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Motivation

[Source: www.elektormagazine.com/articles/moores-law]
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Motivation

[ CC© photo by mark.sze ]

Transistor count of > 3 billion

Gate level models are huge
Big designer teams (several hundreds)
Big correctness issues
Late bugs are extremely expensive
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Motivation

The First Bug (1947)

[ Photo: U.S. Naval Historical Center ]
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Motivation
The Pentium FDIV Bug (1994)
let x = 4195835, y = 3145727 ⇒ x − x

y · y = 256
Bug in floating point unit⇒ $ 450 Mio. loss for Intel

820 Chipset MTH Bug (2000)

Error in memory translator hub

Recall of around 1 Mio. motherboards
$ 253 Mio. financial loss

Intel i6/i7 (Skylake) Hyperthreading Bug (2017)

Specific operating conditions cause unpredictable behavior

Found by Linux/OCaml developers
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Hardware Design Flow
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Hardware Verification Flow
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Transaction Lvl.

Register Transfer Lvl.

Netlist

Layout

Chip

Equiv. Checking

Diagnosis

ATPG

Coverage

Robustness

Debugging

Model Checking

High Lvl. Synth.

Conf. Checking

NLP TechniquesModel Driven Eng.

Performance Evaluation

9/42 SE767 Ulrich Kühne 02/03/2020



Design Gap – Verification Gap
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Functional Verification

Dynamic verification (= simulation)
still standard technology
Pentium 4 overall simulated cycles < one minute
at operation speed [Bentley, 2005]
Full coverage is infeasible
Increasing use of formal methods
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Sequential Circuit Model

Memory

I O
n m

k k
δ

λ

Mealy Machine:

M = (I,O,S,S0, δ, λ)

δ : S × I → S
λ : S × I → O
S0 ⊆ S

I = {0,1}n
O = {0,1}m
S = {0,1}k
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From Verilog to Mealy Machine

module count(CLK, EN, CLR,
S0, S1, S2, V);

input CLK, EN, CLR;
output reg S0, S1, S2;
output V;

assign V = S0 & S1 & S2 &
!CLR & EN;

always @(posedge CLK) begin
if (CLR)
{S2, S1, S0} <= 0;

else if (EN)
{S2, S1, S0}

<= {S2, S1, S0} + 1;
end

endmodule // count
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What do we want to verify?

Safety
Something bad will never happen, e.g.
“The stack pointer will never overflow”
“The traffic lights will never be green at the same time”

Liveness
Something good will eventually happen, e.g.
“Every request will be granted”
“The cache and the main memory will eventually be consistent”
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How to specify such properties?

Temporal logic =
propositional logic + time
Discrete vs. continuous time
Linear time view
Branching time view

CTL∗

LTL CTL
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The Linear Time View

Computation paths

π0: 000 001 010 011 . . .

π1: 000 001 000 001 . . .

π2: 000 001 010 000 . . .

. . .
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Linear Time Logic (LTL)

p holds (in the initial state) p . . . p

p holds in the next state p . . . X p

p holds in the future p . . . F p

p holds globally p p p p . . . G p

p holds until q p p q . . . p U q
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Linear Time Logic (LTL)

An LTL formula over propositional variables V has the form

LTL ::= p, where p ∈ V
| ¬ϕ
| ϕ ∧ ψ
| Xϕ
| Fϕ
| Gϕ
| ϕ Uψ, where ϕ, ψ ∈ LTL.
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Branching Time View

Computation Tree
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Computation Tree Logic (CTL)

Some property p holds
(in the initial state)

p

p

p holds in
some next state

p

EX p

path
quantifier

next
operator

p holds in
all next states

p p

AX p
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Further Modalities

p holds in some
future state

p

EF p

p holds eventually

p

p p

AF p

p holds globally
on some path

p

p

p

EG p

p holds globally
on all paths

p

p p

p p p p

AG p
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Until Modalities

On some path, q holds
until p holds

q

q

p

E(p U q)

On all paths, q holds
until p holds

q

p q

p p

A(p U q)
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Computation Tree Logic (CTL)

A CTL formula over propositional variables V has the form

CTL ::= p, where p ∈ V
| ϕ ∧ ψ | ¬ϕ
| EX ϕ | AX ϕ
| EF ϕ | AF ϕ
| EG ϕ | AG ϕ
| E(ϕ U ψ) | A(ϕ U ψ), where ϕ, ψ ∈ CTL
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What do we want to verify?

Safety
“The stack pointer will never overflow” AG (sp < 4096)

“The traffic lights will never be green at
the same time”

¬EF (tl1 ∧ tl2)

Liveness
“Every request will be granted” AG (req→ AF gnt)

“The cache and the main memory
will eventually be consistent”

AF (memi = cachei)

25/42 SE767 Ulrich Kühne 02/03/2020



Model Checking

Model Checking

Given a Mealy MachineM and a CTL formula ϕ,
check ifM |= ϕ.

How do we do this?

1. Compute all states in which ϕ holds:
τ(ϕ) = {s ∈ S | M, s |= ϕ}

2. Check if the initial states are a subset of those states:
S0 \ τ(ϕ) = ∅
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Example
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Example

p

p p

p

p p

p

p p

p

p p

p

p p

Expansion rules:

EF ϕ = ϕ ∨ EX EF ϕ
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Example
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EF ϕ = ϕ ∨ EX EF ϕ
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Fixed Point Algorithm for EF p

..
.

. .
.

p

S0 = p
S1 = p ∪ EX p
S2 = p ∪ EX p ∪ EX EX p
. . .
Sn = p ∪

n⋃
i=1

EXip = Sn−1

⇒ Sn = τ(EF p)
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Model Checking

Complexity depends heavily
on state space
Need for efficient data structures
State space explosion still a problem
Works for small to medium
(or very regular) systems
Popular tool: NuSMV
[Cimatti et al., 2002]
Ongoing research
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. . . . . .
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Equivalence Checking

Hardware synthesis is complex
Aggressive optimization
Automatic pipelining, retiming, . . .
Technology mapping
Tools are closed source
Does the netlist do what we think it does?

RTL

Netlist

≈?
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Miter Structure

C
a
b
c

C′

•

•

•

≡ 0?
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Boolean Satisfiability (SAT)

SAT Problem
Given a Boolean function f : {0,1}n → {0,1} (in conjunctive
normal form), is there an assignment X ∈ {0,1}n, such that
f (X ) = 1?

Conjunctive Normal Form

A Boolean formula over variables X = {x0 . . . xn} is in
conjunctive normal form if it is a conjunction of clauses
(l1,1 ∨ l1,2 ∨ · · · ∨ l1,m0) ∧ · · · ∧ (lk ,1 ∨ · · · ∨ lk ,mk ). A clause is a
disjunction of literals l = xi or l = ¬xi for some xi ∈ X .

NP-complete problem [Cook, 1971]
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SAT-Based Equivalence Checking

C

C′
≡ 1

Problem

CNF

SAT Solver

UNSAT

SAT

Counterexample
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SAT-Based Equivalence Checking

C

C′
≡ 1

Problem

CNF

SAT Solver

UNSAT

SAT

Counterexample

Problem

Encoding
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Summary Equivalence Checking and SAT

Verifying correctness of hardware synthesis
Separation of verification problem and decision engine
Many more applications in hardware & software verification
Convenient and standardized APIs for ease of use
Active field of research
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