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B Motivation

Transistor count of > 3 billion

Gate level models are huge
Big designer teams (several hundreds)
Big correctness issues

[ @ photo by marksze Late bugs are extremely expensive
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B Motivation

The First Bug (1947)
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B votivation
The Pentium FDIV Bug (1994)
let x — 4195835, y — 3145727 = x—%.y— 200

B Bug in floating point unit = $ 450 Mio. loss for Intel

820 Chipset MTH Bug (2000)

B Error in memory translator hub
B Recall of around 1 Mio. motherboards

m $ 253 Mio. financial loss

Intel i6/i7 (Skylake) Hyperthreading Bug (2017)

B Specific operating conditions cause unpredictable behavior
B Found by Linux/OCaml developers
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https://www.theregister.co.uk/2017/06/25/intel_skylake_kaby_lake_hyperthreading/

B Hardware Design Flow

Specification Natural language
Reg. eng.,

modeling

) Electr. System Lvl. UML, SysML, Matlab, ...
Design Space

expl., partitioning

Transaction Lvl. C, C++, SystemC, ...

Implementation,
refinement

Register Transfer Lvl. > VHDL, Verilog, . ..

Synthesis
Gate models
Place & route
Geometric, electr. models
Manufacturing
Silicon
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B Hardware Verification Flow

Specification
Model Driven Eng. NLP Techniques

Electr. System Lvl.

- Diagnosis
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Performance Evaluation

Transaction Luvl.

Debugging




I Design Gap - Verification Gap

manufacture

design

verify

# Transistors

Years

TELECOM

ParisTech



B outline

Functional Verification
Circuit Models
Linear Time Logic (LTL)
Computation Tree Logic (CTL)
Model Checking
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I Functional Verification

B Dynamic verification (= simulation)
still standard technology

B Pentium 4 overall simulated cycles < one minute
at operation speed [Bentley, 2005]

® Full coverage is infeasible
B |ncreasing use of formal methods
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I Scquential Circuit Model

Mealy Machine:
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I rrom Verilog to Mealy Machine

module count(CLK, EN, CLR,
S0, S1, 82, V);

input CLK, EN, CLR;
output reg SO0, S1, S2;
output V;

assign V= S0 & S1 & S2 &
ICLR & EN;

always @(posedge CLK) begin
if (CLR)
{S2, 81, S0} <= 0;
else if (EN)
{S2, S1, S0}
<={S2, S1, S0} + 1;
end
endmodule // count
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I \What do we want to verify?

Safety

Something bad will never happen, e.g.

“The stack pointer will never overflow”

“The traffic lights will never be green at the same time”

Liveness

Something good will eventually happen, e.g.

“Every request will be granted”

“The cache and the main memory will eventually be consistent”
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I How to specify such properties?

CTL*
B Temporal logic =

propositional logic + time
m Discrete vs. continuous time
B Linear time view
B Branching time view
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BB The Linear Time View

Computation paths
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I Linear Time Logic (LTL)

p holds (in the initial state) (P)—( —(O—()— -
p holds in the next state (O )}—@)—(O)—()— -
p holds in the future O—O—O—@)y— -
p holds globally w e

p holds until (P—(P) )

Fp
Gp

pUq
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I Linear Time Logic (LTL)

An LTL formula over propositional variables V has the form

LTL := p, where p € V

4

|
|
| X
}
\

o Uy, where ¢, € LTL.
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N Branching Time View

Computation Tree
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I Ccomputation Tree Logic (CTL)

Some property p holds p holds in p holds in
(in the initial state) some next state all next states
EXp AX p
path next
quantifier operator
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I Further Modalities

p holds globally p holds globally
on some path on all paths

p holds in some
future state

p holds eventually
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I Until Modalities

On some path, g holds On all paths, g holds
until p holds until p holds
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I Ccomputation Tree Logic (CTL)

A CTL formula over propositional variables V has the form

CTL:= p, wherepeV

| oAY |

| EX¢p | AXop

| EF¢p | AFg

| EGy | AGy

| E(eUv) | A(pUr), where ¢ € CTL
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I \What do we want to verify?

Safety
“The stack pointer will never overflow” AG (sp < 4096)

“The traffic lights will never be green at —EF (tly Atlo)
the same time”

Liveness
“Every request will be granted” AG (req — AF gnt)

“The cache and the main memory AF (mem; = cache;)
will eventually be consistent”
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B Model Checking

Model Checking

Given a Mealy Machine M and a CTL formula ¢,
check if M = .

How do we do this?

1. Compute all states in which ¢ holds:
T(p) ={s€S[M,s|p}

2. Check if the initial states are a subset of those states:
So\7(p) =92
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N Example

So Sq So 7'(
\O m i@
S3 S4 S5

p) = {S2,54,55}
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N Example

\Eo> S1 So 7(p) = {s2, 54, 55}
M
p T(EX p) = {s1, 52, 53, S5}

S3 S4 S5
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N Example

\Eo> S1 So 7(p) = {s2, 54, 55}
M
p T(EX p) = {s1, 52, 53, S5}

T(AX p) = {51, 52, S5}

S3 S4 S5
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N Example

\Eo> S1 So 7(p) = {s2, 54, 55}
M
p T(EX p) = {s1, 52, 53, S5}

T(AX p) = {51, 52, S5}

..Q T(EF p) = {2, 84, S5}

S3 S4 Ss U {sy,83} U {sp}

Expansion rules:
EFop=¢ vV EXEFp
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N Example

\Eo> S1 So 7(p) = {s2, 54, 55}
Y
p T(EX p) = {s1, 52, 53, S5}

T(AX p) = {51, 52, S5}

..Q T(EF p) = {2, 84, S5}

S3 S4 Ss U {sy,83} U {sp}

Expansion rules: 7(AG p) = {S2, 54,55} N {Sp, S5}
EFop=¢ vV EXEFp
AGp=p N AXAG ¢
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I Fixed Point Algorithm for EF p

So=p
Si=pUEXp
S =pUEXpUEXEXp

.
Sy=pU JEXp=S,
i=1

= Sn = T(EF p)
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B Model Checking

B Complexity depends heavily

on state space /99\
® Need for efficient data structures

B State space explosion still a problem /\0'? /0\?\

® Works for small to medium 00o) o) 000} 0ot o1
(or very regular) systems

B Popular tool: NuSMV / /l\ / /J\ \
[Cimatti et al., 2002] . “ e

B Ongoing research
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B outline

Equivalence Checking
Problem Formulation
Boolean Satisfiability
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I cquivalence Checking

Specification
Model Driven Eng. NLP Techniques

Electr. System Lvl.
Conf. Checking
oce| G FegiterTarster ) i o>

Performance Evaluation

Transaction Lvl.

Layout

Chip
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I cquivalence Checking

B Hardware synthesis is complex

B Aggressive optimization

B Automatic pipelining, retiming, ...

B Technology mapping

B Tools are closed source

B Does the netlist do what we think it does?
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I iter Structure

-
:jD%EO?
e
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I Boolean Satisfiability (SAT)

SAT Problem

Given a Boolean function f : {0,1}" — {0, 1} (in conjunctive
normal form), is there an assignment X € {0, 1}", such that
f(X)=1?

Conjunctive Normal Form

A Boolean formula over variables X = {xg ... Xp} isin
conjunctive normal form if it is a conjunction of clauses

(/1,1 \Y /172 VeV /1,m0) VANERIAN (/k,1 VooV lk,mk)- A clause is a
disjunction of literals I = x; or | = —x; for some x; € X.

B NP-complete problem [Cook, 1971]
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I SAT-Based Equivalence Checking
Problem Counterexample

SAT Solver

CNF
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I SAT-Based Equivalence Checking

Problem

Encoding
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N Summary Equivalence Checking and SAT

m Verifying correctness of hardware synthesis

B Separation of verification problem and decision engine

B Many more applications in hardware & software verification
® Convenient and standardized APls for ease of use

B Active field of research
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