TELECOM
ParisTech

m &
INSTITUT

Mines-Télécom System Verilog Assertions

B outline

Introduction

TELECOM

ParisTech

e

I A Practical Verification Language?

B | TL and CTL have emerged from theoretical interest

B Bound to specific complexity classes and
equivalence notions

® Nested CTL/LTL properties are hard to understand
B Subtle semantic differences

FXp=XFp=AX AF p # AF AX p

FGp#AFAG p

TELECOM
ParisTech

I Sysiem Verilog Assertions

module monitor(foo.MONITOR I);

property slave_data_notunknown_when_ready;
@(posedge I.clk)
I.ready | -> $isunknown(I.s) =
endproperty

0;

assert_slave_data_notunknown_when_ready: assert property (slave_data_notunknown_when_ready)
else $error("%m: ready is asserted but data from slave is non valid");

property slave_ready_until_valid;
@(posedge I.clk)
$rose(I.ready) | -> I.ready throughout I.valid [->1]; //ou I.ready [#0:$] ##1 I.valid;
endproperty

assert_slave_ready_until_valid: assert property(slave_ready_until_valid)
else $error("%m:slave’s ready must be held until valid is set"”);

property slave_data_held_when_ready;
bit [7:0] s;
@(posedge I.clk) disable iff (I.nrst == @)
(I.ready && !I.valid , s = I.s) | => s == I.s; //ou $stable(I.s);
endproperty

assert_slave_data_held_when_ready: assert property(slave_data_held_when_ready)
else $error("%m: data must be held stable when slave is ready");
endmodule

4/29 SE303 Ulrich Kiihne

I Sysiem Verilog Assertions

B |ndustrial standard JEﬂE;Z’EdES‘TSﬁkm
(IEEE 1 800_201 2) Dmilry‘Korchemny

® Embedded in SystemVerilog HDL I\Efel:?l\g:; |0nf

® Superset of LTL SystemVerilog

B Sequences and regular expressions

B Supports simulation and formal
verification

TELECOM

ParisTech

I i

I Basic Property Structure

// basic property structure
property foo;
@(posedge clk) disable iff (rst)
expr;
endproperty // foo

// verification directives
assert property(foo);
assume property(foo);

TELECOM

ParisTech

I Past Values and Value Changes

B Value of a signal in the preceding cycle:

B Shortcut for rising edge:

is equal to\ I$past(a) && a‘

® Shortcut for falling edge:

is equal to]$past(a) 8& !a‘

B Shortcut for stable signal:

is equal to ‘ $past(a) == a‘

®m Shortcut for changed signal:

is equal to ‘ $past(a) * a‘

TELECOM

’arisTech

B outline

Sequences

TELECOM

ParisTech

e

Sequentially Extended
Regular Expressions (SERE)

B Typical use case: Chains of events

B Awkward to describe in LTL

B |ntuitive description by regular expressions

B Syntax resembles known languages (bash, Python, ...)

TELECOM

ParisTech

I scquences

la ##1 b ##2 |

ck ST LTI L
S S

a
. B
c |

® Find all matching cycles. ..

TELECOM
ParisTech

I Variable Delay

b v b B 4 &5 g & g lo to i1 Lo bz ta bis

ck LU L
a I_Q I_g <

AN

X

b [=\ [> N

B Find all matches...

TELECOM

ParisTech

B Rcpetition

®m Consider sequence:
la ##1 a ##1 a ##1 b ##1 b]

B Shortcut for repeating sequence:
[a[*3] ##1 b[x2]]

® Variable repetition:

TELECOM

ParisTech

I Asscrtion Semantics

property foo;
@(posedge clk)
a ##[1:3] b;
endproperty

assert property(foo);

B What are we actually verifying here?

® Sequence must match in all cycles

B |mplicit always operator (Gin LTL)

TELECOM

ParisTech

I Suffix Implication

// suffix implication
foo ##1 bar |-> pof ##[1:3] mop

foo [\
bar [
pof [
mop

ck LI rurururer
\
\

TELECOM

ParisTech

N Non-Overlapping Suffix Implication

// non-overlapping suffix implication
foo ##1 bar |=> pof ##[1:3] mop

ck LML L rirer
foo [\

bar [T\
pof [T\
mop T T\

TELECOM

ParisTech

N Example

Prop. 1: “Whenever signal rdy is asserted, it must
stay asserted for 5 clock cycles”

property rdy_stable;
@(posedge clk)
Irdy ##1 rdy |=> rdy[*4];
endproperty

TELECOM

ParisTech

B outline

Strength & Infinity

TELECOM

ParisTech

I nfinity

m Special symbol | | for infinity
B Can be used in variable delay and repetition
m is a shortcut for | a[*0: $]

[is a shortcut for |a[*1:$]

Exercise: What is the meaning of this sequence?

(start ##1 busy[*] ##1 done)[+]

TELECOM

’arisTech

I nfinity

Prop. 2: “Whenever signal busy is asserted,
rdy must be asserted eventually.”

property rdy_after_busy;
@(posedge clk)
busy |-> ##[0:$] rdy;
endproperty

This property is wrong!

TELECOM

ParisTech

I nfinity

B This assertion has no counter-example

busy |-> ##[0:$]1 rdy

oGO]] e o
busy |/
rdy

TELECOM

ParisTech

I Sirength

m Use of operator

B Enforces a match before the end of evaluation
(which is infinity in formal verification)

® Weak and strong versions of many operators

assert property (busy |-> ##[0:$] rdy);

assert property (busy |-> strong(##[0:$] rdy));
assert property (busy |-> eventually rdy);
assert property (busy |-> s_eventually rdy);

TELECOM

ParisTech

I until

|a until_with b]
’a s_until_with b‘

ck Ul ck Ul
a [a [
b b

Attention: Weak until operators allow infinite wait!
oS s

. O

b

TELECOM

22/29 SE303 Ulrich Kahne 29/11/2017 =T
I cn ks EAE

B outline

Advanced Operators

TELECOM

ParisTech

e

I Goto Repetition

Prop. 3: “After signal write is serviced by ack,
signal ready should be asserted.”

(write ##1 lack[*] ##1 ack) |=> ready

Prop. 4: “After signal wr_burst is serviced twice by ack,
signal ready should be asserted.”

(wr_burst ##1 lack[*] ##1 ack ##1 !ack[*] ##1 ack) |=> ready

(wr_burst ##1 (lack[*] ##1 ack)[*2]) |=> ready

wr_burst ##1 ack[->2] |=> ready

TELECOM

ParisTech

I Goto Repetition

wr_burst ##1 ack[->2] |=> ready

ck _JTLIULTLTL L e
wr_burst [\
ack [T\ [\
ready [

TELECOM

ParisTech

I \ithin / Throughout

Prop. 5: “Throughout the whole burst cycle, the signal
ready should be low.”

'ready throughout (wr_burst ##1 ack[->2])

Prop. 6: “Within a granted bus cycle, a write transaction
should be completed.”

(write ##1 ack[->1]) within (gnt ##1 !gnt[->11)

This property is (probably) wrong!

(write #4#1 ack[->1] ##1 1) within (gnt ##1 !gnt[->11)

TELECOM

’arisTech

I 1 ocal Variables

Prop. 7: “After a completed write transaction, the value of
wdata is stored in the register entry.”

ck _TLITLITLriririeril

write / \
wdata OXFFET |
ack / \

entry NI orE

TELECOM

ParisTech

I 1 ocal Variables

Prop. 7: “After a completed write transaction, the value of
wdata is stored in the register entry.”

property foo;
logic[15:0] tmp;
@(posedge clk)
(write, tmp = wdata) ##1 ack[->1] |=>
entry == tmp;
endproperty

TELECOM

ParisTech

I Practical Exercise

B Formalization of a textual specification
B |mplementation & verification with qformal

B See exercise on website
https://sen.enst.fr/verification-formelle

® Until December 11: Complete the formalization!

TELECOM

ParisTech

https://sen.enst.fr/verification-formelle

I Rcferences |

@ Cerny, E., Dudani, S., Havlicek, J., and Korchemny, D. (2015).
SVA: The Power of Assertions in SystemVerilog.
Springer.

TELECOM

ParisTech

e

	Introduction
	Sequences
	Strength & Infinity
	Advanced Operators
	Appendix

