sur I'analyse et la synthese de portes logiques a partir
de transistors CMOS
Exercices

1. 13.2 Analyse d’une porte complexe

2. 13.3 Analyse de portes présentant des dysfonctionnements
3.

4. 13.5 Synthese d’'un additionneur 1 bit

13.4 Synthese de la fonction majorité

13.2 Analyse d’'une porte complexe

La figure 13.1 représente I'implantation (la réalisation) d’une fonction logique en utilisant
les principes de la logique complémentaire CMOS (réseau de tirage a ”1” & base de transistors

PMOS et réseau de tirage a 70" a base de transistors NMOS).

Figure 13.1: Porte logique

177
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13.2.1 Analyse de la fonction a ’aide du réseau de transistors P

1. En considérant que Y est a 1 uniquement si le réseau P est passant, donnez 'expression
de la fonction logique Y en utilisant la structure du réseau de transistors P,

13.2.2 Analyse de la fonction a I’aide du réseau de transistors N

1. En considérant que Y est 2 O uniquement si le réseau N est passant, donnez 'expression
de la fonction logique Y en utilisant la structure du réseau de transistors N.

2. Vérifiez que les fonctions obtenues a I'aide du réseau P puis du réseau N sont bien
identiques.

13.2.3 PLimplémentation est elle unique?

1. Dressez le tableau de Karnaugh de la fonction Y. En simplifiant la fonction trouvez une
alternative au réseau de transistors P

13.3 Analyse de portes présentant des dysfonctionnements

Une seule de ces portes réalise correctement une fonction logique.

4 4 i

3/ T R T
odl b odf  Jpe L Jpe
AL [gFe =L Jre

= e AL ke ALHD -

]

Porte 1 Porte 2 Porte. 3

Figure 13.2: Tivis portes...

13.3.1 Quelle est la ’bonne” ?

1. En examinant la dualité des réseaux N et P (une structure de transistors série P corres-
pond a une structure paralléle N et vice versa), déduisez la bonne porte.

2. Quelle est 'expression de sa fonction logique ?

13.3.2 Causes de dysfonctionnements

1. Trouvez des combinaisons des entrées introduisant un probléme pour les 2 portes dé-
fectueuses.
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13.4 Synthese de la fonction Majorité

Soit le complément de la fonction Majorité : Maj(A, B,C)=A-B+B-C+A-C

13.4.1 Construction CMOS de la fonction Majorité complémentée

1. En utilisant la dualité des réseaux P et N, établissez le schéma CMOS de la fonction
Majorité complémentée. Trouvez une structure minimisant le nombre de transistors.

13.4.2 Optimisation de la fonction Majorité complémentée

1. Démontrer la relation suivante :Maj(A, B,C) = Maj(A, B,C)
2. Déduisez une structure présentant une symétrie sur les réseaux P et N. Quels sont les
intéréts d’une telle structure ?

13.5 Syntheése d’'un Additionneur 1 bit

Cet exercice traite de 'additionneur 1 bit qui est la cellule de base de I'additionneur a
propagation de retenue.

Ri+

1%

I
Ri_w F.A | wRiq

!

Si

A
a0
a
a
a
1
1
1
1

T o T S S o S B 1 |
—- O = O = O = o @

P o T S T
R e T e B o T A

Figure 13.3: Table de vérité de 'Additionneur Complet 1 bit

13.5.1 Construction de la retenue Ri+1 en CMOS

1. Proposez une structure de porte CMOS pour réaliser la fonction Ri+1

13.5.2 Construction de la sortie Si en CMOS

1. Vérifier que Si peut s'exprimer sous la forme : S; = A;B;R; + Riy1 (A + Bi + R;) =
A;® B; @ R,

2. En utilisant le méme raisonnement que pour la fonction Majorité (exercice 13.4.2)
trouvez une structure optimale de la fonction S;

13.5.3 Evaluation de I’aire de la surface d’un additionneur

2

1. Sachant qu'on utilise une technologie CMOS de densité 1 500 000¢r - mm ™, combien

pouvons nous intégrer d’additionneurs 32 bits dans 1em??
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Chapitre 14

TD - Performances de la logique
complémentaire CMOS

14.1 Objectifs du TD

Ce TD est'occasion d’une premiere mise en pratique des concepts de temps de propagation
de portes logiques. Les différents exercices visent & mettre en évidence :

o l'usage de bibliothéques précaractérisées ;

e le lien entre la structure des portes CMOS et leurs performances ;

e le lien entre I'optimisation de fonctions booléennes et leurs performances.

14.2 Temps de propagation d’une fonction décodeur

Nous désirons réaliser la fonction LM 5 dont I'équation logique est la suivante :
LMy = Ag- Ay - Ay - Ay - Ay - A5

Les effets parasites des fonctions logiques connectées en aval de la fonction LM 9 sont
modélisés par une capacité d’utilisation C, connectée en sortie de la fonction. La valeur de
C,est pas connue. Un concepteur, utilisant les cellules d’une bibliotheque précaractérisée
donnée en annexe 14.5, nous propose trois implantations illustrées dans la figure 14.1 (on
suppose disponibles les entrées et leurs complémentaires) :

Al — Al
A 1y A 2
a2 — 1 5 (2)
% — X
Ad— Al
5 A5

Figure 14.1: Trois implantations alternatives de la fonction LMo

® Question 1 : Vérifier que les schémas de la figure 14.1 représentent tous la fonction LM o
et comparer ces solutions en terme de nombre de transistors utilisés.
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o Question 2 : En supposant que la sortie de la fonction LM 9y charge une capacité d’utili-
sation égale & un multiple entier de la capacité de référence (C, = N x C,) déterminer
pour chacune des solutions 'expression du temps de propagation de la fonction LM o
en fonction de N et de .

o Question 3 : Déterminer en fonction de N la solution donnant le temps de propagation
le plus faible. Pouvait-on prévoir ces résultats ? (expliquer).

14.3 Amélioration du décodeur par amplification logique
Nous avons maintenant fixé la valeur de la capacité d’utilisation C, de la fonction LM o

a C, = 175 x C,. Nous décidons de reprendre la solution (3) modifiée suivant le schéma de
la figure 14.2, ot INV'; et INV 5 sont deux inverseurs de la bibliotheque.

V1 [NY2

kddiy

Figure 14.2: Solution (3) avec amplification logique

o Question 4 : Déterminer le temps de propagation de la fonction dans cette nouvelle
configuration, et comparer de nouveau a la solution (1).
Nous décidons de nous affranchir des contraintes de la bibliothéque et décidons de rem-
placer l'inverseur /NV'5 par un inverseur dont nous définissons nous méme les dimensions.
Pour cela nous multiplions les largeurs W des deux transistors NMOS et PMOS de I'inverseur
de la bibliothéque par un méme coefhicient a.
o Question 5 : Déterminer, en fonction des caractéristiques de l'inverseur de la biblio-
theque et du coefhicient o, la valeur des parametres vy, tyomvy et dyyvy de inverseur
INV .

o Question 6 : Déterminer de nouveau le temps de propagation de la fonction LM 5y en
fonction du coefficient .

o Question 7 : Montrer qu’il existe une valeur de @ minimisant le temps de propagation de

la fonction LM 5. Calculer cette valeur et déterminer le nouveau temps de propagation.

La valeur de C, est en fait la capacité résultante de 25 entrées de diverses portes connectées
en sortie de la fonction LM 5.

® Question 8 : Imaginer une solution donnant le méme résultat que précédemment mais

évitant de créer une nouvelle cellule (nous ne sommes pas maitres de la bibliotheque...).

Dans la pratique, les concepteurs ne cherchent pas & minimiser les temps de propagation
des fonctions combinatoires, mais plut6t a limiter ceux-ci & une valeur jugée acceptable pour
le fonctionnement correct du circuit.

o Question 9 :Montrer que pour tout choix de temps de propagation supérieur au temps

minimum, il existe une valeur de & minimisant 'aire du circuit réalisant la fonction
LM .
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14.4 Généralisation du principe de ’'amplification logique

Le probléme précédent peut étre généralisé de la fagon suivante : Considérant une capacité
C, devant étre chargée (ou déchargée) par de la logique CMOS, existe-t-il une structure de
chaine d’inverseurs optimale minimisant le temps de propagation ?.

La chaine totale considérée (voir figure 14.3) sera composée de N inverseurs /NV; dont
les largeurs des transistors sont multipliées par des coeflicients «v; par rapport a I'inverseur de
la bibliotheque. Le coeflicient o est figé a la valeur 1.

INV INV; INV,

e

o

Figure 14.3: Amplification logique généralisée.

Question 10 : Etablir 'expression du temps de propagation de la chaine en fonction du

nombre N d’inverseurs et des coefficients «;.

o Question 11 : Montrer que les coefficients ov; doivent suivre une progression géomé-
trique pour minimiser le temps de propagation de la chaine. En déduire une nouvelle
expression du temps de propagation en fonction d’un coefficient unique o et de N.

o Question 12 :Montrer qu’il existe une valeur de av qui minimise le temps de propagation
de la chaine. Exprimer cette valeur en fonction de C,, C, et N. En déduire une expression
du temps de propagation minimal ne dépendant plus que de C,, C,;yy et N.

® Question 13 :Montrer qu’il existe une valeur de N qui minimise le temps de propagation

de la chaine. Exprimer cette valeur en fonction de C, et C,. En déduire une expression

du temps de propagation minimal ne dépendant plus que de C, et C,jvy.

14.5 Annexe : Bibliotheque de cellules précaractérisées

Les sociétés de fonderies de Silicium, les "fondeurs”, qui produisent des circuits intégrés
numériques, proposent a leurs clients, des bibliothéques de portes logiques dites précaractéri-
sées. Les ingénieurs de ces sociétés développent, dessinent et simulent le comportement et les
performances de chacune des portes logiques de la bibliothéque. Ils fournissent a leurs clients
des tables de caractéristiques permettant a ces derniers de concevoir des circuits intégrés et
prédire leurs performances sans avoir a explorer des niveaux de détail allant jusqu’au transistor.
Le tableau 14.1 propose une telle bibliotheque.

Pour chaque cellule de la bibliothéque sont précisés :

o La capacité d’entrée C,; de chaque entrée E; de la cellule.

e Le temps de propagation a vide 2,9 ;

e La dépendance capacitive (pente) du temps de propagation d,,.
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Fonction Equation booléenne C,; Lo dy,
Inverseur Yy =A Cy="T7C, 6t,, dyyy
Nand 2 3 entrées | Y = ABC Vi e {A,B,C}C, =1C, | 421, | 3d,,
Nand 4 6 entrées | Y = ABCDEF Vie {A---F}C, =T7C, | 156z, | 6d,,
Noral2entrées | Y =A+ B Vie {A, B}C, =T7C, 16z, | 2d,,
Nora6entrées | Y =A+B+C+D+E+F |Vie{A---F}C,="17C, | 96t, | 6d,

Table 14.1: Une bibliothéque précaractérisée simple.

Rappelons que le temps de propagation d’une porte chargée par une capacité C, est donné
par la formule :
tp = tp() + dtp X Cu

Nous avons simplifié les jeux de paramétres en ne distinguant notamment pas les temps
de propagation en montée et en descente. Pour faciliter les quelques calculs numériques de
ce TD, tous les paramétres sont définis comme des multiples entiers des valeurs de référence
suivantes :

o C, : capacité de référence

e 1, : temps de propagation de référence

e d,, : dépendance capacitive de référence

Ces trois parametres sont liés par la relation suivante :

ty = dy, X G,



Index

A

Additionneur..................... .. 58
3
Bascules ..............ooiiiiiiaa. 68
D 70
latch ... 70
pipeline........ ... ... ..ol 75
point mémoire.................. 68
registre 2 décalage ............... 74
RS . 69
Setup, Hold . ............... ... 73
Binaire
Opérateur................... 23,26
C
CA2 .o 56
Chemin critique................... 135
CMOS. .o 126
CONSOMMAtiON .. ..vuvuvrnn.... 151
Codage
BCD ... 57
Gray ....ooviiiiiiii i 57
pparmin...................... 57
parité. ... ... oo 58
simple de position............... 53
Codage binaire . .................... 23
Comparateur. ..........ouvueenen... 47
Complémentarité.................. 127
Compteur ......oovvviiueennennn.. 75
Consommation ................... 151
circuit CMOS................. 153
porte CMOS........... ... ... 151
Conversions entre bases. . ............ 54
D
Dimensionnement................. 150

185

—

Flipflop......oovviiiiiii. 70

Fonction logique ................... 33

Fonctions arithmétiques . ............ 58

Forme
algébrique......... .. ...l 34
canonique conjonctive........... 37
canonique disjonctive............ 36
CONJONCLIVE ..o vv v 35
disjonctive ...l 35

&

Graphedétat . ..................... 81

I

Interrupteur .............o L 123

K

Karnaugh..................oo L 39
construction du tableau.......... 41
fonctions non complétement définies

42

simplification................... 41

L

Latch ... 70

Logique ...............oooiiat 126
CMOS.....oii 126
fonction....... ... ...l 33
fonctions, représentation. .. ...... 34
représentation schématique. . .. ... 43

Logique séquentielle ................ 65
CONSTIUCHON . ..t v oveevee e 67
principe . ... 65

M

Machinesa états.................... 79
codage.........ooiiiiiiiiit 88



186

adjacent ............ ...l 89
aléatoire ..................... 90
onehot...................... 90
graphe........... .. .. o 81
registre d’état................ ... 86
SOILIES + vttt it i eenn 87
étatfutur ... 85
Multiplexeur......... ... 45
4
Opérateur binaire................... 26
‘P
Pipeline ..., 75
Portes logiques
additionneur ................... 58
COMPATALEULS . .+« vvveeeaeenen 47
complexes ... 129
ET . 43
multiplexeur ............ ... ..., 45
NON ..o 43
NON-ET.....cccovii. .. 43
NON-OU.......oovviinn... 43
OU . i 43
OUEX ... 47
SOUSTIACTEUL « v v vv et e ieeennnnn. 61

Propagation, temps de
inverseur............... ... 144

modéle.......... ... ... ... 147

INDEX
R
Registre a décalage . ................. 74
Représentation des nombres.......... 53
Représentation
complémenta 2 ................ 56
desnombres.................... 53
signe et valeur absolue........... 56
S
Schéma.........ccovviiiii. L. 43
Signal
analogique ..................... 20
binaire........ ... ..., 23
dynamique..................... 20
nUMErique . . ..o 20
électrique . .. ... 18
Soustracteur. . ......ooveiiinieiinn.. 61
Systeme numérique ................. 17
T
Tablede vérité...................... 34
Temps de propagation.............. 135
Transistor MOS
dimensionnement.............. 150
modele en interrupteur . ........ 123
\
ViItesse . oovveeie i 133



	Table des matières
	Liste des tableaux
	Table des figures
	I LeÃ§ons
	Traitement matÃ©riel de l'information
	Du composant aux systÃ¨mes numÃ©riques
	Signal et Information
	Signal Ã©lectrique et traitement de l'information
	Codage analogique de l'information: l'exemple du signal sonore
	Codage numÃ©rique de l'information
	L'exemple du signal binaire

	Le signal binaire reprÃ©sentÃ© par une grandeur Ã©lectrique
	Comment peut-on gÃ©nÃ©rer un signal Ã©lectrique binaire ?
	Comment peut-on extraire un symbole binaire d'un signal Ã©lectrique ?
	Comment peut-on crÃ©er un opÃ©rateur de traitement binaire ?

	La technologie micro-Ã©lectronique
	Quelles propriÃ©tÃ©s des matÃ©riaux peut-on exploiter pour crÃ©er des transistors ?
	Quelles sont les diffÃ©rentes Ã©tapes de la fabrication des circuits intÃ©grÃ©s ?

	Les filiÃ¨res technico-Ã©conomiques
	La recherche d'un optimum de rendement dans l'utilisation de la technologie
	Les circuits « universels » tels les microprocesseurs
	Les circuits spÃ©cifiques Ã€ une application
	Les circuits logiques programmables
	Les systÃ¨mes intÃ©grÃ©s sur puces

	Bibliographie

	Fonctions combinatoires
	Introduction
	Variables et fonctions logiques, tables de vÃ©ritÃ©
	ReprÃ©sentations des fonctions logiques
	Formes algÃ©briques
	Forme disjonctive
	Forme conjonctive
	Ã›quivalence entre la table de vÃ©ritÃ© et les formes canoniques
	Forme canonique disjonctive
	Forme canonique conjonctive

	Description de mÃ©thodes de simplification
	Utilisation des propriÃ©tÃ©s de l'algÃ¨bre de Boole
	Simplification Ã€ partir de la forme algÃ©brique
	MÃ©thode des tables de Karnaugh
	Construction du tableau de Karnaugh
	RÃ¨gles de simplification
	Fonctions non complÃ¨tement dÃ©finies
	Pertinence de la mÃ©thode

	ReprÃ©sentation schÃ©matique des fonctions logiques
	Quelques fonctions combinatoires importantes
	Fonctions d'aiguillage : multiplexeurs
	OpÃ©rateurs de comparaison

	Annexes
	Exercice de consolidation
	Bibliographie


	OpÃ©rateurs arithmÃ©tiques
	Introduction
	ReprÃ©sentation (codage) des nombres
	ReprÃ©sentation Simples de Position
	Conversions entre Bases
	ReprÃ©sentation en Signe et Valeur Absolue
	ReprÃ©sentation en ComplÃ©ment Ã€ 2
	Autres Codes

	Fonctions arithmÃ©tiques
	Additionneur
	Soustracteur


	Logique sÃ©quentielle synchrone, bascules
	Introduction
	Comment reconnaÃ®tre la logique sÃ©quentielle ?
	Comment construire la logique sÃ©quentielle ?

	Les bascules D
	Le point mÃ©moire Ã©lÃ©mentaire
	structure avec 2 inverseurs tÃªte bÃªche : bascule RS et RAM statique
	De la bascule RS Ã€ la bascule D sur Ã©tat : le latch
	La bascule D sur front ou Flip-Flop
	Conditions d'utilisation de la bascule

	Exemples fondamentaux de la logique sÃ©quentielle synchrone
	Le mÃ©canisme de dÃ©calage avec un registre Ã€ dÃ©calage
	Le mÃ©canisme de comptage
	Principe de sÃ©rialisation des calculs
	Principe d'accÃ©lÃ©ration des calculs par la mise en pipeline


	Machines Ã€ Ã©tats
	Introduction
	Le graphe d'Ã©tats
	Comment reprÃ©senter graphiquement le comportement d'une machine Ã€ Ã©tats ?
	Comment vÃ©rifier cette reprÃ©sentation Ã€ l'aide de quelques rÃ¨gles simples ?

	La composition d'une machine Ã€ Ã©tats
	Le calcul de l'Ã©tat futur
	Le registre d'Ã©tat
	Le calcul des sorties

	Le codage des Ã©tats
	Comment reprÃ©senter les diffÃ©rents Ã©tats sous forme de mots binaires ?
	En quoi le codage choisi influe-t-il sur la taille de la machine Ã€ Ã©tats ?
	Quelles mÃ©thodes permettent de choisir le meilleur codage possible ?

	La conception d'une machine Ã€ Ã©tats
	machine Ã€ Ã©tats principale
	Machine Ã€ Ã©tats du minuteur


	Des machines Ã€ Ã©tats aux processeurs
	Introduction
	Objectifs
	Introduction
	Instructions et donnÃ©es
	de la feuille Ã€ l'Ã©lectronique
	Interlude rappel : fonctionnement de la RAM

	Ã›tape 1 : automate linÃ©aire basique
	Organisation de la mÃ©moire
	Les instructions 
	Fonctionnement de l'automate

	Ã›tape 2 : automate avec accumulateur
	ChaÃ®nage des opÃ©rations
	L'accumulateur

	Ã›tape 3 : automate avec accumulateur et indirection
	Indirection

	Ã›tape 4 : processeur RISC
	Flags
	Sauts

	Ã›tape 5 : optimisations
	RÃ©ponse 1
	Les adresses
	Les donnÃ©es

	RÃ©ponse 2
	RÃ©ponses 3 et 4
	Les adresses
	Les donnÃ©es
	L'accumulateur
	Bilan
	Performances

	RÃ©ponse 5
	Les adresses

	RÃ©ponse 6
	Flags
	ADDC / SUBC

	RÃ©ponse 7
	RÃ©ponse 8
	RÃ©ponse 9
	ROL / ROR
	Sortie BZ


	Du transistor Ã€ la logique CMOS
	Introduction
	Objectifs
	PrÃ©sentation

	ModÃ¨le en interrupteur
	ModÃ©lisation
	Quelques montages simples

	La logique complÃ©mentaire CMOS
	Introduction
	Notion de complÃ©mentaritÃ©
	Porte complexe
	Exemple d'analyse d'une porte logique
	Exemples de synthÃ¨se d'une porte logique

	Vitesse de traitement d'un circuit intÃ©grÃ© numÃ©rique CMOS
	Notion de chemin critique
	Notion de temps de propagation
	ModÃ¨le du temps de propagation d'une porte CMOS
	Temps de propagation dans un assemblage de portes logiques.

	Rappels du modÃ¨le Ã©lectrique
	Connexions et tensions appliquÃ©es
	Rappels du modÃ¨le Ã©lectrique et des symboles

	Bibliographie

	Performances de la logique complÃ©mentaire CMOS
	Introduction
	CoÃ»t de production d'un circuit intÃ©grÃ© numÃ©rique CMOS
	Estimation de la vitesse de la logique CMOS
	Expression du temps de propagation d'un inverseur CMOS
	ModÃ¨le du temps de propagation de l'inverseur CMOS
	SchÃ©ma synthÃ©tique de l'inverseur
	SchÃ©ma synthÃ©tique d'une porte CMOS quelconque
	Notion de bibliothÃ¨que de cellules prÃ©caractÃ©risÃ©es
	Influence du dimensionnement des transistors sur les caractÃ©ristiques de l'inverseur

	Consommation des circuits intÃ©grÃ©s CMOS
	Consommation d'une porte CMOS
	Extrapolation Ã€ un circuit intÃ©grÃ© CMOS

	Ã›volution technologique et conclusions


	II TDs
	TD - Fonctions de base
	Simplification algÃ©brique
	Simplification par tableau de Karnaugh
	Fonction F
	Fonction G
	DÃ©codage
	GÃ©nÃ©ration de fonctions

	TD - OpÃ©rateurs arithmÃ©tiques
	ReprÃ©sentation en complÃ©ment Ã€ 2
	Addition en complÃ©ment Ã€ 2
	Soustraction et comparaison
	Multiplication

	TD - Utilisation des bascules
	Mise en pipeline d'une fonction combinatoire
	Analyse de la fonction
	Augmentation de la frÃ©quence de fonctionnement avec un Ã©tage de pipeline
	Optimisation en performances
	Compromis performances/surface

	Changement de format sÃ©rie   ParallÃ¨le 
	Conversion sÃ©rie   parallÃ¨le
	Conversion parallÃ¨le   sÃ©rie

	Calcul de paritÃ©.
	Calcul de paritÃ© sur un mot parallÃ¨le
	Calcul de paritÃ© sur un mot sÃ©rie


	TD - SynthÃ¨se et utilisation des machines Ã€ Ã©tats synchrones
	Qu'est-ce qu'un bus de communication ?
	Le contrÃ´leur de bus simple.
	Le graphe d'Ã©tats.
	Une optimisation possible.
	RÃ©alisation.

	Le problÃ¨me de l'Ã©quitÃ©.
	Le contrÃ´leur Ã©quitable.
	L'arbitre Ã©quitable.


	TD - Analyse et synthÃ¨se en portes logiques
	Introduction
	Analyse d'une porte complexe
	Analyse de la fonction Ã€ l'aide du rÃ©seau de transistors P
	Analyse de la fonction Ã€ l'aide du rÃ©seau de transistors N
	L'implÃ©mentation est elle unique ?

	Analyse de portes prÃ©sentant des dysfonctionnements
	Quelle est la "bonne" ?
	Causes de dysfonctionnements

	SynthÃ¨se de la fonction MajoritÃ©
	Construction CMOS de la fonction MajoritÃ© complÃ©mentÃ©e
	Optimisation de la fonction MajoritÃ© complÃ©mentÃ©e

	SynthÃ¨se d'un Additionneur 1 bit
	Construction de la retenue Ri+1 en CMOS
	Construction de la sortie Si en CMOS
	Ã›valuation de l'aire de la surface d'un additionneur


	TD - Performances de la logique complÃ©mentaire CMOS
	Objectifs du TD
	Temps de propagation d'une fonction dÃ©codeur
	AmÃ©lioration du dÃ©codeur par amplification logique
	GÃ©nÃ©ralisation du principe de l'amplification logique
	Annexe : BibliothÃ¨que de cellules prÃ©caractÃ©risÃ©es


	Index

