
Hardware Verification
SE767 – Vérification et Test

Ulrich Kühne
02/03/2020

Outline

Introduction
Short History of Hardware Failures
Design and Verification Process

Functional Verification
Circuit Models
Linear Time Logic (LTL)
Computation Tree Logic (CTL)
Model Checking

Equivalence Checking
Problem Formulation
Boolean Satisfiability

2/42 SE767 Ulrich Kühne 02/03/2020

Motivation

3/42 SE767 Ulrich Kühne 02/03/2020

Motivation

[Source: www.elektormagazine.com/articles/moores-law]

4/42 SE767 Ulrich Kühne 02/03/2020

Motivation

[CC© photo by mark.sze]

Transistor count of > 3 billion

Gate level models are huge
Big designer teams (several hundreds)
Big correctness issues
Late bugs are extremely expensive

5/42 SE767 Ulrich Kühne 02/03/2020

Motivation

The First Bug (1947)

[Photo: U.S. Naval Historical Center]

6/42 SE767 Ulrich Kühne 02/03/2020

Motivation
The Pentium FDIV Bug (1994)
let x = 4195835, y = 3145727 ⇒ x − x

y · y = 256
Bug in floating point unit⇒ $ 450 Mio. loss for Intel

820 Chipset MTH Bug (2000)

Error in memory translator hub

Recall of around 1 Mio. motherboards
$ 253 Mio. financial loss

Intel i6/i7 (Skylake) Hyperthreading Bug (2017)

Specific operating conditions cause unpredictable behavior

Found by Linux/OCaml developers

7/42 SE767 Ulrich Kühne 02/03/2020

https://www.theregister.co.uk/2017/06/25/intel_skylake_kaby_lake_hyperthreading/

Hardware Design Flow

Specification

Electr. System Lvl.

Transaction Lvl.

Register Transfer Lvl.

Netlist

Layout

Chip

Natural language

UML, SysML, Matlab, . . .

C, C++, SystemC, . . .

VHDL, Verilog, . . .

Gate models

Geometric, electr. models

Silicon

Req. eng.,
modeling

Design Space
expl., partitioning

Implementation,
refinement

Synthesis

Place & route

Manufacturing

8/42 SE767 Ulrich Kühne 02/03/2020

Hardware Verification Flow

Specification

Electr. System Lvl.

Transaction Lvl.

Register Transfer Lvl.

Netlist

Layout

Chip

Equiv. Checking

Diagnosis

ATPG

Coverage

Robustness

Debugging

Model Checking

High Lvl. Synth.

Conf. Checking

NLP TechniquesModel Driven Eng.

Performance Evaluation

9/42 SE767 Ulrich Kühne 02/03/2020

Design Gap – Verification Gap

manufacture

design

verify

#
Tr

an
si

st
or

s

Years

10/42 SE767 Ulrich Kühne 02/03/2020

Outline

Introduction
Short History of Hardware Failures
Design and Verification Process

Functional Verification
Circuit Models
Linear Time Logic (LTL)
Computation Tree Logic (CTL)
Model Checking

Equivalence Checking
Problem Formulation
Boolean Satisfiability

11/42 SE767 Ulrich Kühne 02/03/2020

Functional Verification

Dynamic verification (= simulation)
still standard technology
Pentium 4 overall simulated cycles < one minute
at operation speed [Bentley, 2005]
Full coverage is infeasible
Increasing use of formal methods

12/42 SE767 Ulrich Kühne 02/03/2020

Sequential Circuit Model

Memory

I O
n m

k k
δ

λ

Mealy Machine:

M = (I,O,S,S0, δ, λ)

δ : S × I → S
λ : S × I → O
S0 ⊆ S

I = {0,1}n
O = {0,1}m
S = {0,1}k

13/42 SE767 Ulrich Kühne 02/03/2020

From Verilog to Mealy Machine

module count(CLK, EN, CLR,
S0, S1, S2, V);

input CLK, EN, CLR;
output reg S0, S1, S2;
output V;

assign V = S0 & S1 & S2 &
!CLR & EN;

always @(posedge CLK) begin
if (CLR)
{S2, S1, S0} <= 0;

else if (EN)
{S2, S1, S0}

<= {S2, S1, S0} + 1;
end

endmodule // count

000

001 010 011

100

101110111

EN

EN EN

EN

EN

ENEN

EN/V

EN

EN

EN

EN

EN

EN

EN

EN

CLR

14/42 SE767 Ulrich Kühne 02/03/2020

What do we want to verify?

Safety
Something bad will never happen, e.g.
“The stack pointer will never overflow”
“The traffic lights will never be green at the same time”

Liveness
Something good will eventually happen, e.g.
“Every request will be granted”
“The cache and the main memory will eventually be consistent”

15/42 SE767 Ulrich Kühne 02/03/2020

How to specify such properties?

Temporal logic =
propositional logic + time
Discrete vs. continuous time
Linear time view
Branching time view

CTL∗

LTL CTL

16/42 SE767 Ulrich Kühne 02/03/2020

The Linear Time View

Computation paths

π0: 000 001 010 011 . . .

π1: 000 001 000 001 . . .

π2: 000 001 010 000 . . .

. . .

17/42 SE767 Ulrich Kühne 02/03/2020

Linear Time Logic (LTL)

p holds (in the initial state) p . . . p

p holds in the next state p . . . X p

p holds in the future p . . . F p

p holds globally p p p p . . . G p

p holds until q p p q . . . p U q

18/42 SE767 Ulrich Kühne 02/03/2020

Linear Time Logic (LTL)

An LTL formula over propositional variables V has the form

LTL ::= p, where p ∈ V
| ¬ϕ
| ϕ ∧ ψ
| Xϕ
| Fϕ
| Gϕ
| ϕ Uψ, where ϕ, ψ ∈ LTL.

19/42 SE767 Ulrich Kühne 02/03/2020

Branching Time View

Computation Tree

000

000 001

000 001 000 001 010

.

20/42 SE767 Ulrich Kühne 02/03/2020

Computation Tree Logic (CTL)

Some property p holds
(in the initial state)

p

p

p holds in
some next state

p

EX p

path
quantifier

next
operator

p holds in
all next states

p p

AX p

21/42 SE767 Ulrich Kühne 02/03/2020

Further Modalities

p holds in some
future state

p

EF p

p holds eventually

p

p p

AF p

p holds globally
on some path

p

p

p

EG p

p holds globally
on all paths

p

p p

p p p p

AG p

22/42 SE767 Ulrich Kühne 02/03/2020

Until Modalities

On some path, q holds
until p holds

q

q

p

E(p U q)

On all paths, q holds
until p holds

q

p q

p p

A(p U q)

23/42 SE767 Ulrich Kühne 02/03/2020

Computation Tree Logic (CTL)

A CTL formula over propositional variables V has the form

CTL ::= p, where p ∈ V
| ϕ ∧ ψ | ¬ϕ
| EX ϕ | AX ϕ
| EF ϕ | AF ϕ
| EG ϕ | AG ϕ
| E(ϕ U ψ) | A(ϕ U ψ), where ϕ, ψ ∈ CTL

24/42 SE767 Ulrich Kühne 02/03/2020

What do we want to verify?

Safety
“The stack pointer will never overflow” AG (sp < 4096)

“The traffic lights will never be green at
the same time”

¬EF (tl1 ∧ tl2)

Liveness
“Every request will be granted” AG (req→ AF gnt)

“The cache and the main memory
will eventually be consistent”

AF (memi = cachei)

25/42 SE767 Ulrich Kühne 02/03/2020

Model Checking

Model Checking

Given a Mealy MachineM and a CTL formula ϕ,
check ifM |= ϕ.

How do we do this?

1. Compute all states in which ϕ holds:
τ(ϕ) = {s ∈ S | M, s |= ϕ}

2. Check if the initial states are a subset of those states:
S0 \ τ(ϕ) = ∅

26/42 SE767 Ulrich Kühne 02/03/2020

Example

p

p p

p

p p

p

p p

p

p p

p

p p

p

p p

p

p p

p

p p

p

p p

p

p p

s0 s1 s2

s3 s4 s5

τ(p) = {s2, s4, s5}

27/42 SE767 Ulrich Kühne 02/03/2020

Example

p

p p

p

p p

p

p p

p

p p

p

p p

p

p p

p

p p

p

p p

p

p p

p

p p

s0 s1 s2

s3 s4 s5

τ(p) = {s2, s4, s5}
τ(EX p) = {s1, s2, s3, s5}

27/42 SE767 Ulrich Kühne 02/03/2020

Example

p

p p

p

p p

p

p p

p

p p

p

p p

p

p p

p

p p

p

p p

p

p p

p

p p

s0 s1 s2

s3 s4 s5

τ(p) = {s2, s4, s5}
τ(EX p) = {s1, s2, s3, s5}
τ(AX p) = {s1, s2, s5}

27/42 SE767 Ulrich Kühne 02/03/2020

Example

p

p p

p

p p

p

p p

p

p p

p

p p

Expansion rules:

EF ϕ = ϕ ∨ EX EF ϕ

p

p p

p

p p

p

p p

p

p p

p

p p

s0 s1 s2

s3 s4 s5

τ(p) = {s2, s4, s5}
τ(EX p) = {s1, s2, s3, s5}
τ(AX p) = {s1, s2, s5}

τ(EF p) = {s2, s4, s5}
∪ {s1, s3} ∪ {s0}

27/42 SE767 Ulrich Kühne 02/03/2020

Example

p

p p

p

p p

p

p p

p

p p

p

p p

Expansion rules:

EF ϕ = ϕ ∨ EX EF ϕ

p

p p

p

p p

p

p p

AG ϕ = ϕ ∧ AX AG ϕ

p

p p

p

p p

s0 s1 s2

s3 s4 s5

τ(p) = {s2, s4, s5}
τ(EX p) = {s1, s2, s3, s5}
τ(AX p) = {s1, s2, s5}

τ(EF p) = {s2, s4, s5}
∪ {s1, s3} ∪ {s0}

τ(AG p) = {s2, s4, s5} ∩ {s2, s5}

27/42 SE767 Ulrich Kühne 02/03/2020

Fixed Point Algorithm for EF p

..
.

. .
.

p

S0 = p
S1 = p ∪ EX p
S2 = p ∪ EX p ∪ EX EX p
. . .
Sn = p ∪

n⋃
i=1

EXip = Sn−1

⇒ Sn = τ(EF p)

28/42 SE767 Ulrich Kühne 02/03/2020

Model Checking

Complexity depends heavily
on state space
Need for efficient data structures
State space explosion still a problem
Works for small to medium
(or very regular) systems
Popular tool: NuSMV
[Cimatti et al., 2002]
Ongoing research

000

000 001

000 001 000 001 010

.

29/42 SE767 Ulrich Kühne 02/03/2020

Outline

Introduction
Short History of Hardware Failures
Design and Verification Process

Functional Verification
Circuit Models
Linear Time Logic (LTL)
Computation Tree Logic (CTL)
Model Checking

Equivalence Checking
Problem Formulation
Boolean Satisfiability

30/42 SE767 Ulrich Kühne 02/03/2020

Equivalence Checking

Specification

Electr. System Lvl.

Transaction Lvl.

Register Transfer Lvl.

Netlist

Layout

Chip

Equiv. Checking
Model Checking

High Lvl. Synth.

Conf. Checking

NLP TechniquesModel Driven Eng.

Performance Evaluation

31/42 SE767 Ulrich Kühne 02/03/2020

Equivalence Checking

Hardware synthesis is complex
Aggressive optimization
Automatic pipelining, retiming, . . .
Technology mapping
Tools are closed source
Does the netlist do what we think it does?

RTL

Netlist

≈?

32/42 SE767 Ulrich Kühne 02/03/2020

Miter Structure

C
a
b
c

C′

•

•

•

≡ 0?

33/42 SE767 Ulrich Kühne 02/03/2020

Boolean Satisfiability (SAT)

SAT Problem
Given a Boolean function f : {0,1}n → {0,1} (in conjunctive
normal form), is there an assignment X ∈ {0,1}n, such that
f (X) = 1?

Conjunctive Normal Form

A Boolean formula over variables X = {x0 . . . xn} is in
conjunctive normal form if it is a conjunction of clauses
(l1,1 ∨ l1,2 ∨ · · · ∨ l1,m0) ∧ · · · ∧ (lk ,1 ∨ · · · ∨ lk ,mk). A clause is a
disjunction of literals l = xi or l = ¬xi for some xi ∈ X .

NP-complete problem [Cook, 1971]

34/42 SE767 Ulrich Kühne 02/03/2020

SAT-Based Equivalence Checking

C

C′
≡ 1

Problem

CNF

SAT Solver

UNSAT

SAT

Counterexample

35/42 SE767 Ulrich Kühne 02/03/2020

SAT-Based Equivalence Checking

C

C′
≡ 1

Problem

CNF

SAT Solver

UNSAT

SAT

Counterexample

Problem

Encoding

35/42 SE767 Ulrich Kühne 02/03/2020

Summary Equivalence Checking and SAT

Verifying correctness of hardware synthesis
Separation of verification problem and decision engine
Many more applications in hardware & software verification
Convenient and standardized APIs for ease of use
Active field of research

36/42 SE767 Ulrich Kühne 02/03/2020

References I

Bentley, B. (2005).
Validating a modern microprocessor.
In Etessami, K. and Rajamani, S., editors, Computer Aided Verification, volume
3576 of Lecture Notes in Computer Science, pages 2–4. Springer Berlin
Heidelberg.

Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., and Tacchella, A. (2002).
NuSMV Version 2: An OpenSource Tool for Symbolic Model Checking.
In Proc. International Conference on Computer-Aided Verification (CAV 2002),
volume 2404 of LNCS, Copenhagen, Denmark. Springer.

Cook, S. (1971).
The complexity of theorem proving procedures.
In 3. ACM Symposium on Theory of Computing, pages 151–158.

Davis, M., Logemann, G., and Loveland, D. (1962).
A machine program for theorem-proving.
Commun. ACM, 5(7):394–397.

37/42 SE767 Ulrich Kühne 02/03/2020

References II

Silva, J. a. P. M. and Sakallah, K. A. (1996).
Grasp – a new search algorithm for satisfiability.
In Proceedings of the 1996 IEEE/ACM International Conference on
Computer-aided Design, ICCAD ’96, pages 220–227, Washington, DC, USA.
IEEE Computer Society.

38/42 SE767 Ulrich Kühne 02/03/2020

	Introduction
	Short History of Hardware Failures
	Design and Verification Process

	Functional Verification
	Circuit Models
	Linear Time Logic (LTL)
	Computation Tree Logic (CTL)
	Model Checking

	Equivalence Checking
	Problem Formulation
	Boolean Satisfiability

	Appendix

