
HDL et SystemVerilog
Introduction aux langages de description du
matériel

Tarik Graba
tarik.graba@telecom-paristech.fr
Année scolaire 2019/2020

Plan
Les langages HDL

Les niveaux de représentation
La représentation RTL

SystemVerilog
Généralités
Les nœuds
Représenter la structure
Représenter le comportement
Structures du langage
Les types de données

Exemples
Logique combinatoire
Logique séquentielle synchrone

2/81 MS-Systèmes Embarqués Tarik Graba 2019/2020

Représentation de fonctions numériques

Schéma d’une fonction booléenne

A

A

Inverseur

3/81 MS-Systèmes Embarqués Tarik Graba 2019/2020

Représentation de fonctions numériques

Schéma des transistors

A

A

Inverseur CMOS

4/81 MS-Systèmes Embarqués Tarik Graba 2019/2020

Représentation de fonctions numériques

Dessin des couches physiques

Inverseur CMOS intégré

5/81 MS-Systèmes Embarqués Tarik Graba 2019/2020

Représentation de fonctions numériques

Et dans le FPGA?

Programmer des cellules

6/81 MS-Systèmes Embarqués Tarik Graba 2019/2020

Représentation de fonctions numériques

Comment représenter?

Dessins/schémas?
• Pas facile…

Équations?
• Comment représenter la structure physique?
• Comment représenter le temps?

Autres?

Quel niveau de représentation?

Logique? Structurel ? Physique?

7/81 MS-Systèmes Embarqués Tarik Graba 2019/2020

HDL

HDL
HDL : Harware Description Language.
Langage informatique de description du matériel.

8/81 MS-Systèmes Embarqués Tarik Graba 2019/2020

HDL

HDL
Ces langages doivent permettre deux choses

Concevoir/Réaliser
• Implémenter
• Fabriquer

Modéliser/Simuler
• Tester la fonctionnalité

9/81 MS-Systèmes Embarqués Tarik Graba 2019/2020

HDL : Une représentation textuelle
Qui permet :

de représenter la structure

L’inverseur

not(nA, A)
une porte logique avec une entrée et une sortie

10/81 MS-Systèmes Embarqués Tarik Graba 2019/2020

HDL : Une représentation textuelle
Qui permet :

de représenter son comportement

L’inverseur

nA = !A
son comportement sous forme d’une équation

10/81 MS-Systèmes Embarqués Tarik Graba 2019/2020

HDL : Une représentation textuelle
Qui permet :

de représenter son comportement

L’inverseur

if(A) nA = 0 else nA = 1
son comportement par une séquence (fonctionnellement)

10/81 MS-Systèmes Embarqués Tarik Graba 2019/2020

HDL : Les plus

Automatisation
EDA : Electronic Design Automation.
Conception électronique automatisée.
Utilisation de l’outil informatique pour générer les autres représentations.

Abstraction et productivité

S’abstraire de la cible technologique.
Utiliser des représentations de plus haut niveau.

• Ne pas se limiter à des équations logiques.

11/81 MS-Systèmes Embarqués Tarik Graba 2019/2020

Plan
Les langages HDL

Les niveaux de représentation
La représentation RTL

SystemVerilog
Généralités
Les nœuds
Représenter la structure
Représenter le comportement
Structures du langage
Les types de données

Exemples
Logique combinatoire
Logique séquentielle synchrone

12/81 MS-Systèmes Embarqués Tarik Graba 2019/2020

Description structurelle

Des composants
Des connexions
On parle de “netlist”
…
Conception par assemblage

μP, mémoire

ALU, Registres

Portes logiques

Transistors

détails

13/81 MS-Systèmes Embarqués Tarik Graba 2019/2020

Description physique

Les matériaux
Les dimensions
…
Nécessaire pour la
fabrication

Carte

Composants

Cellules standards

Masques techno.

détails

14/81 MS-Systèmes Embarqués Tarik Graba 2019/2020

Description comportementale

Décrire la fonction réalisée.
…
C’est ce qui nous intéresse
ici !

Algorithmes

États et transitions

Logique booléenne

Interrupteurs

détails

15/81 MS-Systèmes Embarqués Tarik Graba 2019/2020

Description comportementale

Décrire la fonction réalisée.
…
C’est ce qui nous intéresse
ici !

Algorithmes

RTL

Logique booléenne

Interrupteurs

détails

15/81 MS-Systèmes Embarqués Tarik Graba 2019/2020

Niveaux de description
Équivalence mais différentes finalités

Comportemental

Physique

Structurel

Algorithmes

RTL

Logique booléenne

Interrupteurs

μP, mémoire

ALU, registres

Portes logiques

Transistors

Masques

Cellules stdrs.

Composants

Cartes

Utilisation d’outils pour automatiser le passage d’une représentation à l’autre.

16/81 MS-Systèmes Embarqués Tarik Graba 2019/2020

Plan
Les langages HDL

Les niveaux de représentation
La représentation RTL

SystemVerilog
Généralités
Les nœuds
Représenter la structure
Représenter le comportement
Structures du langage
Les types de données

Exemples
Logique combinatoire
Logique séquentielle synchrone

17/81 MS-Systèmes Embarqués Tarik Graba 2019/2020

Le “RTL”
Représentation des états en logique synchrone

RTL
RTL : Register Transfer Level.
Le niveau « transfert entre registres ».

18/81 MS-Systèmes Embarqués Tarik Graba 2019/2020

Le “RTL”
Représentation des états en logique synchrone

RegistresLogique combinatoire

Horloge

Un registre (ou une bascule) est un élément mémorisant dont le changement d’état est déclenché par un signal
d’horloge.

19/81 MS-Systèmes Embarqués Tarik Graba 2019/2020

Le “RTL”
Représentation des états en logique synchrone

RegistresLogique combinatoire

Horloge

Une horloge explicite !

Il faut décrire ce qui ce passe à chaque coup
d’horloge.

Les algorithmes doivent être transformés pour exprimer ce qui se passe à chaque cycle d’horloge.

20/81 MS-Systèmes Embarqués Tarik Graba 2019/2020

Le “RTL”
Représentation des états en logique synchrone

1- L’algorithme

int i;

for (i = 0; i< 10; i++)
{

...
}

...
// puis on utlise i

pas de notion de temps ou d’horloge

21/81 MS-Systèmes Embarqués Tarik Graba 2019/2020

Le “RTL”
Représentation des états en logique synchrone

2- L’algorithme + hypothèses d’architecture

int i; // <- valeur signée sur 32 bits

for (i = 0; i< 10; i++) // <--- une itération par cycle
{

...
}

...
// puis on utlise i // <- et ainsi de suite

Faire des hypothèses sur l’architecture

21/81 MS-Systèmes Embarqués Tarik Graba 2019/2020

Le “RTL”
Représentation des états en logique synchrone

2- Attribuer des ressources
Un registre pour stocker i .

• Qui change à chaque front d’horloge.
• Suffisamment grand (32 ou 4 bits?)

Un additionneur (ou incrémenteur).
Un comparateur.

21/81 MS-Systèmes Embarqués Tarik Graba 2019/2020

Le “RTL”
Représentation des états en logique synchrone

2- Description RTL

i[32]
sum[33]
cond[1]

cond = i<10
sum = i + 1
@(clk) i = sum[31:0]

// ou plus simplement "@(clk) i = i + 1"

Décrire la logique combinatoire.
Décrire l’évolution des registres.

21/81 MS-Systèmes Embarqués Tarik Graba 2019/2020

Le “RTL”
Représentation des états en logique synchrone

2- Synthèse automatique

+1

==10

0

1

i
32

21/81 MS-Systèmes Embarqués Tarik Graba 2019/2020

Pourquoi le niveau RTL?

Suffisamment haut niveau pour représenter “simplement” tout système
numérique synchrone.

• chemin de données
• contrôle, MAE
• …

Abstraction de la technologie.
Il existe des outils automatiques pour passer à des niveaux plus bas

• Synthèse logique puis physique.

22/81 MS-Systèmes Embarqués Tarik Graba 2019/2020

Plan
Les langages HDL

Les niveaux de représentation
La représentation RTL

SystemVerilog
Généralités
Les nœuds
Représenter la structure
Représenter le comportement
Structures du langage
Les types de données

Exemples
Logique combinatoire
Logique séquentielle synchrone

23/81 MS-Systèmes Embarqués Tarik Graba 2019/2020

Plan
Les langages HDL

Les niveaux de représentation
La représentation RTL

SystemVerilog
Généralités
Les nœuds
Représenter la structure
Représenter le comportement
Structures du langage
Les types de données

Exemples
Logique combinatoire
Logique séquentielle synchrone

24/81 MS-Systèmes Embarqués Tarik Graba 2019/2020

Historique

1990: Cadence Design System rend public Verilog HDL.
1995: devient la standard IEEE 1364-1995.
2001: amélioration IEEE 1364-2001.
2005: amélioration IEEE 1364-2005.
2005: l’extension SystemVerilog est standardisée IEEE 1800-2005
2009: standard unique SystemVerilog IEEE 1800-2009
2012: dernière révision du standard IEEE 1800-2012

25/81 MS-Systèmes Embarqués Tarik Graba 2019/2020

SystemVerilog

HDVL
HDVL : Hardware Description and Verification Language
Langage de description et de vérification du matériel.

Ce cours ne couvre pas les aspects avancés de la vérification.

26/81 MS-Systèmes Embarqués Tarik Graba 2019/2020

Syntaxe

Fichiers texte d’extension .sv

• (.v) pour le Verilog
Les commentaires sont les même qu’en C

• // pour commenter une ligne.
• /* ... */ pour commenter un bloc.

Les instructions se terminent par un point-virgule (;)
un bloc est délimité par begin ... end

27/81 MS-Systèmes Embarqués Tarik Graba 2019/2020

Oui c’est un langage informatique …

Fichier texte hello.sv

module foo ();

initial
begin

// $display est une tache système
$display("hello world");

end

endmodule

vlib work

vlog hello.sv

vsim -c foo

qverilog hello.sv

28/81 MS-Systèmes Embarqués Tarik Graba 2019/2020

Plan
Les langages HDL

Les niveaux de représentation
La représentation RTL

SystemVerilog
Généralités
Les nœuds
Représenter la structure
Représenter le comportement
Structures du langage
Les types de données

Exemples
Logique combinatoire
Logique séquentielle synchrone

29/81 MS-Systèmes Embarqués Tarik Graba 2019/2020

Les valeurs logiques

Pour représenter les différents états dans un circuit électronique, en
SystemVerilog on utilise les 4 états suivant :

0 : l’état logique 0/faux.
1 : l’état logique 1/vrai.

x/X : l’état inconnu ou conflit.
z/Z : haute impédance (nœud flottant).

30/81 MS-Systèmes Embarqués Tarik Graba 2019/2020

Les valeurs logiques

Schématiquement, pour un nœud :

vdd

n

gnd

vdd

n

gnd

vdd

n

gnd

vdd

n

gnd

0 1 Z X

L’état initial, inconnu, d’un registre sera aussi X .

31/81 MS-Systèmes Embarqués Tarik Graba 2019/2020

Les nœuds

Les nœuds servent à décrire les interconnexions entre différents éléments d’une
représentation structurelle.
On utilise le type wire .

wire a; // déclare un noeud, a, sur 1 bit
wire b, c, d; // déclare trois noeuds, b, c, et d, sur 1 bit chacun
wire [7:0] data; // déclare un bus de 8 noeuds data.

Les nœuds (wire) ne sont pas modifiables dans un processus.

32/81 MS-Systèmes Embarqués Tarik Graba 2019/2020

Les bus

Des nœuds ou des variables logiques peuvent être regroupés dans un bus
(vecteur de plusieurs bits).

wire [7:0] A ; // déclare un vecteur de 8 bits de type wire.
wire [1:8] B ; // déclare un vecteur de 8 bits de type wire.

... A[4] ... ; // le bit n° 4 de A

... B[0] ... ; // Attention le bit 0 n'existe pas

... A[7:4] ... ; // Le demi-octet de poids fort de A

... B[1:4] ... ; // Le demi-octet de poids fort de B

... A[0:3] ... ; // Erreur ne correspond pas à l'ordre de déclaration

... A[5 -: 4] ... ; // 4 bits de A à partir de la position 5 (5,4,3,2)

... B[5 +: 4] ... ; // 4 bits de B à partir de la position 5 (5,6,7,8)

// Plus de détails section 11.5.1 de la norme
// "Vector bit-select and part-select addressing"

33/81 MS-Systèmes Embarqués Tarik Graba 2019/2020

Plan
Les langages HDL

Les niveaux de représentation
La représentation RTL

SystemVerilog
Généralités
Les nœuds
Représenter la structure
Représenter le comportement
Structures du langage
Les types de données

Exemples
Logique combinatoire
Logique séquentielle synchrone

34/81 MS-Systèmes Embarqués Tarik Graba 2019/2020

Le module

L’élément de base de tout code SystemVerilog.
Il représente le circuit ou l’un de ses sous blocs.
Tout code SystemeVerilog décrivant un circuit doit appartenir à un module.

35/81 MS-Systèmes Embarqués Tarik Graba 2019/2020

Le module

Mon_module
a

b

c

d

Un module doit avoir :
Un nom pour l’identifier.
Une interface décrivant ses entrées
et sorties.
Une description.

36/81 MS-Systèmes Embarqués Tarik Graba 2019/2020

Le module
Syntaxe

Commence par module et se termine par endmodule

Mon_module
a

b

c

d

module Mon_module (/* interface */);

// description

endmodule

37/81 MS-Systèmes Embarqués Tarik Graba 2019/2020

Le module
L’interface

Deux façons de faire :

// style verilog 2001
module mon_module (input a,

input [7:0] b,
output [7:0] c,
output logic d
);

// description
....

endmodule

// style verilog 95
module mon_module (a,b, c, d);

input a;
input [7:0] b;
output [7:0] c;
output d;
logic d;

//description
....

endmodule

nb. Les input / output sont par défaut implicitement des wire .

38/81 MS-Systèmes Embarqués Tarik Graba 2019/2020

Les instances

On peut décrire un module structurellement en :
instanciant des sous modules.
définissant les interconnexions

module top (
input a, b,
output c1,d1,
output c2,d2
);

// interconnexions
wire c0, d0;

// structure
mon_module inst0 (.a(a), .b(b),

.c(c0), .d(d0));
mon_module inst1 (.a(c0), .b(d0),

.c(c1), .d(d1));
mon_module inst2 (.a(c0), .b(d0),

.c(c2), .d(d2));

endmodule

inst0
a

b

c0

d0

c1

d1

c2

d2top

inst1

inst2

a

b

c

d

a

b

c

d

a

b

c

d

39/81 MS-Systèmes Embarqués Tarik Graba 2019/2020

Pourquoi faire du structurel?

Pour découper une module complexe en sous modules plus simple.
• Chemin de données/Contrôle.
• Découpage fonctionnel

Pour réutiliser un module existant.
• qu’on a conçu.
• qu’on nous a donné.

Pour se partager le travail en équipe.
• Comme pour un développement logiciel.

40/81 MS-Systèmes Embarqués Tarik Graba 2019/2020

Plan
Les langages HDL

Les niveaux de représentation
La représentation RTL

SystemVerilog
Généralités
Les nœuds
Représenter la structure
Représenter le comportement
Structures du langage
Les types de données

Exemples
Logique combinatoire
Logique séquentielle synchrone

41/81 MS-Systèmes Embarqués Tarik Graba 2019/2020

Les affectations continues

On utilise des affectations continues pour représenter de la logique combinatoire.

Exemple

module mux (
input a,b,s,
output o
);

// affectation continue
assign o = s? a : b;

endmodule

o change si a, b ou s change.

On ne peut modéliser que de la logique combinatoire avec les affectations continues.

42/81 MS-Systèmes Embarqués Tarik Graba 2019/2020

Les processus

always : Permet de décrire de la logique combinatoire ou sequentielle.

initial : Réservé à la simulation.

Les instructions dans un processus sont exécutées les unes après les autres.

Les processus sont exécutés en ”parallèle”.

On ne maitrise pas l’ordre d’exécution des processus.

43/81 MS-Systèmes Embarqués Tarik Graba 2019/2020

Les variables

Dans un processus on ne peut pas modifier de nœuds. On utilise des variables.
En SystemVerilog une variable est de type logic . Le type reg est gardé par
compatibilité avec Verilog.

logic a; // déclare une variable, a, sur 1 bit
logic b, c, d; // déclare trois variables, b, c, et d, sur 1 bit chacun
logic [7:0] result; // déclare un mot de 8 bits.

44/81 MS-Systèmes Embarqués Tarik Graba 2019/2020

Les affectations

Deux types d’affectations possibles :
<= Affectation différée
= Affectation immédiate

Exemple

// a= 0, b=1, c=2
...

b <= a;
c <= b;

// à la prochaine synchro.
// explicite @/# ou implicite
// a=0, b=0, c=1

// a= 0, b=1, c=2
...

b = a;
c = b;

// à la prochaine instruction
// a=0, b=0, c=0

45/81 MS-Systèmes Embarqués Tarik Graba 2019/2020

La liste de sensibilité

La liste de sensibilité est la liste des signaux (nœuds et variables) dont la
modification déclenche un processus.

Exemple

module mux21(
input s,
input a, b ,
output logic o

);

always @(s,a,b)
if (s) o = a;
else o = b;

endmodule

a

b
o

 1

0

s

46/81 MS-Systèmes Embarqués Tarik Graba 2019/2020

La liste de sensibilité

On peut aussi préciser le type d’événement :
passsage de 0 à 1 (posedge)
passsage de 1 à 0 (negedge)

Exemple

module mux21(
input clk,
input d,
output logic q

);

always @(posedge clk)
q <= d;

endmodule

d

q

clk

47/81 MS-Systèmes Embarqués Tarik Graba 2019/2020

La liste de sensibilité
Importance

Une liste incomplète peut entrainer un comportement non désiré.

module mux21(
input s,
input a, b ,
output logic o

);

always @(a,b)
if (s) o = a;
else o = b;

endmodule

Si l’entrée s est la seule à changer
de valeur, la sortie o gardera sa
valeur.
Ce n’est plus un multiplexeur.

48/81 MS-Systèmes Embarqués Tarik Graba 2019/2020

La liste de sensibilité
Liste de sensibilité automatique

Pour éviter d’oublier des éléments de la liste de sensibilité, on peut utiliser la liste
de sensibilité automatique “ @* ”.

module mux21(
input s,
input a, b ,
output logic o

);

// équivalent à @(s,a,b)
always @(*)
if (s) o = a;
else o = b;

endmodule

La liste de sensibilité contient
automatiquement tous les signaux utilisés
(lus).

49/81 MS-Systèmes Embarqués Tarik Graba 2019/2020

Les affectations
Alors, différées ou immédiates?

Pour faire simple :
Logique combinatoire→ affectations immédiates (=)
Logique séquentielle→ affectations différées (<=)

50/81 MS-Systèmes Embarqués Tarik Graba 2019/2020

Les affectations
Alors, différées ou immédiates?

d q3q2q1

OK

always @(posedge clk)
q1 <= d;

always @(posedge clk)
q2 <= q1;

always @(posedge clk)
q3 <= q2;

PAS OK

always @(posedge clk)
q1 = d;

always @(posedge clk)
q2 = q1;

always @(posedge clk)
q3 = q2;

OK

always @(posedge clk)
begin

q1 <= d;
q2 <= q1;
q3 <= q2;

end

50/81 MS-Systèmes Embarqués Tarik Graba 2019/2020

Les affectations
Alors, différées ou immédiates?

Garantir que l’ordre d’exécution des processus, en simulation, ne change pas le résultat.
Les affectations peuvent être vues comme faites en parallèle.

OK

always @(posedge clk)
q1 <= d;

always @(posedge clk)
q2 <= q1;

always @(posedge clk)
q3 <= q2;

PAS OK

always @(posedge clk)
q1 = d;

always @(posedge clk)
q2 = q1;

always @(posedge clk)
q3 = q2;

OK

always @(posedge clk)
begin

q1 <= d;
q2 <= q1;
q3 <= q2;

end

50/81 MS-Systèmes Embarqués Tarik Graba 2019/2020

Spécialisation des processus

Pour que le designer précise son intention au moment où il écrit le code, trois
versions de always existent :

always_comb : pour décrire de la logique combinatoire.
always_ff : pour décrire de la logique séquentielle synchrone.
always_latch : pour décrire des latchs.

51/81 MS-Systèmes Embarqués Tarik Graba 2019/2020

Spécialisation des processus
always@* vs. always_comb

Comme always@* , always_comb définit aussi automatiquement la liste de
sensibilité.

Attention cependant, pour always_comb , sont exclues de cette liste :
Les variables qui sont modifiées dans le processus.
Les variables locales au processus.

52/81 MS-Systèmes Embarqués Tarik Graba 2019/2020

Plan
Les langages HDL

Les niveaux de représentation
La représentation RTL

SystemVerilog
Généralités
Les nœuds
Représenter la structure
Représenter le comportement
Structures du langage
Les types de données

Exemples
Logique combinatoire
Logique séquentielle synchrone

53/81 MS-Systèmes Embarqués Tarik Graba 2019/2020

Structures de contrôle
…dans un processus

On peut utiliser des structures de contrôle classiques :

de test (if , else , case)

de boucle (for , repeat , while , forever)

Des structures de synchronisation (pour la simulation) :

attendre un événement (@)
• Pour décrire du matériel ne peut être que dans la liste de sensibilité

attendre un temps (#)
• Exclusivement pour la simulation.

attendre un état (wait)
• Exclusivement pour la simulation.

54/81 MS-Systèmes Embarqués Tarik Graba 2019/2020

Les if

...
if (A == 0)

//<une instruction>
else

//<une autre>
...
if (A == 0)
begin

// plusieurs instructions
// ...

end

55/81 MS-Systèmes Embarqués Tarik Graba 2019/2020

Les case

int V;
...
case (V)
3 :

// unse instruction
4 : begin

// plusieurs instructions
...

end
default:

// Si aucun des cas prévus
endcase

56/81 MS-Systèmes Embarqués Tarik Graba 2019/2020

La synchronisation

...
// attandre un front montant de clk
@(posedge clk) ;
...
// attendre 10 ns
#10ns ;
// attendre 23 unités de temps
#23 ;
// attendre 10 font descendant de clk
repeat(10) @(negedge clk) ;

57/81 MS-Systèmes Embarqués Tarik Graba 2019/2020

Les opérateurs

Arithmétiques et logiques

+, *, -, /, **, ++, --

&, |, ^, &&, ||

>>, <<

>>>, <<<

Conditionnel
? :

Comparaison

==, != <,<=,>,>=

===, !==

Autres
concaténation : {}

duplication : {{}}

Plus de détails section “11.3 Operators” de la norme

58/81 MS-Systèmes Embarqués Tarik Graba 2019/2020

Plan
Les langages HDL

Les niveaux de représentation
La représentation RTL

SystemVerilog
Généralités
Les nœuds
Représenter la structure
Représenter le comportement
Structures du langage
Les types de données

Exemples
Logique combinatoire
Logique séquentielle synchrone

59/81 MS-Systèmes Embarqués Tarik Graba 2019/2020

Les types de données
Les valeurs binaires

Si on n’a pas besoin de l’état inconnu ou haute impédance on peut utiliser des
types à seulement 2 états.

Ils ont l’avantage de rendre les simulations plus rapides et de permettre l’interface
avec d’autres langages informatiques.

Mais ils ne permettent pas de vérifier si l’initialisation du système se fait
correctement.

60/81 MS-Systèmes Embarqués Tarik Graba 2019/2020

Les types

shortint type à 2 états, entier signé 16 bits

int type à 2 états, entier signé 32 bits

longint type à 2 états, entier signé 64 bits

byte type à 2 états, entier signé 8 bits ou caractère ASCII

bit type à 2 états, taille variable

logic type à 4 états, taille variable

reg type à 4 états, taille variable (≡logic)

integer type à 4 états, entier signé 32 bits

61/81 MS-Systèmes Embarqués Tarik Graba 2019/2020

Le Signe

Les entiers peuvent être interprétés comme signés ou non signés :

int unsigned A; // entier non signé sur 32bits
logic signed [7:0] B; // entier signé sur 8 bits

62/81 MS-Systèmes Embarqués Tarik Graba 2019/2020

Le Signe

shortint signé par défaut
int signé par défaut
longint signé par défaut
byte signé par défaut
bit non signé par défaut

logic non signé par défaut
reg non signé par défaut
integer signé par défaut

63/81 MS-Systèmes Embarqués Tarik Graba 2019/2020

Représentation des entiers

Représentation de la forme

[signe] [taille ' [s] base] <valeur>

22 // entier sur 32 bits
5'd22 // entier de 5bits en décimal
5'b10110 // entier de 5bits en binaire
5'b1_0110 // On peut mettre des _
5'h16 // entier de 5bits en héxadécimal
'd22 // entier d'une certaine taille en décimal

...

5'sd22 // entier sur 5 bits qui est interprété comme signé
// ici -10 !

6'sd22 // entier sur 6 bits qui est interprété comme signé
// ici +22 !

64/81 MS-Systèmes Embarqués Tarik Graba 2019/2020

Les tableaux

logic [7:0] A [0:255]; // Tableau de 256 mots de 8 bits
logic [7:0] B [256]; // Tableau de 256 mots de 8 bits
logic [7:0] C [0:7][0:7]; // Matrice 8x8 mots de 8 bits
...
logic [31:0] V [0:255]; // Tableau de 256 mots de 32 bits

logic [3:0][7:0] W [0:255]; // Tableau de 256 mots de 32 bits
// chaque mot est composé de 4 octets

W[0] ... // le 1e mot de 32 bits
W[0][3] ... // l'octe de poids fort de W[0]
W[0][3][7] ... // le bit poids fort de W[0]

Les indices à gauche sont dits pacqués (ceux des bus)
Les indices à droite sont dits non pacqués (tableaux)

65/81 MS-Systèmes Embarqués Tarik Graba 2019/2020

Les tableaux
Affectations pacquées/non pacquées

logic [7:0] X [0:3];
...
// affecter des élément de la table
X = '{2,5,6,7};

logic [3:0][7:0] Y;
...
// Concaténer des valeurs
Y = {8'd1,8'd2,8'd2,8'd2};

Notez la subtile différence entre l’opérateur de concaténation et l’opérateur pour
l’affectation des valeurs d’un tableau.

66/81 MS-Systèmes Embarqués Tarik Graba 2019/2020

Les énumérations

SystemVerilog dispose de types énumérés. On les déclare en utilisant le mot clé
enum .

// Sans préciser le type les valeur prises sont des int
// Par défaut rouge=0, vert=1, bleu=2
enum {rouge, vert, bleu} couleur;
...
couleur = vert;
couleur = 3; /* ERREUR !*/
...
if(couleur == vert)
...

// Sur 2 bits 4 valeurs possibles
enum logic[1:0] {HAUT,BAS,GAUCHE,DROITE} dir;

Contrairement au C, les enum sont fortement typées.

67/81 MS-Systèmes Embarqués Tarik Graba 2019/2020

Les types personnalisés

Le mot clef typedef permet de définir des types personnalisés.

typedef logic[31:0] word;
word a, b;

Il n’est cependant pas toujours obligatoire.
Par exemple avec une enum .

typedef enum {T, F} bool;

enum {IDLE, START, GO, END} state_t;
state_t state, n_state;

68/81 MS-Systèmes Embarqués Tarik Graba 2019/2020

Les structures et les unions

// définition de la structure vec
struct

{
logic [3:0] x;
logic [3:0] y;

}
vec1, vec2 ;

// modification du champ a de toto ;
vec1.x = 4'd10;
// affectation directe d'une donnée sous forme de structure
vec2 = vec1;

// v puet être interprété comme un réel (v.r)
// ou comme un entier (v.i)
union {shortreal r; int i;} v ;

69/81 MS-Systèmes Embarqués Tarik Graba 2019/2020

Les structures “pacquées”

Une structure pacquée est équivalente à un vecteur dont la taille est la somme des
tailles de ses membres. Le mot clé packed doit suivre struct .

// définition de la structure paquée
struct packed {logic [3:0] x;logic [3:0] y;} vec;

logic [7:0] V = 8'h0F;
...
vec = V; // vec.x = 4'h0, vec.y = 4'hF
...
vec = vec + 1;

Les membres doivent être des entiers ou des bus (bit, logic).

70/81 MS-Systèmes Embarqués Tarik Graba 2019/2020

Plan
Les langages HDL

Les niveaux de représentation
La représentation RTL

SystemVerilog
Généralités
Les nœuds
Représenter la structure
Représenter le comportement
Structures du langage
Les types de données

Exemples
Logique combinatoire
Logique séquentielle synchrone

71/81 MS-Systèmes Embarqués Tarik Graba 2019/2020

Plan
Les langages HDL

Les niveaux de représentation
La représentation RTL

SystemVerilog
Généralités
Les nœuds
Représenter la structure
Représenter le comportement
Structures du langage
Les types de données

Exemples
Logique combinatoire
Logique séquentielle synchrone

72/81 MS-Systèmes Embarqués Tarik Graba 2019/2020

Logique combinatoire
Règles pour décrire la logique combinatoire

La liste de sensibilité doit contenir toutes les entrées.
Les valeurs des sorties doivent être définie pour toutes les valeurs des
entrées.

Recommandations
Liste de sensibilité automatique.

• always_comb

Donner systématiquement une valeur par défaut aux sorties.

73/81 MS-Systèmes Embarqués Tarik Graba 2019/2020

Exercice
Une ALU

Les entrées sont sur 8 bits.
Les opérations possibles, la somme, la différence, le et,ou et ou exclusif.
La sortie est sur 8 bits plus une éventuelle retenue.
Faire un testbench.

74/81 MS-Systèmes Embarqués Tarik Graba 2019/2020

Plan
Les langages HDL

Les niveaux de représentation
La représentation RTL

SystemVerilog
Généralités
Les nœuds
Représenter la structure
Représenter le comportement
Structures du langage
Les types de données

Exemples
Logique combinatoire
Logique séquentielle synchrone

75/81 MS-Systèmes Embarqués Tarik Graba 2019/2020

Logique séquentielle

Dès qu’il faut mémoriser/garder un état on fait de la logique séquentielle
synchrone.
L’état initial vient d’une action extérieure de remise à zéro (reset)

76/81 MS-Systèmes Embarqués Tarik Graba 2019/2020

Logique séquentielle
Remise à zéro

Remise à zéro asynchrone :
clk

n_reset
D
Q

Remise à zéro synchrone :
clk

n_reset
D
Q

77/81 MS-Systèmes Embarqués Tarik Graba 2019/2020

Forme générique
Avec remise à zéro synchrone :

always_ff @(posedge clk)
if (reset)
begin
// Remise à zéro synchrone des registres
...

end
else
begin
// Que se passe-t-il à chaque front de l'horloge
...

end

Si reset vaut 1 au moment du front d’horloge !

78/81 MS-Systèmes Embarqués Tarik Graba 2019/2020

Forme générique
Avec remise à zéro asynchrone :

always_ff @(posedge clk or posedge reset)
if (reset)
begin
// Remise à zéro asynchrone des registres
...

end
else
begin
// Que se passe-t-il à chaque front de l'horloge
...

end

Si reset vaut 1 (dès qu’il passe à 1) indépendamment du front d’horloge.

79/81 MS-Systèmes Embarqués Tarik Graba 2019/2020

Forme générique
Avec remise à zéro asynchrone :

always_ff @(posedge clk or negedge nreset)
if (!nreset)
begin
// Remise à zéro asynchrone des registres
...

end
else
begin
// Que se passe-t-il à chaque front de l'horloge
...

end

Si nreset vaut 0 (dès qu’il passe à 0) indépendamment du front d’horloge.

80/81 MS-Systèmes Embarqués Tarik Graba 2019/2020

Exercice
Compteur

Un compteur modulo 256 avec remise à zéro synchrone
Une commande d’activation (enable)
Un testbench qui génère l’horloge et le reset

81/81 MS-Systèmes Embarqués Tarik Graba 2019/2020

	Les langages HDL
	Les niveaux de représentation
	La représentation RTL

	SystemVerilog
	Généralités
	Les nœuds
	Représenter la structure
	Représenter le comportement
	Structures du langage
	Les types de données

	Exemples
	Logique combinatoire
	Logique séquentielle synchrone

