
FreeRTOS

ELECINF344

Samuel TARDIEU <sam@rfc1149.net>
Mars 2015



FreeRTOS : configuration
La configuration de FreeRTOS se fait dans un fichier
FreeRTOSConfig.h, et définit notamment :

les fonctionalités utilisées (préemption, sémaphores, files
d’attente, priorités dynamiques ou non, délais relatifs,
délais absolus, etc.) ;
le nombre de niveau de priorités utilisées, et la plage
réservée à l’exécutif de FreeRTOS et aux interruptions ;
la taille de pile minimale pour chaque tâche, la taille de la
mémoire disponible pour le tas ;
la fréquence du tick système, qui représente la granularité
des délais offerts au programmeur et la fréquence du
changement de tâche active entre tâches de même
priorité.

2/8 Département INFRES ELECINF344 – Samuel Tardieu Mars 2015



FreeRTOS : synchronisation

FreeRTOS offre les outils suivants pour la synchronisation
entre les tâches et avec les routines d’interruptions :

files d’attente ;
sémaphores binaires ou à valeur maximale fixée, sans
héritage de priorité ;
verrous avec héritage de priorité.

Tous ces outils peuvent être utilisés depuis des tâches avec
des timeouts, ou depuis des interruptions avec des primitives
dédiées non bloquantes.

3/8 Département INFRES ELECINF344 – Samuel Tardieu Mars 2015



FreeRTOS : concurrence

Pour la gestion de programmes concurrents, FreeRTOS
propose :

un système de tâches préemptif avec gestion de la priorité ;
un système de coroutines avec gestion de la priorité ;
un système de hooks permettant de spécifier du code
exécuté à chaque tick du noyau ou lorsque le système
exécute l’idle-task.

Ces systèmes peuvent être utilisés seuls ou combinés. Il est
par exemple possible d’utiliser des coroutines lors de
l’exécution de l’idle-task et des tâches en mode préemptif
sinon.

4/8 Département INFRES ELECINF344 – Samuel Tardieu Mars 2015



FreeRTOS : gestion du temps
Le système de ticks de FreeRTOS permet :

à une tâche d’être suspendue pendant un nombre entier
de ticks ;
à une tâche d’être suspendue jusqu’à une date donnée (en
nombre de ticks depuis le démarrage) ;
à l’ordonnanceur de changer de tâche active parmi les
tâches de plus haute priorité lors du déclenchement du
tick.

Plus la fréquence du tick est grande, plus la gestion du temps
est précise, mais plus le surcoût lié à cette gestion est
important.
Pour des événements plus précis, il est possible d’utiliser des
timers externes à FreeRTOS qui débloqueront des tâches à
l’aide d’un sémaphore binaire.

5/8 Département INFRES ELECINF344 – Samuel Tardieu Mars 2015



FreeRTOS : gestion de la mémoire

FreeRTOS a besoin de routines malloc() et free() pour
allouer la mémoire des différentes entités. En addition, trois
implémentations sont livrées avec FreeRTOS :
heap_1.c : allocation possible, désallocation ignorée ;
heap_2.c : allocation possible, désallocation possible sans

agrégation des zones libres contiguës ;
heap_3.c : utilise les fonctions malloc() et free() fournies,

mais les rend thread-safe.
Si les tâches et les objets (sémaphores, files d’attentes, etc.)
sont créés au début du programme, toutes les allocations
disponibles seront faites avant de démarrer l’ordonnanceur. Il
sera par la suite impossible de manquer de mémoire.

6/8 Département INFRES ELECINF344 – Samuel Tardieu Mars 2015



FreeRTOS : outils de trace
FreeRTOS est doté d’outils de trace et de debug permettant de
suivre le fonctionnement du système et de s’assurer de son
bon déroulement :

les tâches peuvent être nommées et la liste des tâches
consultées ;
des données supplémentaires peuvent être attachées aux
tâches, et consultées lors du changement de contexte (par
exemple en changeant une sortie analogique pour
représenter une tension différente pour chaque tâche) ;
un certain nombre d’attributs peuvent être consultés ;
des fonctionalités de vérification de non-débordement de
la pile peuvent être employés (vérification lors du
changement de contexte et canari).

7/8 Département INFRES ELECINF344 – Samuel Tardieu Mars 2015



FreeRTOS : anatomie d’une application
Une application FreeRTOS aura généralement la forme
suivante :

1. Initialisation sommaire du matériel (assez pour les deux
étapes suivantes)

2. Copie de la section .data et initialisation de la section .bss

3. Exécution du programme principal (à partir de l’étape
suivante)

4. Fin de l’initialisation du matériel (horloges
supplémentaires, wait states, etc.)

5. Initialisation des périphériques
6. Création des structures FreeRTOS (tâches et structures de

contrôle)
7. Démarrage de l’ordonnanceur

8/8 Département INFRES ELECINF344 – Samuel Tardieu Mars 2015


