TELECOM
ParisTech

e Hiif
ELECINF102
Processeurs et Architectures Numériques

Controéle de connaissances
Vendredi 13 juin 2014 a 8h30
Document autorisé : une feuille recto-verso

Durée: 1h30 minutes

Ce contrdle comporte trois parties indépendantes :
1. Une horloge avec compensation de dérive en fréquence
2. Un multiplieur itératif

3. Un compilateur C pour le nanoprocesseur

Consignes importantes : Si des schémas sont demandés dans les différents exercices, ils doivent étre
impérativement clairs, lisibles et sans ambiguité. Les dimensions des bus doivent étre indiquées. Si nécessaire
le sens des signaux doit étre précisé. Pour la logique synchrone, les signaux d’horloge et d’initialisation
asynchrone (reset_n) ne seront pas représentés dans ces schémas.

N’oubliez pas d’inscrire nom, prénom, et numéro de casier sur votre copie.

Bon courage !

Télécom ParisTech, ELECINF102, 2013-2014

1 Horloge avec compensation de dérive en fréquence

Pour répondre aux questions de cette exercice vous pouvez au choiz :
e faire des schémas en utilisant les symboles de portes et opérateurs vus en cours,
e écrire du code System Verilog.

Nous voulons concevoir un chronometre comptant les secondes, nous disposons pour cela d’un oscillateur
a quartz générant une horloge principale a une fréquence nominale F' = 32 768 Hz a une température T = 25°.

Question 1 : A cette fréquence nominale, combien de bits sont nécessaires pour compter durant une
seconde ?

Question 2 : Proposez alors un systéme de division de fréquence générant une impulsion toute les secondes.
La durée de cette impulsion doit étre exactement une période de ’horloge principale.

En pratique, la fréquence de l'oscillateur varie légerement avec la température. Dans des conditions
normales d’utilisation, la valeur de la fréquence peut devenir F/ = (1 + A)F ou A € [-1073 : 1073]. La
dérive en fréquence A a été caractérisée. Il s’agit donc d’une constante connue. Par ailleurs, le chronomeétre
dispose d’'un capteur de température, et nous voulons ajouter un mécanisme pour compenser ces variations
et toujours obtenir une durée constante d’une seconde. Il faut alors modifier le compteur du diviseur de
fréquence pour prendre en compte cette dérive. La valeur maximale du compteur Ci,,., doit pouvoir étre
changée en suivant la formule :

C. = {32 768J

1+A

ou |z] représente la partie entiere de x. Cette valeur sera calculée a 'extérieur de notre systéeme et lui sera
transmise en entrée pour faire varier le nombre de cycles comptés dans le diviseur de fréquence.

Question 3 : Combien de bits sont maintenant nécessaires pour le compteur du diviseur de fréquence ?
Question 4 : Modifiez le systeme de division de fréquence pour prendre en compte cette valeur d’arrét
variable.

Télécom ParisTech, ELECINF102, 2013-2014

2 Un multiplieur itératif

Nous souhaitons construire un module de calcul Operateur, disposant d’une entrée start, d’une horloge
clk et d’'un sortie stop, dont les réles sont :

le signal start signale le démarrage d’un calcul a effectuer par Operateur;

le signal start est une impulsion d’une durée d’un cycle de I'horloge ;

le signal stop généré par Operateur signale la fin du calcul;

le signal stop est une impulsion d’'une durée d’un cycle de I'horloge ;

le signal stop doit avoir un retard de 9 cycles par rapport au signal de départ;

si un nouveau start intervient avant I’arrivée de stop, alors la procédure en cours est réinitialisée
pour générer stop 9 cycles plus tard.

On suppose qu’initialement toutes les bascules D sont a ’0’.

Le chronogramme suivant illustre le fonctionnement d’Operateur :

cycle -1 i i+1 i+2 i+3 i+4 i+5 i+6 i+7 i+8 i+9 i+10
CLK [L 7 I L 7 I 7 LI

stat [\

stop /A

Question 1 : Déterminez une architecture de traitement pour Operateur et complétez le code SystemVe-
rilog correspondant :

module Operateur (
input logic clk,
input logic start,
output logic stop
);

// code a compléter

endmodule

Operateur doit réaliser le produit P de deux nombres A et B de maniére itérative en 9 cycles d’horloge.
On considere que :

les nombres A et B sont deux entiers non signés codés sur 8 bits;

les nombres A et B sont fournis & Operateur lorsque start vaut ’1’;
les nombres A et B sont maintenus pendant toute la durée du calcul ;
le nombre P est un entier codé sur 16 bits;

le résultat P doit étre généré par Operateur lorsque stop vaut '1’.

L’algorithme de calcul (en pseudo langage) est le suivant

P=0

tmpA = A

pour i allant de 0 jusqu’'a 7 faire
debut

si B[i] = 1 alors P = P + tmpA
tmpA = 2xtmpA
fin

Télécom ParisTech, ELECINF102, 2013-2014

Question 2 : Complétez le code SystemVerilog précédent pour obtenir le comportement souhaité. N’oubliez
pas de préciser la taille (nombre de bits) des signaux internes éventuellement créés. On rappelle qu’en
SystemVerilog on peut accéder au bit i du bus A par la syntaxe A[1i].

module Operateur (
input logic clk,
input logic start,
input logic [7:0] A ,
input logic [7:0] B ,
output logic stop,
output logic [15:0] P
);

// code a compléter

endmodule

Question 3 : Modifiez Operateur pour qu’il fonctionne en 8 cycles.

Télécom ParisTech, ELECINF102, 2013-2014

3 Un compilateur C pour le nanoprocesseur

Dans cet exercice nous allons travailler sur le nano-processeur vu en cours et en TP. Les programmes a
éxecuter sont stockés en mémoire en créant deux zones bien distinctes :

e Les instructions sont placées dans une premiere zone de la mémoire.

e Les données sont placées dans une deuxiéme zone de la mémoire.
Question 1 : Quels sont les avantages d’avoir des zones séparées pour les instructions et pour les données ?

Dans la suite de I'exercice les zones "instructions" et "données" seront définies de la facon suivante :
e La mémoire contient 256 octets.

e Les instructions sont placées dans la plage d’adresses de 0 a 127.

e Les données sont placées dans la plage d’adresses de 128 a 255.

Langage utilisé pour décrire un programme éxécuté par le nano-processeur s’appelle langage assem-
bleur. Le langage assembleur n’est que tres rarement utilisé en pratique. On préfere utiliser des langages de
plus haut niveau comme C, C++ ou Java. C’est un compilateur qui se charge de traduire les instructions C
en instructions assembleur compréhensibles par le processeur.

Question 2 : En s’inspirant des exemples situés en annexe, traduisez en assembleur le code C suivant. Vous
préciserez le contenu de chaque adresse mémoire utilisée, en zone instructions et en zone données. Les types
char du langage C sont des mots de 8 bits.

char a = 13;
char b = 127;
char c;
c=a+b;

Question 3 : Traduisez en assembleur le code C suivant. Vous préciserez le contenu de chaque adresse
mémoire utilisée, en zone instructions et en zone données.

char a, b, c, d, e, T;

if (a == b)

c=d + e;
else
c=d+ f;

Question 4 : En utilisant le jeu d’instructions vu en cours, traduisez en assembleur le code C suivant. Vous
préciserez le contenu de chaque adresse mémoire utilisée, en zone instructions et en zone données.

char a, b, c, d, e, f;

if (a < b)

c=d + e;
else
c=d+ f;

Télécom ParisTech, ELECINF102, 2013-2014

Question 5 : On cherche a faire fonctionner le processeur a une vitesse supérieure a sa vitesse limite,
sans changer de technologie ni de tension d’alimentation. Comment procéder ? Quels sont les avantages et
inconvénients de cette méthode ?

Question 6 : On réduit maintenant la taille des transistors d’un facteur «, tout en gardant une tension
d’alimentation constante. Comment évolue la vitesse maximale de fontionnement du processeur 7 Que devient
sa consommation a cette vitesse maximale ?

Annexe :

Nous rappelons dans le tableau suivant la liste des instructions du nano-processeur

’ Inst. ‘ Fonction H Inst. ‘ Fonction
NOP Ne fait rien ROL Rotation a gauche
XOR Ou exclusif ROR Rotation a droite
AND Et LDA Transfert mémoire vers accumulateur
OR Ou STA Transfert accumulateur vers mémoire
ADD Addition ouT Positionne le port de sortie
ADC Addition avec retenue entrante JMP Saut inconditionnel
SUB Soustraction JNC | Saut si le dernier calcul a généré une retenue sortante
SBC | Soustraction avec retenue entrante || JNZ | Saut si le dernier calcul a généré un résultat non nul

Un programme en langage assembleur peut s’écrire de la fagon suivante :
e Chaque instruction du programme est décrit par 3 champs :
— <adresse de 'instruction> <instruction> <adresse de 'opérande>
e Chaque donnée du programme est décrite par 2 champs :
— <adresse de la donnée> <valeur de la donnée>
Ainsi la portion de programme assembleur suivant :

34 XOR 141
36 AND 212

141 23

212 56

Doit étre interprétée de la fagon suivante :

e A ladresse 34 se trouve l'instruction XOR

A Dadresse 35 se trouve 'adresse de 'opérande (141)

A Tadresse 141 se trouve une donnée de valeur 23.

Le microprocesseur doit calculer le "ou-exclusif” entre la valeur courante de I’accumulateur et la valeur
23 et stocker le résultat dans 'accumulateur.

A Tadresse 36 se trouve l'instruction suivante : AND

A Dadresse 37 se trouve 'adresse de 'opérande : (212)

A Tadresse 212 se trouve une donnée de valeur 56.

Le microprocesseur doit calculer le "et" entre la valeur courante de 'accumulateur et la valeur 56 et
stocker le résultat dans 'accumulateur

	Horloge avec compensation de dérive en fréquence
	Un multiplieur itératif
	Un compilateur C pour le nanoprocesseur

